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Stochastic simulation is used primarily as a basis for the resistance
models in a reliability analysis, and it is often used to calibrate
structural concrete building codes. This paper outlines the imple-
mentation of stochastic simulation techniques into a nonlinear
finite element analysis framework. The stochastic modeling capa-
bilities implemented include Monte Carlo (MC) sampling and
Latin hypercube sampling for uncorrelated uniform sampling,
uniform sampling with correlated random variables, and spatial
variation using random field generation. Stochastic simulation was
conducted for shear-critical beams containing no transverse rein-
forcement. The simulation results form the basis for a reliability
analysis that computes the reliability index for the CSA A23.3-14
code. The calculated reliability index of 2.96 was lower than the
target index of 3.5, indicating that the intended performance is not
achieved for this type of element. As such, further investigation is
required to assess the load factors and safety factors.

Keywords: finite element analysis; reinforced concrete; reliability analysis;
stochastic simulation.

INTRODUCTION

Stochastic simulation is perhaps best understood in
comparison with deterministic simulation. In a determin-
istic simulation, the goal of the selected model is to repli-
cate a physical system. In the case of reinforced concrete,
the Disturbed Stress Field Model' is a deterministic model
for the analysis of reinforced concrete elements. It aims to
provide an accurate stress-strain response for reinforced
concrete treated as an anisotropic smeared cracked material.
What categorizes this simulation as deterministic is the need
to define the input parameters. If the input parameters are
known, the model will produce an estimation of the phys-
ical behavior. In a stochastic simulation, the goal is to infer
statistical data about an output quantity based on statistical
knowledge of the system inputs. In the context of the analysis
of reinforced concrete structures, the inputs under consider-
ation are the spatial and global variability of the concrete and
steel material properties, specified as a minimum compres-
sive strength or yield strength, respectively.

Discrepancies between the properties of the specified
structure and its actual in-situ properties can be significant.
Thus, material resistance factors are included in limit state
design. These material factors, however, are calibrated based
on standard structural design procedures (that is, flexural
strength of beams, sectional shear strength of beams, strut-
and-tie models, and so on).>* When determining the reli-
ability of structures with multiple potential failure modes and
with complex geometry, the traditional method of treating
the failure modes independently will create a different reli-
ability coefficient for each failure mode. Any interaction
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between failure modes or progressive failure modes (for
example, shear failure after steel yielding but before the
ultimate flexural response is reached) will not be captured.
Thus, there is a need for advanced analysis tools that are
capable of handling complex loading, material nonlin-
earity, and dynamic analysis which also can accommodate
stochastic simulation. They can be particularly useful for
field structural assessment scenarios when the determination
of material properties is cumbersome or unfeasible.

In such cases, the assessment can be approached within
a stochastic framework. Information on the distribution
of concrete and steel material properties can be used to
produce information on the distribution of the structure’s
expected strength and susceptibility to undesirable failure
modes. Moreover, a stochastic simulation could be carried
out to determine the reliability index for the structure; this
reliability index can then be compared against code-recom-
mended reliability indices to determine if the requirements
of the local building code are met. In any case, a stochastic
analysis provides a better measure of the confidence that
should be associated with any calculated strength and
failure mode.

In the case of reinforced concrete, it is well known that
the concrete material properties exhibit a large variability.>”’
Nevertheless, the variability associated with existing infra-
structure is not limited to the inherent material variability.
There can be a large degree of uncertainty associated with
any deteriorated structure. The extent, location, and implica-
tion of reinforced concrete deterioration is currently a topic
of significant research.®1? At the same time, there is much
work to be done on the development of analysis tools that can
capture concrete deterioration in a reliability framework. !0

A step toward adding to such tools is the focus of this
work: the implementation of stochastic modeling capabil-
ities within a nonlinear finite element analysis (NLFEA)
program, VecTor2.!” Statistical models for concrete and steel
material properties available in the literature have been iden-
tified and implemented within the proposed formulation. In
addition, Monte Carlo (MC) and Latin hypercube sampling
for uncorrelated uniform sampling, uniform sampling
with random variables, and spatial variation using random
field generation were implemented. Stochastic simulations
were conducted on beam specimens with no transverse
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reinforcement, and a reliability analysis was performed to
determine the reliability index for the CSA A23.3-14 code.

