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Abstract: The implementation of fatigue-damage models into the governing equations of the disturbed stress field model algorithm
for fatigue analysis of reinforced concrete structures is presented in this paper. The models account for concrete deterioration, localized
reinforcement crack growth, and accumulation of irreversible compressive strain in conventional reinforced concrete and steel-fiber rein-
forced concrete due to fatigue loading. As such, analyses involving fatigue damage can be expressed in terms of the deformation evolution
and residual capacity. These concepts overcome the well-known limitations of stress-life models for fatigue analysis of reinforced concrete
structures. The implementation concepts using robust models from the literature are described. As a means of further illustration, the solutions
to the deformation of a shear element under pure shear fatigue loading are presented. The validation of the modified algorithm using finite-
element analysis with experimental results for fatigue life and residual strength prediction gave good correlation. DOI: 10.1061/(ASCE)
ST.1943-541X.0002349. © 2019 American Society of Civil Engineers.

Introduction

A majority of collapsed structures subject to dynamic forces have
been linked to component fatigue. This has resulted in the use of
fatigue limit-state verification to complement the ultimate and serv-
iceability limit states in the structural design of these structures. As
a norm, the fatigue-resistance capacity of a reinforced concrete
structure is typically estimated using the stresses induced in the
constituent materials obtained from static analyses of the maximum
and minimum fatigue loads on the structure. The highest stress val-
ues at critical sections are normalized with the ultimate strengths of
the materials and are substituted into corresponding fatigue stress-
life models (S-N curves) to obtain the number of cycles leading to
failure (Aas-Jacobsen 1970).

Experiments conducted and reported in the literature on the
fatigue behavior of concrete composites portray progressive
deterioration and accumulation of irreversible strains as governing
mechanisms. Cracks on reinforcing bars traversing cracked con-
crete planes have also been observed to evolve to fracture
(Lovegrove 1981; Okamura et al. 1981; Zanuy et al. 2009). The
inability of S-N models to account for progressive deformation
became evident as the need of the damage evolution for concrete
after some given number of cycles and load history arose (Holmen
1982).

In order to account for the progressive deformation under
fatigue loading, constitutive models were developed for concrete
composites and steel reinforcement by various researchers (Otter
and Naaman 1986, 1988; Oh 1991; Eligehausen et al. 1992; Park
1990; Gao and Hsu 1998; Teng and Wang 2001; Petryna et al. 2002;

Maekawa et al. 2006; Xiang and Zhao 2007; Grebreyouhannes
et al. 2008; Vega et al. 1995; Zanuy et al. 2009; Tamulenas et al.
2014). These simplified the prediction of the damage evolution of a
structural component up to the instance of collapse due to instabil-
ity arising from concrete composite degradation and steel reinforce-
ment fracture. However, some constitutive models developed for
concrete are based on assumptions not adequately verified exper-
imentally. For example, using a stress-strain relation, the fatigue
hysteresis loop of concrete at failure is assumed to intersect the
monotonic stress-strain envelope, and the peak stress of a fatigue-
damaged concrete element intersects the monotonic stress-strain
envelope. Further, the centerlines of the fatigue hysteresis loops
are assumed to converge at a common point. Significant fatigue-
influencing parameters such as frequency, waveform, and stress ra-
tio, which were neglected, limit the use of such models to structures
having similar loading parameters as those used for developing
such models (Zhang et al. 1998; Isojeh et al. 2017a).

Although stress-life models (Tilly and Moss 1982; Hanson
1983; JSCE 1986; Petryna et al. 2002) and the Palmgren-Miner
rule (linear rule) (Palmgren 1924; Miner 1945) are used in model-
ing the progressive fatigue degradation of steel reinforcement, it is
well-known that crack propagation in steel reinforcement is non-
linear. Because the main region of fatigue failure in reinforced con-
crete structures typically coincides with the location of concrete
cracks intersecting reinforcing bars, the progressive crack-growth
of the reinforcement traversing the concrete crack plane should
be well-accounted for to appropriately predict the deformation
within the concrete plane. Available approaches in the literature
that incorporate the stress-life models and Palmgren-Miner rule for
steel reinforcement fatigue fracture do not capture this governing
fatigue-damage mechanism and its corresponding evolution.

In this paper, robust modified damage models, an irreversible
strain model, and constitutive models proposed by Isojeh et al.
(2017a, c, d) are used. In addition, the governing fatigue-damage
mechanism and local stress conditions at crack locations are
adequately accounted for by implementing reinforcement crack-
growth models developed from fracture mechanics. These models
are incorporated into the monotonic models of the well-known dis-
turbed stress field model (DSFM) as functions of fatigue loading
cycles and other salient fatigue-loading parameters; hence, as
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fatigue loading cycles increase, the residual capacity of a structural
element and its progressive deformation can be obtained from load-
deformation plots and deflection evolutions.

Disturbed Stress Field Model

Solutions to many engineering mechanics problems are obtainable
provided associated equilibrium, compatibility, and constitutive

equations are satisfied. The capability of DSFM (Vecchio 2000,
2001) to predict the behavior of reinforced concrete structures sub-
jected to different loading conditions is well-documented (Vecchio
2000, 2001; Facconi et al. 2014; Lee et al. 2016). As an extension
of the modified compression field theory (Vecchio and Collins
1986), the DSFM, founded on a smeared-rotating crack model, in-
cludes the consideration of deformation within concrete crack
planes. The formulations of DSFM can be adapted to allow for the
consideration of damage of concrete and the corresponding crack
growth on steel reinforcement (longitudinal and transverse) inter-
secting a concrete crack under fatigue loading. The modification of
these models is considered subsequently.

Equilibrium Condition

The reaction of an orthogonally reinforced concrete element (Fig. 1)
due to external forces will result in induced average stresses in the
concrete composite and steel reinforcement. In the cracked state,
the verification of equilibrium at the crack locations is required to
ensure stresses are adequately transferred between cracks (Fig. 2).

Equilibrium due to Average Stresses

In Fig. 1, the normal stresses are denoted by σx and σy and the shear
stress as τ xy. Considering the average stresses in the element under
static loading condition, the equilibrium condition based on the
superposition of concrete and steel reinforcement stresses can be
expressed as:

σx ¼ fcx þ ρxfsx ð1Þ

σy ¼ fcy þ ρyfsy ð2Þ

τ xy ¼ vcxy ð3Þ
where ρx and ρy = reinforcement ratios in the x- and y- directions,
respectively.

