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INTRODUCTION

Stochastic simulation is perhaps best understood in 
comparison with deterministic simulation. In a determin-
istic simulation, the goal of the selected model is to repli-
cate a physical system. In the case of reinforced concrete, 

1 is a deterministic model 
for the analysis of reinforced concrete elements. It aims to 
provide an accurate stress-strain response for reinforced 
concrete treated as an anisotropic smeared cracked material. 
What categorizes this simulation as deterministic is the need 

known, the model will produce an estimation of the phys-
ical behavior. In a stochastic simulation, the goal is to infer 
statistical data about an output quantity based on statistical 
knowledge of the system inputs. In the context of the analysis 
of reinforced concrete structures, the inputs under consider-
ation are the spatial and global variability of the concrete and 

-
sive strength or yield strength, respectively.

Thus, material resistance factors are included in limit state 
design. These material factors, however, are calibrated based 

strength of beams, sectional shear strength of beams, strut-
and-tie models, and so on).2-4 When determining the reli-
ability of structures with multiple potential failure modes and 
with complex geometry, the traditional method of treating 

-

between failure modes or progressive failure modes (for 
example, shear failure after steel yielding but before the 

Thus, there is a need for advanced analysis tools that are 
capable of handling complex loading, material nonlin-
earity, and dynamic analysis which also can accommodate 
stochastic simulation. They can be particularly useful for 

of material properties is cumbersome or unfeasible.
In such cases, the assessment can be approached within 

a stochastic framework. Information on the distribution 
of concrete and steel material properties can be used to 
produce information on the distribution of the structure’s 
expected strength and susceptibility to undesirable failure 
modes. Moreover, a stochastic simulation could be carried 
out to determine the reliability index for the structure; this 
reliability index can then be compared against code-recom-
mended reliability indices to determine if the requirements 
of the local building code are met. In any case, a stochastic 

should be associated with any calculated strength and 
failure mode.

In the case of reinforced concrete, it is well known that 
the concrete material properties exhibit a large variability.5-7 
Nevertheless, the variability associated with existing infra-
structure is not limited to the inherent material variability. 
There can be a large degree of uncertainty associated with 
any deteriorated structure. The extent, location, and implica-
tion of reinforced concrete deterioration is currently a topic 

8-10 At the same time, there is much 
work to be done on the development of analysis tools that can 
capture concrete deterioration in a reliability framework.11-16

A step toward adding to such tools is the focus of this 
work: the implementation of stochastic modeling capabil-

program, VecTor2.17 Statistical models for concrete and steel 
material properties available in the literature have been iden-

for uncorrelated uniform sampling, uniform sampling 
with random variables, and spatial variation using random 

were conducted on beam specimens with no transverse 
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reinforcement, and a reliability analysis was performed to 
determine the reliability index for the CSA A23.3-14 code.

The host program, VecTor2, employs a smeared, rotating 

Stress Field Model1 and is suited for the analysis of two-di-
mensional reinforced concrete structures. The solution algo-

formulation with robust convergence characteristics. Mech-
anisms such as shear slip along crack interfaces, compres-

-
nisms considered explicitly. A broad range of models were 
implemented for each constitutive mechanism.

Central to the program’s applicability to stochastic simula-
tions is the minimal need for calibration. The default models 
available to represent the behavioral mechanisms have been 

making them a suitable choice for the majority of analyses. 
In addition, material characterization is especially straight-
forward. These traits make VecTor2 particularly useful for 

mechanical properties of materials is limited. The addition 
of stochastic capabilities extends the application range of the 
program to structural reliability analysis in a framework that 
has shown to be suited for predictive type of analyses.

RESEARCH SIGNIFICANCE

In the case of reinforced concrete, reliability analysis has 
been used to calibrate building codes.2-4 The material resis-
tance factors in the case of the CSA A23.3-1418 code, and 
the strength reduction factors in the case of the ACI 318-1919 
code, are calibrated to achieve a code-level reliability. 
However, as a recent prediction competition20 has shown, 
prediction of the shear strength of concrete beams with no 
transverse reinforcement still remains a challenging task. 
With such uncertainty, the calibration of resistance factors 
and load factors for building codes requires software that 
can provide a good deterministic prediction of structural 

the simulation of virtually any planar reinforced concrete 
element. The addition of stochastic simulation capabilities 
allows them to be used to create member resistance curves 
and thus be a useful tool in the assessment of safety and 
structural reliability for reinforced concrete members.