The host program, VecTor2, employs a smeared, rotating
crack model for concrete behavior based on the Disturbed
Stress Field Model' and is suited for the analysis of two-di-
mensional reinforced concrete structures. The solution algo-
rithm is based on an iterative, total-load, secant stiffness
formulation with robust convergence characteristics. Mech-
anisms such as shear slip along crack interfaces, compres-
sion softening due to transverse cracking, confinement, and
tension stiffening are among the several behavioral mecha-
nisms considered explicitly. A broad range of models were
implemented for each constitutive mechanism.

Central to the program’s applicability to stochastic simula-
tions is the minimal need for calibration. The default models
available to represent the behavioral mechanisms have been
extensively verified against various types of structures, thus
making them a suitable choice for the majority of analyses.
In addition, material characterization is especially straight-
forward. These traits make VecTor2 particularly useful for
field structural assessment, scenarios in which access to
mechanical properties of materials is limited. The addition
of stochastic capabilities extends the application range of the
program to structural reliability analysis in a framework that
has shown to be suited for predictive type of analyses.

RESEARCH SIGNIFICANCE

In the case of reinforced concrete, reliability analysis has
been used to calibrate building codes.>* The material resis-
tance factors in the case of the CSA A23.3-14'% code, and
the strength reduction factors in the case of the ACI 318-19"
code, are calibrated to achieve a code-level reliability.
However, as a recent prediction competition’* has shown,
prediction of the shear strength of concrete beams with no
transverse reinforcement still remains a challenging task.
With such uncertainty, the calibration of resistance factors
and load factors for building codes requires software that
can provide a good deterministic prediction of structural
behavior. NLFEA programs represent a viable option for
the simulation of virtually any planar reinforced concrete
element. The addition of stochastic simulation capabilities
allows them to be used to create member resistance curves
and thus be a useful tool in the assessment of safety and
structural reliability for reinforced concrete members.

BASICS OF RELIABILITY ANALYSIS

Reliability analysis is the mathematical basis for the
limit state design method. In a limit state design, the load
that will act on the structure is predicted and factored by a
prescribed value. Additionally, the resistance of each struc-
tural element is factored by either material resistance factors
(CSA A23.3'%) or strength reduction factors (ACI 318-19').
The derivation of these factors, for both loading and resis-
tance, are the result of reliability methods. Adequate struc-
tural safety is determined by reducing the probability of
failure of the structure.

In its simplest form, structural reliability is assessed by
comparing the load effect S, and the resistance R, both
described by known probability density functions fs and f.
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According to Melchers,?! the probability of failure py, for a
structural element can be defined as

pr=P(G(R,S) < 0) (1

where G(R,S) is the limit state function; and in this case, it
has the form G(R,S)=R —S.

The resistance and the load effect can be modeled using
various probability distributions. In the particular case when
R and S have normal distributions with the mean values iz
and ps, and variances oz* and 65>, G(R,S) has the mean and
variance given by

He = Mg~ Hs 2
og’ = o’ + o¢’ 3)

The probability of failure of the structural element can be
expressed as

pf=P<G(R,S>50)=d>(%j=d> [—_<“" _“S)] =o(-p)

G «/6R2+Gsz
)

where @() is the standard normal distribution function; and
B = pe/og is the reliability index.?!

The reliability index, B, is therefore a measure of safety; a
higher value indicating a lower probability of failure. For a
normal distribution, the reliability index can be calculated as

B — “R _ MS (5)

\O  +07

In general, the reliability analysis of a structure is more
complex than the basic formulation presented previously.
The load effect and the resistance may not be independent. In
addition, both are functions of parameters that in turn may be
random variables, such as the material properties, structural
dimensions, and applied loads. Two approaches are typically
used for the generalized reliability formulation?': the MC
methods, and the First Order Second Moment methods. The
procedure presented in this paper, however, considers the
structural reliability of a single structural element. As such,
a single resistance curve is determined through stochastic
simulation, and a single load effect curve is assumed.

STOCHASTIC SIMULATION OF REINFORCED
CONCRETE
MC methods have widely been used by researchers for
assessing the structural reliability of reinforced concrete
structures. MC simulations work by generating statisti-
cally independent samples that follow the distributions of
each of the input parameters. The mathematical relationship
describing the variable of interest is then computed for each
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set of generated samples. This produces a set of outputs that
can be statistically analyzed.