The stresses in the concrete or steel-fiber concrete (fcx, fcy, and
vcxy) can be obtained using Mohr’s stress circle [Fig. 1(b)] with
known principal stresses (fc1 and fc2). The principal stresses are
obtained from constitutive models, which are functions of concrete
parameters such as strength, stiffness, and induced strains. Because
these parameters (strength and stiffness) degrade and strains
accumulate under fatigue loading, the material stresses change cor-
respondingly. Constitutive models that account for fatigue degra-
dation are considered in a subsequent section.

y

x

x

y

(a)

(b)

Fig. 1. Steel-fiber reinforced concrete element: (a) loading conditions;
and (b) Mohr’s circle for average stresses in concrete.
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(a) (b)

Fig. 2. Equilibrium conditions: (a) parallel to crack direction; and (b) along crack surface.
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Equilibrium of Forces at a Crack

Under static loading, stresses in reinforcement at crack locations
are higher than the values between cracks (average values) because
concrete tensile stress is low or zero at such locations. As a result,
shear stresses also develop on the crack surfaces at crack locations.

Because fatigue crack propagation is a function of stress values,
its initiation tends to occur at a reinforcement region traversing the
concrete cracks where the stresses are high. From Figs. 2(a and b),
the general static equilibrium equations that involve steel fiber are
given as follows (Lee et al. 2016):

fc1 ¼
Xn
i

ρsiðfscri − fs;iÞ · cos2θni þ ð1 − αavgÞff cos θf ð4Þ

vci;cr ¼
Xn
i

ρsiðfscri − fs;iÞ · cos θni sin θni − ð1 − αavgÞff sin θf

ð5Þ
where ð1 − αavgÞff = contribution from steel fiber bridging a crack,
where αavg relates the tensile stress in the steel fiber to the average
principal tensile stress; θf = angle between the tensile stress direc-
tion due to steel fiber and principal tensile stress direction in con-
crete; and ff = function of the equivalent bond strength due to the
mechanical anchorage of steel fiber and the friction bond strength
of the steel fiber (Lee et al. 2016).

As cracks propagate on the reinforcement traversing a concrete
crack, the area of reinforcement intersecting the crack reduces,
resulting in a lower reinforcement ratio at the crack. To account
for the progressive reinforcement ratio reduction due to fatigue
loading, Eqs. (4) and (5) are modified

fc1 ¼
Xn
i

ρsiðZOfscri − fs;iÞ · cos2θni

þ ð1 − αavgÞff
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Dfc

p
cos θf ð6Þ

vci;cr ¼
Xn
i

ρsiðZOfscri − fs;iÞ · cos θni sin θni

− ð1 − αavgÞff
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Dfc

p
sin θf ð7Þ

where ZO and Dfc = parameters representing reinforcement crack
growth and plain or steel-fiber concrete strength degradation,
respectively.

Reinforcement Crack-Growth Factor (ZO )

The fractured surface area of a reinforcing bar can be assumed as
shown in Fig. 3. The crack depth (ay) evolves from an initiation
point up to the instant when the reserve capacity of the reinforce-
ment at the crack is no longer enough for tensile stress transfer. The
definitions for ay, ai, and other parameters for obtaining the crack
depth at a given fatigue loading cycle have been given by Isojeh and
Vecchio (2016).

From Fig. 4, the fractured area AðayÞ is estimated as follows:

AðayÞ ¼
θr
90

πr2 − r sin θrð2r − ayÞ ð8Þ

θr ¼ cos−1
�
r − 0.5ay

r

�
ð9Þ

The residual area (Ares) of a reinforcing bar after crack propa-
gation to a given number of cycles is obtained as follows:

Ares ¼ Ao − AðayÞ ð10Þ

From Eq. (10), the reinforcement crack-growth factor (ZO)
required in Eqs. (6) and (7) is obtained

ZO ¼ Ares

Ao
ð11Þ

where Ao = cross-sectional area of the uncracked rebar. ZO is esti-
mated for all reinforcing bars traversing the concrete crack, pro-
vided the induced stresses are higher than the threshold value for
crack initiation.

Prior to reinforcement crack propagation, the number of cycles
resulting in a localized plasticity-crack nucleation or crack initia-
tion may also be included using Masing’s model and the Smith-
Watson-Topper (SWT) approach [Socie et al. 1984; ASTM STP
1389 (Dowling and Thangjitham 2000)]. To account for this, the
value of the reinforcement crack-growth factor is assumed to be
a value of 1.0 in Eqs. (6) and (7) until the estimated crack-initiation
cycles are reached.

Compatibility Condition

In the disturbed stress field model, the total strain ½ε� in an element
consists of the net strain ½εc�, plastic offset strain ½εpc �, elastic offset
strain ½εoc �, and strain effect due to slip at crack ½εsc�. The net strain,
which is obtained from the difference between the total strain
and other aforementioned strains (generally called prestrains), is
required in constitutive models for obtaining average stresses.

As reported in the literature, irreversible strain accumulates
under fatigue loading; hence, it can be considered as a prestrain
at any given fatigue loading instance. An irreversible fatigue strain
model developed by Isojeh et al. (2017c) is used for fatigue
prestrain ½εfatc;2� in the principal compressive strain direction for con-
ventional and steel-fiber reinforced concrete. The model was devel-
oped as a function of residual strength and stiffness damage. These
parameters, in turn, are functions of salient factors such as fre-
quency, stress ratio, and fatigue loading cycles. As such, the model
is capable of accounting for variations in loading parameters. In the
x-y direction, the total strain ½ε� is

½ε� ¼ ½εc� þ ½εpc � þ ½εoc � þ ½εsc� þ ½εfatc � ð12Þ
Total strains are used in the constitutive equations for obtaining

steel reinforcement stresses; however, net strains ½εc� are required

undamaged surface

crack initiation

r

Fig. 3. Crack growth on a reinforcing bar cross section.
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in the constitutive models for obtaining average stresses in concrete
or steel-fiber concrete. Considering the x-y direction

½ε� ¼ ½εx; εy; γxy� ð13Þ

½εc� ¼ ½εcx; εcy; γcxy� ð14Þ

½εfatc � ¼ ½εfatcx ; εfatcy ; γfatcxy� ð15Þ

The principal strains (εc1 and εc2) and the angle of inclination
can be estimated from Mohr’s circle of strain. Isojeh et al. (2017c)
developed the following:

εfatc;2 ¼ εdo þ εd1 þ εd2 ð16Þ

εdo ¼ −
�
f 0
c þ ðσmaxRÞ

E

�
− 0.3ε 0

c ð17Þ

εd1 ¼ k2q

�
Dfcffiffiffiffiffiffiffiffi
Dce

p
�

ð18Þ

εd2 ¼
ðσmaxRÞ
Esec

ð19Þ

where E = fatigue secant modulus; k2 ¼ 1.0 for high-strength con-
crete and 2.0 for normal-strength concrete; q in Eq. (18) = −0.3ε 0c;
R = stress ratio; σmax = maximum stress level; and Esec = residual
static secant modulus. The models for Dfc (concrete strength
damage) and Dce (fatigue secant modulus damage) are given in
a subsequent section.