BASICS OF RELIABILITY ANALYSIS

Reliability analysis is the mathematical basis for the 
limit state design method. In a limit state design, the load 
that will act on the structure is predicted and factored by a 
prescribed value. Additionally, the resistance of each struc-
tural element is factored by either material resistance factors 
(CSA A23.318) or strength reduction factors (ACI 318-1919). 
The derivation of these factors, for both loading and resis-
tance, are the result of reliability methods. Adequate struc-
tural safety is determined by reducing the probability of 
failure of the structure.

In its simplest form, structural reliability is assessed by 
S, and the resistance , both 

described by known probability density functions fS and f . 

According to Melchers,21 the probability of failure pf, for a 

 pf P(G( ,S

where G( ,S) is the limit state function; and in this case, it 
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The probability of failure of the structural element can be 
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G G is the reliability index.21

higher value indicating a lower probability of failure. For a 
normal distribution, the reliability index can be calculated as

 
2 2

μ − μ
β =

σ + σ
 (5)

In general, the reliability analysis of a structure is more 
complex than the basic formulation presented previously. 

addition, both are functions of parameters that in turn may be 
random variables, such as the material properties, structural 
dimensions, and applied loads. Two approaches are typically 
used for the generalized reliability formulation21: the MC 
methods, and the First Order Second Moment methods. The 
procedure presented in this paper, however, considers the 
structural reliability of a single structural element. As such, 
a single resistance curve is determined through stochastic 

STOCHASTIC SIMULATION OF REINFORCED 

CONCRETE

MC methods have widely been used by researchers for 
assessing the structural reliability of reinforced concrete 
structures. MC simulations work by generating statisti-
cally independent samples that follow the distributions of 
each of the input parameters. The mathematical relationship 
describing the variable of interest is then computed for each 
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set of generated samples. This produces a set of outputs that 
can be statistically analyzed.

MC simulations have been employed to investigate the 
serviceability and strength behavior of concrete structural 
elements.11-16 In what follows, the trends observed in the 
literature pertaining to input parameters, validation of theo-
retical model, and structural behavior are summarized.

The input parameters for stochastic simulations most 
often considered in the literature were the concrete mate-
rial properties, the steel material properties, and the dimen-
sional properties. The concrete material properties modeled 
included the compressive strength, the modulus of elasticity, 
and the tensile strength. In studies concerned with long-

most commonly considered for reinforcing steel were the 
modulus of elasticity, the nominal cross-sectional area of 
steel, and the yield strength.

The variation in assumed dimension for a given struc-
tural element is less important to the current work because a 

membrane elements.
In all of the MC simulations reviewed,11-16 a theoret-

ical model was proposed to describe the parameter of 

-
ical model against deterministic results in the literature. It 
is recommended that all MC simulations validate the theo-
retical model against experimental results obtained from 
the literature.

elements.11-15 In cases where shear was considered as a failure 
mode,16 the stochastic parameters were typically applied to 

likely does not capture the transition in failure mode or the 

Stochastic simulations of shear-critical members, disturbed 
regions, or any other structural element that deviates from the 

Strut-and-tie models have been shown to represent a lower 
bound estimate of the strength of such structural elements, 
and it would thus not be prudent to use such techniques 
for reliability studies. A requirement then exists to study 
the reliability of such structures with advanced and accu-

this article.

SOFTWARE FORMULATION

Statistical models of material properties

The statistical models used in a stochastic simulation of 
reinforced concrete must be selected such that the distribu-
tions are representative of in-place variability. Consider-
ation must be given to the age and location of the structure, 

the material parameters. Four statistical models for concrete 

literature and implemented within the proposed formulation. 
For the material properties of concrete, the variability of the 
compressive strength, the tensile strength, and the modulus 

of elasticity were considered. For the reinforcement, statis-
tical models for the steel yield strength, the ultimate strength, 
and the modulus of elasticity were included. A summary of 
the statistical models selected for the proposed procedure is 
presented in Table 1.

The models proposed by Mirza et al.5 (for concrete) 
and Mirza and MacGregor12 (for steel) have been widely 
employed in stochastic simulation and in the calibration of 
building codes.11-14 Further work by Bartlett and MacGregor6 
provided more detailed models that were subsequently used 
in building code calibration. Nowak and Szerszen2 provided 
an updated and improved database for the statistical proper-
ties of steel and concrete that was used in the calibration of 
ACI 318-19 Code.19 Most recently, a study by Unanwa and 
Mahan7 provided results that agree with previous literature 

of concrete.