MC simulations have been employed to investigate the
serviceability and strength behavior of concrete structural
elements.''"'® In what follows, the trends observed in the
literature pertaining to input parameters, validation of theo-
retical model, and structural behavior are summarized.

The input parameters for stochastic simulations most
often considered in the literature were the concrete mate-
rial properties, the steel material properties, and the dimen-
sional properties. The concrete material properties modeled
included the compressive strength, the modulus of elasticity,
and the tensile strength. In studies concerned with long-
term effects, statistical properties were considered for the
creep and shrinkage coefficients. The statistical properties
most commonly considered for reinforcing steel were the
modulus of elasticity, the nominal cross-sectional area of
steel, and the yield strength.

The variation in assumed dimension for a given struc-
tural element is less important to the current work because a
finite element approach will be taken using two-dimensional
membrane elements.

In all of the MC simulations reviewed,''"'® a theoret-
ical model was proposed to describe the parameter of
interest. Despite the large disparity in complexity between
studies, most of the studies verified the proposed theoret-
ical model against deterministic results in the literature. It
is recommended that all MC simulations validate the theo-
retical model against experimental results obtained from
the literature.

Most of the simulations reviewed were flexural
elements.'!"!% In cases where shear was considered as a failure
mode,'® the stochastic parameters were typically applied to
the simplified empirical shear equations. Such an approach
likely does not capture the transition in failure mode or the
interactions between shear behavior and flexural behavior.
Stochastic simulations of shear-critical members, disturbed
regions, or any other structural element that deviates from the
simplified equations requires more advanced analysis tools.
Strut-and-tie models have been shown to represent a lower
bound estimate of the strength of such structural elements,
and it would thus not be prudent to use such techniques
for reliability studies. A requirement then exists to study
the reliability of such structures with advanced and accu-
rate finite element models. Such an approach is proposed in
this article.

SOFTWARE FORMULATION

Statistical models of material properties

The statistical models used in a stochastic simulation of
reinforced concrete must be selected such that the distribu-
tions are representative of in-place variability. Consider-
ation must be given to the age and location of the structure,
both of which can influence the statistical distributions of
the material parameters. Four statistical models for concrete
material properties and two for steel were identified from the
literature and implemented within the proposed formulation.
For the material properties of concrete, the variability of the
compressive strength, the tensile strength, and the modulus
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Table 1—Selected statistical models

Parameter Statistical models

Concrete

Mirza et al.’
Bartlett and MacGregor®
Nowak and Szerszen?
Unanwa and Mahan’

Compressive strength

Mirza et al.’

Modulus of elasticity Hybrid' Mirza® + CSA

Tensile strength Mirza et al.>
Steel
) Mirza and MacGregor?
Yield strength Nowak and Szerszen®*
Ultimate strength Mirza and MacGregor?**

Modulus of elasticity Mirza and MacGregor?**

"Recommended default model.

of elasticity were considered. For the reinforcement, statis-
tical models for the steel yield strength, the ultimate strength,
and the modulus of elasticity were included. A summary of
the statistical models selected for the proposed procedure is
presented in Table 1.

The models proposed by Mirza et al.> (for concrete)
and Mirza and MacGregor'? (for steel) have been widely
employed in stochastic simulation and in the calibration of
building codes.!"'* Further work by Bartlett and MacGregor®
provided more detailed models that were subsequently used
in building code calibration. Nowak and Szerszen? provided
an updated and improved database for the statistical proper-
ties of steel and concrete that was used in the calibration of
ACI 318-19 Code."” Most recently, a study by Unanwa and
Mahan’ provided results that agree with previous literature
and offer updated models for temporal effects on the strength
of concrete.

Random variable generator

A stochastic variable generator was created that uses
the implicit function in the Fortran Library and generates
random samples of normal, lognormal, gamma, and beta
distributions. These distributions are then used to generate
random samples for the concrete and steel material proper-
ties. The user selects which distribution to use for stochastic
analysis. A variety of statistical models from the literature
are implemented, as well as the ability to consider user-
defined statistical properties. The subroutine then builds a
matrix that stores the statistical parameters for each selected
distribution as well as an identifier that indicates which
sampling function to call. Once a sample is generated for
each distribution, the ratio between the specified value and
the sampled value is taken and assigned as a modification
factor to each material property.