Constitutive Relation

The behavior of cracked concrete in compression and the corre-
sponding influences of transverse stresses and shear-slip effects
under static loading have been well illustrated by Vecchio (2000).
Constitutive models for plain and steel-fiber reinforced concrete are
usually given in terms of peak stresses and corresponding strains at
peak stresses. Models proposed by Hognestad (1957) and Popovics
(1973) for normal and high-strength concrete, respectively, were
modified by Isojeh et al. (2017c, d) to account for concrete deterio-
ration and are presented herein for fatigue constitutive relation. The
modified Hognestad’s equation for fatigue damage is expressed
in Eqs. (20)–(22). The residual strength damage (Dfc) in the equa-
tions will be considered shortly

f�c ¼ ð1 −DfcÞfp ð20Þ

ε�c ¼ εpð1þ
ffiffiffiffiffiffiffiffi
Dfc

p Þ − εd ð21Þ
where f�c = degraded compressive strength; fp = compressive
strength of concrete; and ε�c = strain corresponding to the degraded
concrete’s compressive strength.

The effective stress in fatigue-damaged concrete is

fc2 ¼ f�c

�
2εc2
ε�c

−
�
εc2
ε�c

�
2
�

ð22Þ

For high-strength plain concrete (fp≥40 MPa) [using the
Popovics (1973) equation], the fatigue constitutive equation is
given in a simplified form as follows:

fc2 ¼ fpð1 −DfcÞ
ðnεc2εp

Þ
ðn − 1Þ þ ðεc2=εpÞnk

ð23Þ

where according to Collins and Mitchell (1997)

n ¼ 0.80 − fp=17 ðMPaÞ ð24Þ

k ¼ 0.6 − fp
62

for εc2 < εp < 0 ð25Þ

k ¼ 1 for εc2 < εp < 0 ð26Þ

For steel-fiber concrete, the monotonic constitutive model
proposed by Lee et al. (2016) was modified to account for fatigue
damage

fc2 ¼ fc2maxð1 −DfcÞ
�

Aðεc2=εpÞ
A − 1þ ðεc2=εpÞB

�
ð27Þ

fc2max ¼
f 0
c

1þ 0.19ð−εc1=εc2 − 0.28Þ0.8 < f 0
c ð28Þ

The values for A and B differ for the hardening and softening
portion of the stress-strain envelope. From Lee et al. (2016), the
values are as follows:

For the prepeak ascending branch

A ¼ B ¼ 1=½1 − ðf 0
c=ε 0

cEcÞ�

For postpeak

A ¼ 1þ 0.723ðVflf=dfÞ−0.957;

B ¼
�
f 0
c

50

�
0.064

½1þ 0.882ðVflf=dfðVflf=dfÞ−0.882�

The residual strength damage evolution model is given in
Eq. (29) (Isojeh et al. 2017a). The damage parameter in the equa-
tion depends on the steel-fiber volume and can be obtained from
Fig. 4

Dfc ¼ Dcr Exp

�
s

�
Δf
f 0
c
− u

��
Nv ð29Þ

u ¼ Cfð1 − γ2 logðζNfTÞÞ ð30Þ

v ¼ 0.434 sCfðβ2ð1 − RÞÞ ð31Þ

where Dcr = critical damage value, which is taken as 0.35 and 0.4
for strength and elastic modulus, respectively; Cf = frequency
factor; and γ2, and β2 = material constants, which are given, respec-
tively, as follows (Zhang et al. 1996):

Cf ¼ ab− log f þ c ð32Þ

γ2 ¼ 2.47 × 10−2; γ2 ¼ 0 ðfor steel fiberÞ

β2 ¼ 0.0661 − 0.0226R ð33Þ
where for steel-fiber concrete, β2 ¼ 0.0588 and 0.0470 for a steel
fiber volume of 0.75% and 1.5%, respectively (Isojeh et al. 2017d);
a, b, and c ¼ 0.249, 0.920, and 0.796 for plain concrete (Zhang
et al. 1996) and 0.283, 0.941, and 0.715, respectively, for steel-fiber
concrete (Isojeh et al. 2017d); ζ = dimensionless coefficient, which
is taken as 0.15 for a sinusoidal cycle (Zhang et al. 1998; Torrenti
et al. 2010); and f = fatigue loading frequency.

The behavior of cracked concrete has been considered so far. In
an uncracked element, a linear relation for concrete in tension is
modified

© ASCE 04019126-4 J. Struct. Eng.
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fc1 ¼ Ecð1 −DteÞεc1 ð34Þ

where fc1 = tensile stress in the concrete; Ec = initial tangential
modulus; and εc1 = principal tensile strain in the concrete. Com-
pressive fatigue damage in an uncracked concrete element is gen-
erally considered insignificant because the induced compressive
stress is usually small.

Because of bonding between concrete and steel reinforcement,
which results in load transfer between the concrete and reinforce-
ment, tension stiffening is usually considered under monotonic
loading [Eq. (35)]. Under fatigue loading, however, the effect re-
duces progressively due to the evolving tensile strain in cracked
concrete and reinforcement crack propagation.

The coefficient cf accounts for the influence of steel fiber
(end-hooked) (Lee et al. 2013)

fc;TS ¼ ftp
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3.6cf · εc1
p ð35Þ

where cf ¼ 0.6þ ð1=0.034Þðlf=dfÞ½ð100VfÞ1.5=M0.8�, where M is
a bond parameter equal to Ac=ð

P
db;iπÞ (mm). For plain concrete,

the value of cf is taken as 0.6. The tensile stress in steel-fiber con-
crete is estimated as the sum of the tension stiffening effect and
stresses transmitted by the steel fiber across cracks

fc1 ¼ fc;TS þ ð1 − αavgÞff cos θf ð36Þ

where db;i = rebar diameter. The second term in Eq. (36) is null in
the case of conventional reinforced concrete.

The tensile stress in Eq. (36) is required to be less or equal to
the right-hand side of Eq. (6). Further, the crack-spacing model
proposed by Deluce et al. (2014) is used to relate crack width
to average tensile strain, and the shear-slip model proposed by
Vecchio and Lai (2004) is used to estimate the slip prestrain
and deviation of steel-fiber tensile stress. The models are given
subsequently.