Random variable generator

A stochastic variable generator was created that uses 

random samples of normal, lognormal, gamma, and beta 
distributions. These distributions are then used to generate 
random samples for the concrete and steel material proper-
ties. The user selects which distribution to use for stochastic 
analysis. A variety of statistical models from the literature 
are implemented, as well as the ability to consider user- 

matrix that stores the statistical parameters for each selected 

sampling function to call. Once a sample is generated for 

factor to each material property.
It is often useful to generate samples of nonuniform 

random variables. In the case of the normal and lognormal 
random variable sampling, the Box-Muller Method (Graham 
and Talay23) was adopted to generate a sample of a normally 
distributed random variable. The gamma random vari-
able generator implementation is based on the Marsaglia 

Table 1—Selected statistical models

Parameter Statistical models

Concrete

Compressive strength

Mirza et al.5
Bartlett and MacGregor6*

Nowak and Szerszen2

Unanwa and Mahan7

Modulus of elasticity Mirza et al.5
Hybrid* Mirza5 + CSA

Tensile strength Mirza et al.5

Steel

Yield strength Mirza and MacGregor22

Nowak and Szerszen2*

Ultimate strength Mirza and MacGregor22*

Modulus of elasticity Mirza and MacGregor22*

*Recommended default model.
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and Tsang24 method. Additional details on the nonuniform 
random variable sampling method implemented can be 
found in Hunter.25 Appendix A* summarizes the validation 
procedure for the random variable generator.

Analysis types

MC sampling involves basic 
random number generation for any of the selected distribu-
tions. The user is able to select a distribution for the concrete 
compressive strength, the concrete tensile strength, the 
concrete elastic modulus, the steel yield strength, the steel 
ultimate strength, and the steel elastic modulus. The models 
recommended and set as the default distributions are shown 
in Table 1.

are recommended for all stochastic simulations. Note that 
for the concrete tensile strength and elastic modulus, the 
CSA A23.318 relationships for the modulus of elasticity and 
tensile strength are substituted. This was considered more 
representative of modern-day concrete than the original 
statistics proposed by Mirza et al.5 The selection of Mirza et 
al.5 models for the tensile strength and modulus of elasticity 

those parameters has not recently been compiled for Cana-
dian concrete.

by Mckay et al.26 as a method for reducing the number of 
required simulations. It has been further developed and 

27 
This method is able to produce samples that cover the entire 

compared with full factorial design.
-

tation time for each simulation is long. Some researchers 
estimate that satisfactory results can be obtained with fewer 

28). Never-
theless, between 50 and 100 simulations are recommended 

-
mentation are provided in Appendix B and by Hunter.25

Multiple empirical functions have 
been developed to express the relationships between the 
compressive strength of concrete and its tensile strength or 
elastic modulus. These relationships are based on regres-
sion analysis of experimental data. If concrete compressive 

is reasonable to assume that a correlation exists between the 
compressive strength and the corresponding tensile strength 
and modulus of elasticity. Correlated sampling can thus 
serve as a useful tool for the sampling of reinforced concrete 
material properties.

Correlated sampling is performed during individual 
simulations using the same approach as with the basic MC 
sampling method. The method can be extended to introduce 

*The Appendix is available at www.concrete.org/publications
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request. 

provide a marginal improvement on the estimate of the 
correlation matrix and a large improvement on the estimate 
of the mean and standard deviation.25

Random field generation

Random variations of material properties occur not only 
from structure to structure, but also within a structure. In 

assumed to take on a random value of a material property. 
However, the elements cannot be assigned a truly random 
value. It is logical to assume that a correlation exists between 
adjacent elements, creating gradient-like transitions. Thus, a 
method is required to generate stochastic samples of spatially 
distributed randomness that captures the spatial correlation 

orthogonal transform, is the most widely used method for 
29). The transforma-

tion takes the form of an eigenvalue problem where each 
of the transformed random variables can be generated inde-
pendently. A comparison between independently generated 
element values and spatially correlated random values is 
shown in Appendix C.