It is often useful to generate samples of nonuniform
random variables. In the case of the normal and lognormal
random variable sampling, the Box-Muller Method (Graham
and Talay?®) was adopted to generate a sample of a normally
distributed random variable. The gamma random vari-
able generator implementation is based on the Marsaglia
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and Tsang?* method. Additional details on the nonuniform
random variable sampling method implemented can be
found in Hunter.”> Appendix A" summarizes the validation
procedure for the random variable generator.

Analysis types

Monte Carlo sampling—MC sampling involves basic
random number generation for any of the selected distribu-
tions. The user is able to select a distribution for the concrete
compressive strength, the concrete tensile strength, the
concrete elastic modulus, the steel yield strength, the steel
ultimate strength, and the steel elastic modulus. The models
recommended and set as the default distributions are shown
in Table 1.

The selected models are not specific to MC sampling but
are recommended for all stochastic simulations. Note that
for the concrete tensile strength and elastic modulus, the
CSA A23.3'® relationships for the modulus of elasticity and
tensile strength are substituted. This was considered more
representative of modern-day concrete than the original
statistics proposed by Mirza et al.’ The selection of Mirza et
al.> models for the tensile strength and modulus of elasticity
reflects the understanding that a contemporary database of
those parameters has not recently been compiled for Cana-
dian concrete.

Latin hypercube sampling—ILHS was first proposed
by Mckay et al.?® as a method for reducing the number of
required simulations. It has been further developed and
employed for stochastic simulation with finite elements.?’
This method is able to produce samples that cover the entire
distribution range but reduces the computational effort when
compared with full factorial design.

The LHS technique is advantageous when the compu-
tation time for each simulation is long. Some researchers
estimate that satisfactory results can be obtained with fewer
than 50 simulations (Voiechovsky and Novak?®). Never-
theless, between 50 and 100 simulations are recommended
when LHS is employed. Further details on the LHS imple-
mentation are provided in Appendix B and by Hunter.?

Correlated sampling—Multiple empirical functions have
been developed to express the relationships between the
compressive strength of concrete and its tensile strength or
elastic modulus. These relationships are based on regres-
sion analysis of experimental data. If concrete compressive
strength exhibits variability for a given specified strength, it
is reasonable to assume that a correlation exists between the
compressive strength and the corresponding tensile strength
and modulus of elasticity. Correlated sampling can thus
serve as a useful tool for the sampling of reinforced concrete
material properties.

Correlated sampling is performed during individual
simulations using the same approach as with the basic MC
sampling method. The method can be extended to introduce
correlation into LHS. When compared with correlated MC
samples, the correlated Latin hypercube (CLH) samples

“The Appendix is available at www.concrete.org/publications in PDF format,
appended to the online version of the published paper. It is also available in hard copy
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the
time of the request.
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provide a marginal improvement on the estimate of the
correlation matrix and a large improvement on the estimate
of the mean and standard deviation.?

Random field generation

Random variations of material properties occur not only
from structure to structure, but also within a structure. In
the case of a finite element simulation, each element can be
assumed to take on a random value of a material property.
However, the elements cannot be assigned a truly random
value. It is logical to assume that a correlation exists between
adjacent elements, creating gradient-like transitions. Thus, a
method is required to generate stochastic samples of spatially
distributed randomness that captures the spatial correlation
between adjacent finite elements. This can be done using
random fields.

Random fields are spatially correlated stochastic samples
that follow a specified distribution. The Gaussian random
field is the model adopted in the proposed procedure. The
Karhunen—Loeve transform (KL transform), also called the
orthogonal transform, is the most widely used method for
generating random fields (Choi et al.?®). The transforma-
tion takes the form of an eigenvalue problem where each
of the transformed random variables can be generated inde-
pendently. A comparison between independently generated
element values and spatially correlated random values is
shown in Appendix C.

A random field requires three parameters: the number of
included eigenvalues, the random field variance, and the
correlation length. The recommended number of eigen-
values varies depending on the correlation length. It has
been found that selecting 80 eigenvalues is adequate in
generating random fields for the correlation lengths typically
observed in concrete, as discussed by Hunter.> The correla-
tion length describes the distance in which two elements
become completely uncorrelated. A review of the literature
suggests that a correlation length of 800 to 1200 mm (31.5
to 39 in.) is recommended for stochastic simulations.>> The
current implementation produces a random field with a
mean of zero and a variance equal to the specified variance;
however, this random field is then scaled to meet the global
distribution for concrete. As a result, until the random field
data implementations are expanded to include non-Gaussian
random fields, the random field variance parameter should
always be specified as 1.0.