For steel-fiber concrete

Scr ¼ 2

�
ca þ

sb
10

�
k3 þ

k1k2
smi

ð37Þ

where Scr = average crack spacing; ca ¼ 1.5agg; k1 ¼ 0.4; k2 ¼
0.25; and k3 ¼ 1 − ½minðVf; 0.015Þ=0.015�½1 − ð1=kfÞ�, where
agg is the maximum aggregate size (mm) and

sb ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
4
π
ρs;i
d2b;i

cos4θi
q ð38Þ

sm;i ¼
X
i

ρs;i
db;i

cos2θi þ kf
αfVf

df
ð39Þ

For conventional reinforced concrete, Scr ¼ 1=ðj cos θj=smx þ
j sin θj=smyÞ, and

δs ¼ δ2

ffiffiffiffiffiffiffiffiffiffiffiffi
ψ

1 − ψ

s
ð40Þ

δ2 ¼
0.5vcmax þ vco

1.8w−0.8
cr þ ð0.234w−0.707

cr − 0.20Þfcc
ð41Þ

where δs = crack slip; smx and smy = average crack spacing in
the x- and y-directions, respectively; kf = factor accounting for

the steel-fiber aspect ratio; ψ ¼ vci;cr=vcmax; vcmax ¼
ffiffiffiffiffi
f 0
c

p
=½0.31þ

ð24ðwcr=aggÞ þ 16Þ (MPa); vco ¼ fcc=30; fcc = concrete cube
strength (MPa); and wcr ¼ Scrεc1. For conventional reinforced con-
crete, δs is taken as δ2, but the numerator is replaced with shear stress
vci;cr for conventional reinforced concrete [Eq. (7)].

The shear strain resulting from the crack slip is estimated as
γs ¼ δs=s and resolved into x- and y-components

εsx ¼ −γs=2 · sin 2θ ð42Þ

εsy ¼ γs=2 · sin 2θ ð43Þ

γsxy ¼ −γs=2 · cos 2θ ð44Þ

Because shear stresses and slip are functions of the reinforce-
ment ratio or progressing principal stresses, their corresponding
values evolve. The tensile stress resulting from steel-fiber bridging
deviates by an angle θf from the direction of the principal tensile
stress (fc1). This deviation angle, according to Lee et al. (2016), is
estimated

θf ¼ tan−1 δs
wcr

ð45Þ

Conventional Reinforcement

Although a trilinear stress-strain relation is used to model the re-
sponse of reinforcement in the disturbed stress field model, a

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
on

st
an

t f
or

 d
am

ag
e 

pa
ra

m
et

er
 (

s)

Steel fiber volume ratio (%)

s =AR2 + BR + C

(a)

A = 12.684Vf
2 + 16.687 Vf + 107.14

C = 4.572Vf
2 + 5.762Vf + 40.571

B = 2.540Vf + 3.284Vf + 24.429

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
on

st
an

t f
or

 d
am

ag
e 

pa
ra

m
et

er
 (

s)

Steel fiber volume ratio (%)

s =AR2 + BR + C

(b)

A = 31.733Vf
2 -23.8Vf + 1000

C = 27.298Vf + 48.1Vf +351.43

B = 98.418Vf + 51.893Vf + 154.29

Fig. 4. Damage parameter s for (a) steel-fiber secant modulus; and
(b) residual strength.
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bilinear stress-strain relation (elastic-perfectly plastic) may be used
for fatigue analysis.

Finite-Element Implementation

After each fatigue loading cycle, a structural element may exhibit
some level of damage. The response of the structural element per
fatigue loading cycle can be obtained. The general formulation of a
material stiffness matrix is

½σ� ¼ ½D�½ε� − ½σo� ð46Þ
where fσg and fεg are total stress and total strain vectors due to the
applied maximum fatigue load (ratio of the minimum to maximum
fatigue loading is a parameter required in a subsequent section);
and ½D� is the transformed composite stiffness matrix, which may
degrade due to fatigue loading. Normal and shear stresses on an
element are given by

fσg ¼

2
64
σx

σy

τ xy

3
75 ð47Þ

Eq. (48) gives the corresponding strain values

fεg ¼

2
64

εx

εy

γxy

3
75 ð48Þ

½D� ¼ ½Dc� þ
Xn
i¼1

½Ds�i þ ½Df� ð49Þ

Prior to cracking

½Dc� ¼
Ecð1 −DteÞ

1 − v2

2
6666664

1
v

ð1 −DteÞ
0

v
1

ð1 −DteÞ
0

0 0
1 − v

2ð1 −DteÞ

3
7777775

ð50Þ

whereDte = concrete tensile strength damage and is obtained using
Eqs. (29)–(31). However, Δf and f 0

c are replaced with the induced
tensile stress and tensile strength of concrete, respectively. For a
given element strain condition, normal stresses in concrete can be
found, and subsequently, the principal tensile and compressive
stresses and principal strain direction can be obtained.

For a two-dimensional cracked state, the stiffness of concrete
with respect to axes of orthotropy, the stiffness of steel reinforce-
ment with respect to its direction, and the stiffness of steel fiber
with respect to the inclination of tensile stress due to the steel fiber
are all required [Eqs. (51)–(53)]. Subsequently, the stiffnesses are
transformed back to reference x- and y-axes [Eq. (54)]

½Dc� 0 ¼

2
664
Ec1 0 0

0 Ec2 0

0 0 Gc

3
775 for concrete ð51Þ

Ec1 ¼ fc1=εc1; Ec2 ¼ fc2=εc2; and

Gc ¼ Ec1 · Ec2=ðEc1 þ Ec2Þ

½Ds� 0i ¼

2
664
ρiEsi 0 0

0 0 0

0 0 0

3
775 for steel reinforcement ð52Þ

Es;i ¼ fs;i=εs;i

½Df� 0 ¼

2
664
ρiEf1 0 0

0 0 0

0 0 0

3
775 for steel fiber ð53Þ

Ef1 ¼ αavgff=εcf;

εcf ¼ ðεc1 þ εc2Þ=2þ ½ðεc1 − εc2Þ=2� cos 2θf

½Dc� ¼ ½Tc�T ½Dc� 0½Tc�;
½Df� ¼ ½Tf�T ½Df� 0½Tf�;
½Ds;i� ¼ ½Ts;i�T ½Ds;i� 0½Ts;i� ð54Þ

½T� ¼

2
64

cos2ψ sin2ψ cosψ sinψ

sin2ψ cos2ψ − cosψ sinψ

−2 cosψ sinψ 2 cosψ sinψ ðcos2ψ − sin2ψÞ

3
75 ð55Þ

For concrete, ψ ¼ θc; for steel fiber, ψ ¼ θc þ θf; and for the
steel reinforcing bar, ψ ¼ αi. ½σo� is estimated as a pseudoload
using Eqs. (12)–(19) (in this case, it is assumed that there are no
prestrains in steel reinforcement)

½σo� ¼ ½Dc�ð½εpc � þ ½εoc � þ ½εsc� þ ½εfatc �Þ ð56Þ
Subsequently, the total strain can be estimated

½ε� ¼ ½D�−1ð½σ� þ ½σo�Þ ð57Þ
For further exemplification on the procedure for fatigue analysis

of a reinforced concrete element, a flowchart is shown in Fig. 5.
The solution to the fatigue analysis of a shear panel is illustrated

using the flow chart given in Fig. 5 in a stepwise manner. Three
different pure shear fatigue loads (Fig. 6) (3.5, 3, and 2.7 MPa)
were used, and the corresponding deformation evolutions of the
material parameters were obtained.