correlation length. The recommended number of eigen-
values varies depending on the correlation length. It has 
been found that selecting 80 eigenvalues is adequate in 

observed in concrete, as discussed by Hunter.25 The correla-
tion length describes the distance in which two elements 
become completely uncorrelated. A review of the literature 
suggests that a correlation length of 800 to 1200 mm (31.5 
to 39 in.) is recommended for stochastic simulations.25 The 

data implementations are expanded to include non-Gaussian 

RELIABILITY OF SHEAR-CRITICAL BEAMS WITH 

NO TRANSVERSE REINFORCEMENT

VecTor2 professional factor

There has always been an understanding that despite 

structural behavior is only an approximation to reality. It 
is important to quantify and understand how analysis tools 
used for reliability analysis are representative of reality. The 

random variable that captures the uncertainty derived from 

notion is incorporated into the material resistance model 
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fabrication factor, and the predicted resistance model. This 

 n ×  × P × F 2 × P × F (6)

where n is the nominal resistance;  is the material prop-
erty parameter; 2 n ×  is taken as the result of the 
stochastic simulation; P is the professional factor; and F is 
the fabrication factor. The professional factor, P
as the ratio between the experimental and predicted capacity, 
PExp/P 2.

of accuracy. For example, consider the statistics published by 
Vecchio et al.30 The means for the ratios of calculated-to-ex-
perimental strengths (P 2/PExp) for beams, shear walls, and 
panels (that is, the bias factors) were reported to be 1.000, 

of variation for those elements were reported to be 5.3%, 
20.3%, and 9.6%, respectively. Thus, although all three 
examples show a bias factor of approximately 1.0, the coef-

-
cantly depending on which structural element is selected for 
modeling. Note that these reported numbers were calculated 
for (P 2/PExp); however, in this study the inverse of the ratio 
is required and used as the professional factor.

In the current study, shear-critical beams with no trans-
verse reinforcement are being modeled. To assess the profes-
sional factor for VecTor2 when considering shear-critical 
beams, a large number of beams must be modeled. The data-
base published by Reineck et al.31 contains a total of 744 
shear-critical beams that were tested under a one-point or 
two-point bending test. The total of 744 was reduced to a 
subset of 680 by removing all T-beams. The set of beams was 

-
cient and reliable information needed to model the beams 
in VecTor2. This resulted in a set of 371 beams remaining.

For the analysis of the selected data, a few simplifying 

reinforcement could be modeled as a single layer of rein-
forcement with a centerline equal to the centroid of the 
reinforcement. Each beam was assumed to be perfectly 
symmetric, and, thus, only half of the beam was modeled 
around the plane of symmetry. It was further assumed that 
the reinforcement was perfectly bonded to the concrete. This 
assumption is considered to be reasonable because only 
shear tests with deformed reinforcing bars were selected. 

be sensitive to the assumed maximum crack spacing. As a 
result, a consistent estimation of the maximum crack spacing 
based on the CEB-FIB32 code was assumed to govern both 
directions, as per Eq. (7)

 
12 0.25

10mx x
x

s d⎛ ⎞= + +⎜ ⎟ ρ⎝ ⎠
 (7)

where cx is the maximum distance from the reinforcement; sx 
is the horizontal spacing of the longitudinal reinforcement; 

d  is the diameter of the longitudinal reinforcing bars; and 
x is the longitudinal reinforcement ratio. The parameter 1 

is taken as 0.4 for deformed reinforcing bars.

study, four-node plane stress rectangular elements were used 
to model the concrete component and the bearing plates, 
whereas the reinforcement was represented by truss bar 

element model for the beam. An automated preprocessor 
was developed to read the input information for each beam 

run each of the executables, thereby additionally increasing 
the automation. Finally, a postprocessor was developed in 

was not without errors; of the selected 371 beams, 53 of 
the automatically generated meshes produced errors when 
running. As such, these 53 models were excluded from the 
reported results. This was considered acceptable because the 

professional factor. Appendix E summarizes the dimensions 
of the beam specimens as well as the simulation results.

A plot showing the normalized shear stress / fc  for 
the experimental data versus the simulated data is shown 
in Fig. 1. It can be seen from the plot that there is signif-
icant scatter in the prediction of the shear strength using 
VecTor2. The data do appear to capture the behavior of all 
of the beams reasonably well. Additionally, the majority of 
the tests fall under the equal ratio and are thus conservative 
predictions of the shear strength.