RELIABILITY OF SHEAR-CRITICAL BEAMS WITH
NO TRANSVERSE REINFORCEMENT

VecTor2 professional factor

There has always been an understanding that despite
the best efforts of structural engineers, the simulation of
structural behavior is only an approximation to reality. It
is important to quantify and understand how analysis tools
used for reliability analysis are representative of reality. The
professional factor in this study is defined as an additional
random variable that captures the uncertainty derived from
modeling. For VecTor2, the NLFEA program used, this
notion is incorporated into the material resistance model
as a product between the specific professional factor, the
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fabrication factor, and the predicted resistance model. This
is reflected in Eq. (6)

R=Ry,*xMxPxF=RypxPxF (6)

where R, is the nominal resistance; M is the material prop-
erty parameter; Ry, = Ry X M is taken as the result of the
stochastic simulation; P is the professional factor; and F is
the fabrication factor. The professional factor, P, is defined
as the ratio between the experimental and predicted capacity,
PExp/ PVT2-

VecTor2 is a general-purpose finite element program; as
such, it will model different structures with varying degrees
of accuracy. For example, consider the statistics published by
Vecchio et al.*® The means for the ratios of calculated-to-ex-
perimental strengths (P 1»/Pgy,) for beams, shear walls, and
panels (that is, the bias factors) were reported to be 1.000,
1.011, and 1.022, respectively. Similarly, the coefficients
of variation for those elements were reported to be 5.3%,
20.3%, and 9.6%, respectively. Thus, although all three
examples show a bias factor of approximately 1.0, the coef-
ficient of variation due to model uncertainty varies signifi-
cantly depending on which structural element is selected for
modeling. Note that these reported numbers were calculated
for (Py72/Pexp); however, in this study the inverse of the ratio
is required and used as the professional factor.

In the current study, shear-critical beams with no trans-
verse reinforcement are being modeled. To assess the profes-
sional factor for VecTor2 when considering shear-critical
beams, a large number of beams must be modeled. The data-
base published by Reineck et al.3! contains a total of 744
shear-critical beams that were tested under a one-point or
two-point bending test. The total of 744 was reduced to a
subset of 680 by removing all T-beams. The set of beams was
additionally refined by removing all beams without suffi-
cient and reliable information needed to model the beams
in VecTor2. This resulted in a set of 371 beams remaining.

For the analysis of the selected data, a few simplifying
assumptions were made; the first was that the bottom steel
reinforcement could be modeled as a single layer of rein-
forcement with a centerline equal to the centroid of the
reinforcement. Each beam was assumed to be perfectly
symmetric, and, thus, only half of the beam was modeled
around the plane of symmetry. It was further assumed that
the reinforcement was perfectly bonded to the concrete. This
assumption is considered to be reasonable because only
shear tests with deformed reinforcing bars were selected.
Lastly, the predicted load-deflection response was found to
be sensitive to the assumed maximum crack spacing. As a
result, a consistent estimation of the maximum crack spacing
based on the CEB-FIB*? code was assumed to govern both
directions, as per Eq. (7)

s d,
s =2| ¢ 4= |+0.25k ™)

10 P,
where C, is the maximum distance from the reinforcement; Sy
is the horizontal spacing of the longitudinal reinforcement;
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dy, is the diameter of the longitudinal reinforcing bars; and
px 1s the longitudinal reinforcement ratio. The parameter £
is taken as 0.4 for deformed reinforcing bars.

A representative finite element model is shown in
Appendix D, Fig. D(a). For all specimens analyzed in this
study, four-node plane stress rectangular elements were used
to model the concrete component and the bearing plates,
whereas the reinforcement was represented by truss bar
elements. For each beam, a unique structure file and two
load case files were required to properly define the finite
element model for the beam. An automated preprocessor
was developed to read the input information for each beam
and generate the structure file and the load case files required
for analysis. In addition, a MATLAB script was developed to
run each of the executables, thereby additionally increasing
the automation. Finally, a postprocessor was developed in
MATLAB to visualize the results. The automated process
was not without errors; of the selected 371 beams, 53 of
the automatically generated meshes produced errors when
running. As such, these 53 models were excluded from the
reported results. This was considered acceptable because the
sample size of 318 is considered sufficient to estimate the
professional factor. Appendix E summarizes the dimensions
of the beam specimens as well as the simulation results.