From an initial static analysis using the disturbed stress field
model (Vecchio 2000, 2001), the average stresses induced in concrete
and steel reinforcement are estimated. Under fatigue loading cycles,
the estimated stresses from the static analysis and a chosen number of
fatigue loading cycles are substituted into the corresponding fatigue-
damage models (A, B, and C in Fig. 5) to obtain the required values
for the irreversible strain, concrete strength damage, and steel
reinforcement crack depth corresponding to the chosen fatigue load-
ing cycles. At this juncture, it is worth reiterating that the damage
models used account for fatigue loading parameters (frequency,
waveform, and stress ratio). The properties of the shear panel are:

f 0
c ¼ 19.0 MPa; ρx ¼ 1.785%

f 0
t ¼ 1.72 MPa; ρy ¼ 0.713%

ε 0
c ¼ −2.15 × 10−3; fyx ¼ 458 MPa

fyy ¼ 300 MPa

Es ¼ 200,000 MPa

a ¼ 10 mm

© ASCE 04019126-6 J. Struct. Eng.
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sx ≈ 50 mm; dbx ≈ 6.35 mm

sy ≈ 50 mm; dby ≈ 4.01 mm

Fatigue frequency ¼ 5-Hzwaveform ¼ sinusoidal

Load ratio ðRÞ ¼ 0

½σ� ¼

2
64
0

0

3

3
75 MPa

where f 0
t , fyx, and fyy = tensile strength of concrete, yield strength of

rebars in the x-direction, and yield strength of rebars in the y-direc-
tion, respectively.

Solution

The assumed initial total and net strains (from previous calcula-
tions) for an applied shear stress of 3 MPa on the shear element
in Fig. 6

fεg ¼

2
64
0.431

0.792

1.725

3
75 × 10−3; fεcg ¼

2
64
0.566

0.659

1.716

3
75 × 10−3

Using an iterative process, the monotonic response (stress and
strain values) due to an applied fatigue load (3 MPa) is obtained.

Fig. 5. Flowchart for the modified solution algorithm for DSFM.

Y 

X 

Fig. 6. Shear panel (PV19).
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The contribution of the fatigue-damage values (A, B, and C) is
neglected for the monotonic analysis.

The initial total and net strains are always replaced by the
values estimated in Box 8 (Fig. 5). This continues until the
initial values are equal to the final values obtained in Box 8
(Fig. 5).

The obtained element stresses due to the monotonic response
are thus fsx ¼ 111 MPa and fsy ¼ 241 MPa (both stresses are re-
quired in the fracture mechanics model). In addition, fc2 ¼−5.35 MPa and fc1 ¼ 1.08 MPa (required in concrete damage
model and irreversible strain model). These values are substituted
into A, B, and C in Fig. 5 to estimate the corresponding damage at
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Fig. 7. Crack slip evolution.
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Fig. 13. Details of deep beam specimen.

A1 A2 

A3 
A4 

A5 A6 

A7 A8 

Fig. 14. Beam specimen.
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any given fatigue loading cycles. The values are used to modify the
concrete strength and steel reinforcement ratios at a crack, and they
include an accumulated fatigue prestrain and slip prestrain. Having
accounted for the corresponding damage, the monotonic response
is again obtained iteratively. This is repeated for given cycles until
instability is reached.

Solutions for Fatigue Loading at 10,000 Cycles

Solution for Fig. 5 (Box 1)
Strain components after iterations are

fεg ¼

2
64
0.584

1.278

2.604

3
75 × 10−3; fεcg ¼

2
64
0.804

1.072

2.569

3
75 × 10−3

The principal strains are estimated from fεcg as follows:

εc1 ¼ 2.23 × 10−3; εc2 ¼ −0.353 × 10−3; θσ ¼ 42.020

Solution for Fig. 5 (Box 2): Average Stresses in Concrete
and Reinforcement
Because the concrete is in a cracked state, Eqs. (20)–(22) are used
for concrete compressive stress, and Eq. (35) is used for concrete
tensile stress (neglecting the influence of steel fiber). The damage
parameter required in the equation is obtained from Eqs. (29)–(31).
The fatigue prestrain value [Eqs. (16)–(19)] is also required for
estimating concrete compressive stress

fc2 ¼ 5.34 MPa

fc1 ¼ 1.07 MPa

Assuming a perfect bond between concrete and steel reinforce-
ment, the average strain in the concrete is equal to the average
strains in the steel reinforcing bars and the corresponding stresses

εsx ¼ 0.584 × 10−3

εsy ¼ 1.278 × 10−3

fsx ¼ Esεsx ¼ 117 MPa ðx-directionÞ

Table 3. Fatigue life for beam specimens (experimental and predicted)

Specimen
Experiment load

(kN)

Fatigue life
(experiment)
cycles, Nfe

NLFEA load,
Hl (kN)

Predicted
fatigue life,

Nfv (NLFEA)

Predicted
fatigue load,
Hp (NLFEA)

NLFEA
Hp=Hl LogNfv= logNfe

C’-70-0 274 210,000 250 200,000 — — 1.00
C’-80-0 312 62,000 275 60,000 — — 0.98
C-70-0 192 72,000 180 60,000 — — 0.98
C-80-0 219 47,000 196 40,000 — — 0.99
A70-0F0.75 192 123,000 180 — 185 1.03 —
A80-0F0.75 219 66,000 196 — 200 1.02 —
A70-0F1.5 192 410,000 180 — 187 1.04 —
A80-0F1.5 219 320,000 196 — 200 1.02 —
A70-0N0.75 192 260,000 180 — 180 1.00 —
B80-0N1.5 312 650,000 275 — 275 1.00 —

Table 1. Finite-element material description

Label Description

A1 Support condition (roller)
A2 Support condition (pin)
A3 Longitudinal reinforcing bars (2-10M or 2-15M)
A4 Structural steel plate on reaction
A5 Concrete material or steel-fiber reinforced concrete
A6 Shear reinforcement (D4)
A7 Hanger bar (2-10M reinforcing bars)
A8 Structural steel plate for load application

Table 2. Description of specimens

Concrete
batch

Volume of
steel fiber,
Vf (%)

Specimen
identification

number
Design

fdc [MPa (ksi)] ρl (%) ρv (%)

Maximum
fatigue load
(% Pu)

Minimum
fatigue load
(% Pu)