The professional factor P
between the experimental ( Exp) and predicted peak load 
( 2). This ratio was calculated for each simulation and 
analyzed as a set of data. The calculated professional factors 
were found to be normally distributed with a mean of 1.106 

professional factors is referred to as the bias factor. A histo-
Fig. 2. 

2 KS test were performed. Both 
p-values 

of 0.172 and 0.372, respectively. Therefore, the professional 
factor can be modeled as a normal distribution.
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 P Exp/ 2 (8)

The uncertainty attributable to testing procedures and the 
-

erties are incorporated into the computation of the profes-
sional factor using the same method as that by Mirza and 
MacGregor.12 -
sional factor, denoted as p, is calculated using Eq. (9) as 
equal to 0.174.

 2 2 2
/p t c test spec= − −  (9a)

 2 2 2(0.183) (0.03) (0.045) 0.174p = − − =   (9b)

where t/c
the comparison of experimental-to-calculated strengths; 

test represents uncertainties related to testing procedures 
such as load recording and is recommended by Mirza and 
MacGregor12 to be taken as 0.030; and spec represents 
uncertainties related to measured dimensions and in-batch 
variations in material properties and is recommended12 to be 
taken as 0.045.

The analysis of the selected test data was repeated with 
the CSA A23.318 code. These analyses were done not for 
the purpose of developing a professional factor for the 

CSA A23.318 code but rather to compare the results with 
VecTor2. The CSA code and VecTor2 are both implemen-

33 

Field Theory,33

elements.34 1 
33 

by including shear slip along crack surfaces. The results for 
the CSA code are shown in Fig. 3(a).

It can be seen that for most of the test results, the CSA 
code is conservative. It becomes partially unconservative 
for specimens that develop lower shear stress. However, 
given the overall scatter, it is reasonable to assume that the 
mean value of the CSA equations are good predictors of the 

is acceptable given the simplicity of the model. It is worth 

these regions, although it does not appear to have an uncon-
servative bias.

It is also evident in Fig. 3(a) that the CSA code conser-
vatively predicts strengths for tests that can develop high 

the shear strength of concrete, researchers often designed 
beams with large tensile reinforcement to induce a shear 
failure. However, it was not understood at the time that the 
presence of large amounts of longitudinal reinforcement 
reduces the overall tensile strains in the shear zone and thus 

x
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strengthens the shear capacity of such beams. When the 

on the CSA predictions becomes clear. Figure 3(b) shows the 
disaggregated results for the CSA predictions. The data has 
been separated into two categories: longitudinal reinforcing 
ratio greater than 2.5% or less than 2.5%. The 2.5% was 
selected as a large, yet realistic, reinforcing ratio. It is clear 

CSA code have a reinforcement ratio above 2.5%.

Toronto Size Effect series

In what follows, a case study is presented that highlights 
the potential applications of the implemented software 
pertaining to stochastic simulation. A series of deep beams 
with no transverse reinforcement are simulated, and their 
reliability is discussed.

that has been incorporated into several design codes around 
the world (for example, CSA A23.3, ACI 318-19, AASHTO, 

parameter that is applied to the shear strength. This results 
in diminishing returns on the concrete contribution to shear 
strength when the depth of the beam increases. It is unclear 

reinforced concrete beam elements.
Four reinforced concrete beams, tested at the University 

of Toronto, were selected from the literature for stochastic 
simulation.35-37

by Podgorniak-Stanik,35 had depths of 500 mm (19.7 in.) and 
1000 mm (39.4 in.), respectively. The third beam, YB2000, 
tested by Yoshida,36 had a depth of 2000 mm (78.4 in.). The 

37 and 

had a depth of 4000 mm (157.5 in.). Beams BN50, BN100, 
and YB2000 had a thickness of 300 mm (11.8 in.). The slab 

properties of each beam are summarized in Table 2. A plot 
of the normalized shear stress at the critical section versus 

shown in Fig. 4.

element mesh with a total of 20 elements through the thick-
ness and an average element size of approximately 25 x 

for the applied load were modeled by one layer of steel 
plate material and one layer of bearing material. The longi-
tudinal reinforcing steel was modeled using truss elements. 
A maximum crack spacing of 693 mm (27.3 in.) was deter-
mined using Eq. (7).