Number of
cycles to
failure, N

2 0 C’S 50 0.9 0.2 Monotonic — —
2 0 CS 50 0.45 0.2 Monotonic — —
1 0 C’-70-0 50 0.9 0.2 70 1.3 210,000
1 0 C-80-0 50 0.45 0.2 80 1.8 47,000
3 0.75 A80-0F0.75 50 0.45 0.2 80 1.8 66,000
4 1.5 A80-0F1.5 50 0.45 0.2 80 1.8 320,000
1 0 C-70-0 50 0.45 0.2 70 1.8 72,000
3 0.75 A70-0F0.75 50 0.45 0.2 70 1.8 123,000
3 0 A70-0N0.75 50 0.45 0 70 1.8 260,000
4 1.5 A70-0F1.5 50 0.45 0.2 70 1.8 410,000
1 0 C’-80-0 50 0.9 0.2 80 1.3 62,000
5 1.5 B80-0N1.5 50 0.9 0 80 1.3 650,000

Note: Vf (%) = steel-fiber volume content; fdc = design compressive strength of concrete; ρl (%) = longitudinal reinforcement ratio; ρv (%) = shear
reinforcement ratio; and Pu = ultimate load capacity.
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fsy ¼ Esεsy ¼ 256 MPa ðy-directionÞ

Solution for Fig. 5 (Box 3): Local Stresses at Crack
The local stresses are estimated from Eqs. (6) and (7) (neglecting
the influence of steel fibers). In Eqs. (6) and (7), the reinforcement
crack-growth factor (Zo) is estimated (indicated by the letter C in
Fig. 5). The average reinforcement stresses are required in C to
estimate the progressive crack depth

εscrx ¼ 1.033 × 10−3; fscrx ¼ 207 MPa

εscry ¼ 1.642 × 10−3; fscry ¼ 300 MPa

vci ¼ 0.621 MPa

Solution for Fig. 5 (Box 4): Crack Slip Strains
The slip at a given fatigue loading cycle can be calculated us-
ing Eq. (40). Subsequently, the shear strains (in x-y directions)
resulting from slip at the crack are estimated. Fatigue irrevers-
ible compressive strain values are also evaluated in the x-y
direction. The prestrain is equal to the summation of the shear

strains. The pseudoload ½σo� is estimated from the obtained val-
ues of prestrain. The shear strain resulting from the crack slip
is estimated as γs ¼ δs=s ¼ 0.429 × 10−3; resolving into x- and
y-components
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Fig. 15. Calculated fatigue residual capacity for (a) Beam C-80-0; and
(b) Beam C-70-0.
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εsx ¼ −γs=2 · sin 2θ ¼ −0.213 × 10−3

εsy ¼ γs=2 · sin 2θ ¼ 0.213 × 10−3

γsxy ¼ −γs=2 · cos 2θ ¼ 0.022 × 10−3

Inclusion of Irreversible Fatigue Strain as Offset Strain

εfatx ¼ εfatc;2=2 · ð1 − cos 2θÞ ¼ −0.609 × 10−5

εfaty ¼ εfatc;2=2 · ð1þ cos 2θÞ ¼ −0.750 × 10−5

γfatxy ¼ −εfatc;2=2 · sin 2θ ¼ 0.135 × 10−4

Solution for Fig. 5 (Box 5): Material Secant Moduli
The net strain values are obtained from Eq. (12) (for concrete). The
ratio of the average stress to net strain gives the secant modulus

for concrete. In the case of steel reinforcement, the ratio of the aver-
age stress in steel reinforcement to the induced strain gives the
secant modulus

Ec1 ¼ 480 MPa

Ec2 ¼ 15,124 MPa

Gc ¼ 466 MPa

Esx ¼ 200,000 MPa

Esy ¼ 200,000 MPa

Solution for Fig. 5 (Box 6): Material Stiffness Matrices �Dc�,
�Ds�, and �D�
The stiffness matrices are obtained from Eqs. (51)–(55). The trans-
formed composite stiffness matrix is obtained using Eq. (54). The
transformed composite stiffness matrix at 10,000 cycles was obtained
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Fig. 18. Calculated fatigue residual capacity for (a) Beam A70-0F1.5;
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½D� ¼

2
664

7,213 3,367 −3,256
3,367 6,653 −3,992
−3,256 −3,992 3,861

3
775 ðMPaÞ

Solution for Fig. 5 (Box 7): Determine Element Prestress
Vector �σo�
The element prestress vector is calculated from Eq. (56). Herein,
two prestrain values were considered: shear strain at crack and
fatigue irreversible strain. The summation of the prestrains ½ε0ps�
equals 2

64
−0.22
0.21

3.58

3
75 × 10−3

½σo� ¼

2
64
−0.13
0.26

−5.35

3
75 MPa

Solution for Fig. 5 (Box 8): Determine New Estimates of
Strain fεg and fεcg
The total and net strain values are estimated using Eq. (57).
Because the results presented herein were obtained toward con-
vergence, the final values were also equal to the initial values.
However, where significant variations are observed, the iteration

continues as illustrated using the given steps. This procedure was
repeated as the number of fatigue loading cycles was increased.

At the final collapse or failure of a structural element (in this
case, shear reinforcement in the vertical direction failed first),
instability is observed and significant deformation persists. The
results for the three different loads used are given in Figs. 7–12.
They are presented in terms of the crack slip evolution, shear
stress evolution, reinforcement crack depth propagation (in the
y-direction where failure occurred), reinforcement strain, and
stress evolutions.

From the results, the influence of fatigue load on fatigue life
is well-captured as observed in all deformation evolution plots
(Figs. 7–12). As the fatigue load increased, the corresponding
fatigue life reduced, and the rates of deformation were observed
to increase. In addition, the significance of the proposed approach
stems from the fact that the profiles obtained in each case resembles
the well-known fatigue deformation profile for reinforced concrete.
Based on these observations, the deformation evolution within the
cracked plane in reinforced concrete or steel-fiber concrete can be
obtained using the proposed approach.

Finite-Element Modeling

The beam specimens shown in Fig. 13 were modeled with concrete
or steel-fiber concrete, discrete reinforcement, and steel plates at the
loading point and at the supports. The labels in the finite-element
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model shown in Fig. 14 are described in Table 1. A roller and a pin
support were used to portray a simply supported beam.

Average compressive strengths of 59 and 55 MPa were used
for conventional reinforced and steel-fiber reinforced concrete, re-
spectively. Steel fiber volume ratios of 0.75% and 1.5% were used,
and all beams were reinforced longitudinally with either two 15M
or two 10M Canadian standard rebars. Some beams contained
Canadian standard D4 (cold-worked, 5.5-mm diameter) shear rein-
forcing bars. The average yield strength values obtained for the
15M, 10M, and D4 bars were 430, 480, and 610, respectively.