Specimen BN50 exhibited a bilinear response and a brittle 
-

tion of 5.6 mm (0.22 in.). The failure was the result of a large 

to capture the experimental response of the specimen reason-
ably accurately. The predicted ultimate load and displace-
ment were 266 kN (59.8 kip) and 4.8 mm (0.19 in.), respec-

Fig. 5(a). The 

The predicted load was 1.9% larger compared to the experi-
mental measured one.

For specimen BN100,35

elements was constructed. A total of 21 elements were used 
through the depth of the beam with an average element 

element mesh was similar to the one built for specimen 
BN50. A maximum crack spacing of 1226 mm (48.3 in.) was 
determined using Eq. (7).

The onset of failure occurred at a peak load of 370 kN 

was in reasonably good agreement with the experimental 
results, with the peak load calculated to be 9.7% larger than 
the experimental one. A comparison of the experimental and 

that the beam was precracked due to accidental loading 

Table 2—Properties of selected specimens for Toronto Size Effect series

Specimen , mm d, mm a/d fc , MPa Ag, mm fy, MPa , %

BN 50 300 450 3.00 37 10 483 0.81

BN 100 300 925 2.92 37 10 550 0.76

YB 2000 300 1890 2.86 33.6 10 447 0.74

250 3840 3.13 39.4 14 573 0.656

Note:  is width; d a is shear span; fc  is concrete compressive strength; Ag is maximum aggregate size; fy  is 
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before testing or due to restrained shrinkage. However, 
because the peak response is modeled reasonably well and 

agreement with the experimental results, this discrepancy is 
not considered important to this study.

Specimen YB2000 was tested by Yoshida36 as part of a 
series of deep beam tests with varying amount of transverse 
reinforcement. A maximum crack spacing, determined using 

element model was able to produce reasonable predictions 

element model predicted a failure load of 562 kN (126.3 kip) 

overestimates the experimental response by approximately 
22% in regard to ultimate strength, it was considered reason-
able enough to continue with stochastic simulation.

37 was a deep 
beam specimen meant to represent a slice of a deep slab 
foundation. The mesh used for simulation is shown in 

4035 mm (158.9 in.) was selected based on Eq. (7). Similar 
to specimen YB2000, this test was designed to have two 
shear tests in one specimen. The west span contained 20M 
T-headed shear reinforcement, with the cross-sectional area 
of 300 mm2 (0.465 in.2), spaced at 1500 mm (59 in.). The 
east span contained no transverse reinforcement and is thus 

the subject of this study. The experimentally measured peak 

12.2 mm (0.48 in.). The calculated peak load was 11% larger 
than the experimentally measured one. A comparison of the 

shown in Fig. 5(d). Illustrated in Appendix F is the compar-
ison between the simulated versus observed crack patterns 

captured reasonably well, with failure being initiated by the 
development of a large diagonal crack both analytically and 
experimentally.

-
ably successful in predicting the experiments, given the 
high degree of scatter typically obtained from various other 
modeling procedures and software for such elements.37 For 
Specimens BN50 and BN100, the transition between the 
uncracked response and cracked response was not clearly 
captured experimentally; however, the experimental peak 
loads and displacements were in good agreement with the 

the cracking load was overestimated. In all cases, a reason-
able agreement between the experimental and analytical 
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default models and parameters, and no attempt was made to 

In addition, the CSA A23.318 code was used to determine 
the shear strength of the selected specimens. A plot of the 
code predictions is shown in Appendix G. In this plot, the 
shear is generalized into a 1.0 m (39.4 in.) wide section. 
Each of the experimental results for the selected specimens 

summation between the applied shear and the shear due to 
the self-weight of the specimen.

Stochastic simulation was 
conducted for the selected specimens from the Toronto 

-
imen varied based on computation time. Each simulation 

concrete strength, assumed to be 30 MPa (4350 psi). The 
steel properties were assumed to be deterministic. This was 
done because the mechanical properties of the longitudinal 

shear-critical beams with no transverse reinforcement. The 

of elasticity, which exhibits only small variability. The 
stochastic analysis parameters for concrete are outlined in 
Table 3.