The steel fibers used were high-strength end-hooked steel fibers
(Dramix RC80/30BP, Zwevegem, Belgium) with an ultimate ten-
sile stress capacity of 3,070 MPa. The residual flexural tensile
strength (FR;1=FR;4) for steel fiber volume ratios of 0.75% and
1.5% from conducted experiments were obtained as 4.5/3.0
and 6.0/4.2, respectively (Vandewalle et al. 2003). Details of the
beams tested in the reported experimental investigation are given
in Fig. 13 and Table 2.

Based on experimental results, the cylinder strain corre-
sponding to the compressive strength of plain concrete was taken
as 2.1 × 10−3, and the corresponding cylinder strain was approx-
imately 3.0 × 10−3 for steel-fiber concrete volume ratios of 0.75Vf

and 1.5Vf. From the reported investigation, the monotonic resis-
tance capacities of two beams reinforced longitudinally with
2-15M and 2-10M reinforcing bars were obtained as 390 and
270 kN, respectively (Isojeh et al. 2017b).

The monotonic response of the beams were also obtained using
VecTor2 version 4.1 nonlinear finite-element analysis. For the
beams reinforced with 2-15 M and 2-10 M reinforcing bars, resis-
tance capacities of 350 and 250 kN were obtained, respectively.
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Similar to the experimental procedures reported by Isojeh et al.
(2017b), 80% and 70% of the capacities were used as fatigue load-
ing on plain and steel-fiber reinforced concrete beams having the
same longitudinal reinforcement ratio as each beam tested under
monotonic load. Other fatigue loading parameters (as in experi-
ment) include a sinusoidal waveform with a frequency of 5 Hz,
and a minimum fatigue load of 5 kN in all cases (Column 8 of
Table 2).

Average tensile strengths of steel-fiber concrete for 0.75% and
1.5% were approximately 3 and 4 MPa, respectively, based on ex-
perimental results. In the finite-element model, a perfect bond was
assumed between steel reinforcement and the concrete composite.
For fatigue loading, elasto-perfectly plastic models were used for
the reinforcement.

For plain concrete, the Popovics and Popovics/Mander’s constit-
utive models [Eqs. (23)–(26)] were implemented for compression
prepeak and postpeak stress-strain relations, whereas for steel fi-
bers, the models proposed by Lee et al. (2016) [Eqs. (27) and (28)]
were used for compression prepeak and postpeak.

Fatigue Life and Deformation Evolution Predictions

The maximum fatigue load is mainly considered per fatigue load
cycle in estimating the induced material stresses, and the influence

of the minimum fatigue loading is accounted for using the load
ratio parameter as indicated in the proposed damage models.
The material stresses in all elements corresponding to the first load
stage under monotonic loading are substituted into damage models
(Fig. 5).

The predicted fatigue life corresponds to the number of cycles at
which the resistance capacity of a beam reduces to a value approx-
imately equal to the applied maximum fatigue load. The deforma-
tion (midspan deflection) at the second load stage is assumed to
correspond to the deformation resulting from the applied fatigue
loading cycles. The results of finite-element analyses of the spec-
imens in Table 2 are presented in terms of fatigue residual capacity,
midspan deflection evolution, and reinforcement stresses. The pre-
dicted fatigue life and fatigue loads are given in Table 3.

Fatigue Residual Capacity

Figs. 15 and 16 are the load-deformation plots for conventional
reinforced concrete beams at different numbers of cycles. The num-
ber of cycles giving rise to each load-deformation plot, indicated
by the letter A, corresponds to the fatigue life. The other plots at
different fatigue loading cycles exhibit substantial but depreciating
resistance capacities. Compared with the experimental results ob-
tained for fatigue life, the fatigue life predictions obtained from the
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nonlinear finite element analysis (NLFEA) are not only conservative,
they portray good correlation.

In the case of the steel-fiber reinforced concrete beams, the
approximate load that will result in the collapse of each modeled
beam at the number of cycles resulting in failure obtained from the
experiment was first predicted. In Fig. 17, as the maximum fatigue
load was increased from 180 to 188 kN (at 410,000 cycles for Beam
A70-0F1.5), the residual capacity reduced. Subsequently, load-
deformation plots for increments in the number of cycles at the pre-
dicted loads were obtained. The residual capacities are given in
Figs. 18 and 19. The predicted fatigue load for each steel-fiber re-
inforced concrete beam is reasonably close to the actual fatigue
load of 80% and 70% of the monotonic resistance capacity of cor-
responding control beams from NLFEA. Therefore, the responses
from conventional reinforced and steel-fiber reinforced concrete
can be compared for beams having similar loading parameters.

The results are also presented in Table 3. Table 3 provides the
ratio of the calculated fatigue load to the actual fatigue loads cor-
responding to 70% or 80% of the undamaged beam resistance
capacities obtained from NLFEA. The ratio of the logarithm of pre-
dicted fatigue life (using VecTor2) to the experimental fatigue life
can also be seen in Table 3. As observed in both cases, the predic-
tions are of good accuracy; however, the predictions for steel-fiber
reinforced concrete beams fatigue load from NLFEA reveal a slight
underestimation of the fatigue damage.

Midspan Deflection Evolution

The midspan deflection evolution for the beams modeled in
VecTor2 are shown in Figs. 20–23. The evolutions obtained from
the experimental results are also included. Although the predicted
evolving values from NLFEA tend to be slightly lower, overall,
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(a)

(c)

-22.20 to -4.19
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Fig. 27. Evolution of stresses in reinforcing bars for Beam C-80-0.
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the validation of the experimental results (midspan deflection
evolution) with the predicted results are of acceptable accuracy.
The predicted evolution profiles are shown in a subsequent section
for variations in loading and material parameters.

Variations in Loading and Material Parameters

As shown in Fig. 24, as the fatigue load increases from 70% to 80%
of the monotonic resistance capacity, the fatigue life was observed
to reduce. In addition, the deformations (midspan deflection) and
corresponding rate of evolution were also observed to increase.

From Fig. 25, the increase in fatigue life as steel fiber volume
ratio increases from 0 to 1.5% was well-captured using the VecTor2
NLFEA software (based on the proposed fatigue-damage algo-
rithm). In addition, from NLFEA predictions (Fig. 26), like exper-
imental results, steel-fiber reinforced concrete beams without
shear reinforcement resulted in enhanced fatigue life compared

to conventional reinforced concrete beams. However, higher initial
deflections were observed in the former because they were less
stiff.

Reinforcement Stresses under Fatigue Loading

To illustrate the steel reinforcement stress evolution, plots of the
steel reinforcement stresses at given fatigue loading cycles were
obtained as shown in Figs. 27 and 28.

The local stresses in the reinforcement at a concrete crack location
after 500, 20,000, and 40,000 cycles are given in Figs. 27(a–c). The
probable region of fracture (where the induced stress is equal to
yield) is shown in Fig. 27(c) at 40,000 cycles. Reinforcement stresses
(shear and longitudinal) within the same region in Figs. 27(a and b)
at 500 and 20,000 cycles are lower than the yield value. However, the
stresses evolve progressively as the number of fatigue loading cycles
increase. From the figures, failure was observed to be attributable to
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Fig. 28. Evolution of stresses in reinforcing bars for Beam A70-0F0.75.
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fracture of longitudinal reinforcement. Similar observations are
shown in Fig. 28.

Variable Fatigue Loading

In practice, the fatigue loading of reinforced concrete structures is
usually variable in nature and not constant. In the experimental
investigation conducted and validated herein, constant fatigue load-
ing was used. The approach described also considers constant
fatigue loading. Two approaches for variable fatigue loading are
discussed subsequently.

Most designers still prefer the use of the Palmgren-Miner dam-
age rule based on simplicity. Variable fatigue loads, and the corre-
sponding number of cycles applied, are usually given in spectrums.
The proposed approach (using NLFEA) can be used to estimate the
number of cycles leading to failure (Nf) for each fatigue load in the
spectrum, and the ratio of N to Nf is obtained for each fatigue load
in the spectrum. Hence, the Palmgren-Miner rule may be used to
cumulate the expected damage. The flaw of negligence in the load-
ing sequence and the effect of previous damage consideration has
reduced the reliability of this approach. Better still, an equivalent
cycle concept may be used for the fatigue analysis of reinforced
concrete structures under variable fatigue loading. Using Fig. 29,
this approach is discussed.

The load-deformation plots of all variable loads are obtained
using the proposed approach and assuming a constant fatigue load
for each. For simplicity, the midspan deflection evolution plots for
Beams C-70-0 and C-80-0 subjected to two different loads (70-0
and 80-0) are used for this illustration. Assuming a beam is sub-
jected to N1 cycles (load of 80-0), in Fig. 29, the corresponding
midspan deflection is δ1. For a second variable load (70-0) sub-
jected to N2 cycles, the effect of the first variable load must be ac-
counted for. Hence, δ1 is extended to the load-deformation plot for
the second variable load, and the corresponding number of cycles is
termed the equivalent cycles (Nequiv) (Fig. 29). To obtain the actual
deflection (δ2) due to N2 having considered the damage from the
first load stage, the summation of Nequiv and N2 (Nequiv þ N2) is
extended to the load-deformation plot for the second variable load.
This procedure is repeated for subsequent variable loads until the
critical point on the last load-deformation plot is reached (Cri).
For more fatigue loads, the procedures continue. This approach
accounts for previous loading damage; hence, it overcomes the

sequence and load history anomaly common with variable fatigue
loading.

Conclusions

An algorithm was described for implementing damage models for
concrete strength and stiffness, irreversible strain accumulation,
and steel reinforcement crack growth in a finite-element analysis
framework. This procedure was then implemented into the dis-
turbed stress field model for fatigue analysis of reinforced concrete
and steel-fiber structures. Fatigue-damage models that account
for salient loading parameters and appropriate evolution models
for concrete parameters were introduced. As an improvement to
reported models, the implementation of the reinforcement crack-
growth model and concrete damage models account for the
progressive deformation and shear transfer at a crack under fatigue
loading for reinforced concrete and steel-fiber reinforced concrete.
It is proposed that the fatigue life of a structural component
corresponds to the number of fatigue loading cycles at which
the resistance capacity degrades to a value equal to the fatigue load.
Verification of the proposed algorithm and fatigue failure criterion
with conducted experimental results was required to ascertain its
validity. Corroborated results using nonlinear finite-element analy-
sis gave a good correlation.

Acknowledgments

The authors gratefully acknowledge the Natural Science and
Engineering Research Council (NSERC) of Canada and Hatch
Ltd. for the invaluable contributions and financial support to this
research. The authors also acknowledge the assistance received
from the Niger Delta Development Commission and the Delta State
Government of Nigeria.

Notation

The following symbols are used in this paper:
a, b, c = material parameters;

C = material constant = 2 × 10−13;
Cf = frequency factor;
D = damage;
Dc = concrete stiffness matrix;
Ds = reinforcement stiffness matrix;
Dcr = critical damage;
Dft = concrete tensile strength damage;
Dte = concrete tensile secant modulus damage;
dbi = rebar diameter;
Ec = elastic modulus of concrete;
Ec1 = secant modulus in tension;
Ec2 = secant modulus in compression;
Es = elastic modulus of steel reinforcement;
f = frequency;

fc;TS = average tensile stress in concrete due to tension
stiffening effect;

fcx = normal stress in concrete in horizontal direction;
fcy = normal stress in concrete in vertical direction;
fc1 = effective tensile stress of concrete;
fc2 = effective compressive stress of concrete;

fc2max = peak compressive stress in concrete considering
compression softening effect;
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f 0
c = compressive strength of concrete;

f�c = degraded compressive strength;
feh = tensile stress due to mechanical anchorage effect of end-

hooked steel fiber;
ff = tensile stress at crack due to steel fiber;
fp = initial compressive strength;

fscri = local stress in reinforcement at crack;
fs;i = average stress in steel reinforcement;
fst = tensile stress due to frictional bond behavior of steel

fiber;
ft = residual tensile strength of concrete;
f�t = degraded strength at which concrete cracks;
ftp = initial concrete tensile strength;
Gc = shear modulus;
k = postdecay parameter for stress-strain response of

concrete in compression;
N = number of cycles;
Nf = numbers of cycles at failure;
Nij = interval of cycles considered;
n = material constant = 3;

scr = crack spacing;
T = period of fatigue cycle;
td = direction coefficient (= 0.6 or 1.0);
Vf = steel fiber volume ratio;
vcxy = shear stress in concrete in horizontal direction;

v = Poisson’s ratio;
vci = shear stress;

vci;cr = shear stress at cracked concrete plane;
wcr = crack width;
αavg = coefficient to relate tensile stress at a crack due to steel

fibers with average tensile stress;
αi = inclination of reinforcement;
β = material constant;
β2 = material constant;
Δ = deformation;

Δε1cr = change in strain at crack;
δs = crack slip;
εc1 = net tensile strain;
εc2 = net compressive strain;
ε�c = strain corresponding to the degraded compressive

strength;
εp = initial strain corresponding to the initial compressive

strength;
εscri = local strain in the reinforcement;
εs;i = average strain in steel reinforcement;
ε1cr = local strain at crack;
γs = shear strain due to crack slip;

θ, θc = inclination of principal strain direction;
θf = angle between tensile stress direction due to steel fibers

and principal tensile stress direction in concrete;
θni = angle between the reinforcement direction and the

normal to the crack; and
ρi = reinforcement ratio.
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