The distributions from Table 3 represent the global 
distributions. However, as discussed previously, the local 

spatial variation is lower. For the purpose of this study, the 

37 A correlation length of 
-

ation of 5.0% were selected. The simulation results produce 

stochastic simulation results is plotted in Fig. 6(a). The peak 
loads obtained from the stochastic simulations can then be 
analyzed as a set of random data. A statistical distribution 

an example of the distribution of the peak load for specimen 
YB2000. Additional details on the stochastic simulation 
results are discussed by Hunter.25

The results of each simulation were determined to be 
2 KS test 

p-values for each statis-
tical test are shown in Table 4. The average bias factor and 

average values are used in the reliability analysis.
Each of the stochastic simulations showed a mean value 

very close to the nominal resistance calculated by the 
CSA A23.3 general method. A plot of the general method 
compared with the stochastic simulation results is presented 
in Fig. 7. The simulation results were transformed from 
applied peak load to shear force per meter.

Table 3—Stochastic simulation input properties for concrete

Variable Model Mean value, MPa Standard deviation, MPa

Compressive strength fc Bartlett and MacGregor6 38.57 7.14 18.6

Tensile strength ft
5 1.81 0.23 12.7

Modulus of elasticity Ec  MPa 5 25,084 2006.7 8.0

Table 4—Stochastic simulation results

Specimen No. of simulations Statistical distribution  , kN  / CSA Simulated COV p 2/KS

BN 50 200 Normal 235.0 1.200 0.116 0.563/0.342

BN 100 300 Normal 324.4 1.040 0.092 0.932/0.475

YB 2000 398 Normal 513.9 1.101 0.091 0.464/0.536

175 Normal 652.3 1.226 0.112 0.365/0.134

Average 1.142 0.103
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DISCUSSION

set evaluates the reliability of each specimen. The second 
treats the reliability of the specimens as a whole, in compar-
ison with the CSA code. The specimens being analyzed 
are not part of a real structure, and thus they have no real 

is simply the self-weight of the specimens, then the ratio 
between nominal strength and self-weight decreases as the 
depth of the beam increases. Thus, when calculating the reli-
ability of a given structural element with unknown dead and 

-
tance of the member. For this analysis, the CSA code is used 
for the nominal resistance.

For a typical reliability analysis, the load statistics are 
based on the load combinations and the loads acting on the 

similar to Szerszen and Nowak38 is adopted. The loading 

/(  + ) (10)

If the loading ratio ranges from 0 to 1, the live load can 
be determined based on the dead load and the loading ratio 
or vice versa. The live load can be divided into two catego-
ries: the sustained live load and the transient live load. The 
sustained live load is also referred to as the load at any arbi-
trary point in time, while the structure is under normal occu-
pancy. The transient live load represents conditions when the 

literature can be found in Szerszen and Nowak.38

-
ered an unknown value, the nominal resistance is considered 

this study, CSA load factors and material resistance factors 
are assumed. Thus, the load factors for dead and live load 

are taken as 1.25 and 1.5, respectively. With respect to the 
resistance factor, the beams are shear-critical and contain no 
transverse reinforcement. As such, the resistance factor for 
the structural element can be taken as the material resistance 
factor for concrete (0.65). The limit state function can be 
described as

 1.25  + 1.5 n (11)

where  and -
tively; and n is the nominal resistance.

Substituting Eq. (10) into (11) and solving for the dead 
load yields

 0.65
11.25 1.5

n=
− ψ+
ψ

 (12)

Szerszen and Nowak38 note that a realistic loading ratio 
for beams ranges from 0.3 and 0.7; however, a loading ratio 
between 0 and 1 is used for this analysis.

) are 
) 

and the nominal values (  and )

 (13)

between the selected specimens because the nominal resis-
tance and statistical parameters for each are known. The 
unknown loading parameters on the tested specimens can be 
determined to calculate code acceptable loading.

With the second method, a dead load is 
assumed. The required nominal resistance is then computed 
by solving Eq. (11) for the nominal resistance

  (14)

The nominal resistance can then be used to determine the 
statistical parameters of the member resistance curve. To do 
so, a model that relates the nominal resistance and the mean 
resistance is required. A bias factor is generally used to relate 
the mean resistance with the nominal resistance. The statis-
tical resistance model used for this analysis is taken as

 n ×  × P × F (15)

where  is the material property parameter; n ×  is taken 
as the results of the stochastic simulation; P is the profes-
sional factor; and F is the fabrication factor.

The statistical properties of  can be calculated as

n (16)

 (17)
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 are the mean and standard deviation of the 
 is the bias factor for the resistance; and  is 

determined as

P F (18)

 2 2 2( ) ( ) ( )= + +  (19)

 calculated in 
P P, calculated previ-

ously in Section F
the bias factor for F calculated based on thickness measure-

37

mean value of the thickness measurements was 251 mm 
(9.88 in.), and the nominal thickness was 250 mm (9.84 in.). 

F
of variation for  calculated in Table 4; P

P calculated in Eq. (9); and F 
F calculated based 

37 for Spec-
-

imen as part of the formwork.
For cases where there are multiple load combinations, 

Method 2 can be employed where the maximum nominal 
resistance n, is computed from each load combination. The 
resulting statistical parameters then use Turkstra’s Rule for 
load combinations (Nowak and Collins39).

With the statistical parameters for the loading and the 
resistance, the reliability index can be calculated for either 
method using Eq. (5). Both methods produce identical 
results for reliability, regardless of the assumed dead load, if 
the statistical parameters for the resistance are identical. The 
second method has the advantage of being able to consider 
multiple load combinations.

The reliability for each specimen is calculated using the 

resistance. The results of the reliability analysis are shown 
in Fig. 8. The CSA reliability for all specimens is almost 
identical. This is in part due to the similar material factor, 

professional factor. The variability of the professional factor 
dominates the variability of the resistance model, and thus 

-
imen trend toward the same value. The average reliability 
index for the CSA code calculations is 2.96. This is below 

T
and Nowak.38 It suggests that in the case of shear-critical 
reinforced concrete elements without skin reinforcement and 
containing no transverse reinforcement, their design may not 
meet the required reliability. This is particularly concerning 
in deep concrete mat foundations, which act as large, deep 

-

37

CONCLUSIONS

Several sampling techniques for stochastic simulation 

VecTor2. The software was expanded to perform Monte 

The professional factor for VecTor2, as well as for any 
other analytical tool, is unique to the structure type being 
analyzed. In this work, the professional factor statistics were 
obtained by comparing the experimental to predicted ratios 
of the peak loads for a large number of deterministic tests 
involving shear-critical beams containing no transverse rein-

VecTor2 was successfully automated. From a study involving 
a database of 318 beams tested, the professional factor was 
found to be normally distributed with a mean value of 1.106 

factor was incorporated into the reliability analysis.
The implemented stochastic simulation tools were used 

to assess the reliability of shear-critical reinforced concrete 
beams without transverse reinforcement. Four beams from the 

simulation for each beam was completed. The results of the 
stochastic simulation were then used in a reliability analysis 
for the CSA A23.318 code. For the specimens investigated 
in this study, the analysis results showed that there was no 

CSA A23.318 code. However, the average reliability index 
for the CSA A23.318 code, calculated to be 2.96, is below 
the target reliability index of 3.5. This suggests that further 
investigation is required to assess the load factors and safety 
factors for this class of structure, particularly with respect to 
the shear strength of deep concrete mat foundations, transfer 
slabs, or outrigger slabs, which may be designed in absence 
of transverse shear reinforcement.

RECOMMENDATIONS FOR FUTURE WORK

the following aspects are in need of further research.
1. There has not been a Canadian update to the statistical 

descriptions of concrete strength in approximately 20 years. 
It is recommended that cylinders be collected from across 
Canada from multiple concrete suppliers to create a database 



82 ACI Structural Journal/May 2021

of concrete cylinder strengths. Additionally, tests for the 
tangent modulus of elasticity and tensile strength of concrete 
should be included in the study.

2. A similar reliability study for the ACI 318-19 code is 
recommended as a future study.

3. From an analytical perspective, shortcomings in the 
current implementations need to be addressed. First, it is 

This will lead to improved sampling accuracy for smaller 
sample sizes. Second, it is recommended that cross-cor-

4. Additional stochastic properties should be added to 
the current software formulation. Stochastic variables for 
the steel reinforcing bar area, the depth of steel reinforce-
ment, the thickness of structural elements, and the remaining 
physical dimensions should be incorporated into stochastic 
analysis methods.

5. To aid in usability, stochastic simulation post processing 
should be incorporated within a postprocessor.

-
ically, program VecTor2) should be expanded to determin-
istically and stochastically assess deteriorated structures 
including corrosion of steel reinforcement. A tool that can 
assess the reliability of deteriorated infrastructure could 
prove invaluable in ensuring that the structures most at risk 
receive appropriate funding.
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