A plot showing the normalized shear stress V/bd\/ff for
the experimental data versus the simulated data is shown
in Fig. 1. It can be seen from the plot that there is signif-
icant scatter in the prediction of the shear strength using
VecTor2. The data do appear to capture the behavior of all
of the beams reasonably well. Additionally, the majority of
the tests fall under the equal ratio and are thus conservative
predictions of the shear strength.

The professional factor P, is defined in Eq. (8) as the ratio
between the experimental (Vgy) and predicted peak load
(Vyr). This ratio was calculated for each simulation and
analyzed as a set of data. The calculated professional factors
were found to be normally distributed with a mean of 1.106
and a coefficient of variation of 0.183. The mean value of the
professional factors is referred to as the bias factor. A histo-
gram showing the normal distribution fit is shown in Fig. 2.
A y? goodness-of-fit test and a KS test were performed. Both
tests confirmed the goodness of fit and provided p-values
0f 0.172 and 0.372, respectively. Therefore, the professional
factor can be modeled as a normal distribution.
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with py > 2.5%.
P= VExp/ Vyr (®)

The uncertainty attributable to testing procedures and the
differences between assumed and actual specimen prop-
erties are incorporated into the computation of the profes-
sional factor using the same method as that by Mirza and
MacGregor.!? The coefficient of variation for the profes-
sional factor, denoted as V), is calculated using Eq. (9) as
equal to 0.174.

Vp = \/Vt/c2 - Vtest2 =V, ? (98.)

spec

v, =(0.183 —(0.03)° —(0.045)° =0.174  (9b)

where V.= 0.183 is the coefficient of variation obtained from
the comparison of experimental-to-calculated strengths;
Viest Tepresents uncertainties related to testing procedures
such as load recording and is recommended by Mirza and
MacGregor'? to be taken as 0.030; and Vspec Tepresents
uncertainties related to measured dimensions and in-batch
variations in material properties and is recommended'? to be
taken as 0.045.

The analysis of the selected test data was repeated with
the CSA A23.3'"® code. These analyses were done not for
the purpose of developing a professional factor for the
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CSA A23.3'"® code but rather to compare the results with
VecTor2. The CSA code and VecTor2 are both implemen-
tations based on the modified compression field theory.’?
The CSA code simplifies the original Modified Compression
Field Theory,?® and it is calibrated for analysis of flexural
elements.** VecTor2 uses the Disturbed Stress Field Model!
and expands on the Modified Compression Field Theory
by including shear slip along crack surfaces. The results for
the CSA code are shown in Fig. 3(a).

It can be seen that for most of the test results, the CSA
code is conservative. It becomes partially unconservative
for specimens that develop lower shear stress. However,
given the overall scatter, it is reasonable to assume that the
mean value of the CSA equations are good predictors of the
shear strength and that the variability observed in the figure
is acceptable given the simplicity of the model. It is worth
noting that VecTor2 also experiences significant scatter in
these regions, although it does not appear to have an uncon-
servative bias.

It is also evident in Fig. 3(a) that the CSA code conser-
vatively predicts strengths for tests that can develop high
shear stress. During the early experimental exploration of
the shear strength of concrete, researchers often designed
beams with large tensile reinforcement to induce a shear
failure. However, it was not understood at the time that the
presence of large amounts of longitudinal reinforcement
reduces the overall tensile strains in the shear zone and thus
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Table 2—Properties of selected specimens for Toronto Size Effect series

Specimen b, mm d, mm a/d f./, MPa Ag, mm fy, MPa Prong»> %o
BN 50 300 450 3.00 37 10 483 0.81
BN 100 300 925 2.92 37 10 550 0.76

YB 2000 300 1890 2.86 33.6 10 447 0.74

PLS 4000 250 3840 3.13 39.4 14 573 0.656

Note: b is width; d is effective depth; a is shear span; ;' is concrete compressive strength; Aq is maximum aggregate size; fy is longitudinal reinforcement yield strength; p;o,. is

longitudinal reinforcement ratio; 1.0 mm = 0.04 in.; 1 MPa = 145 psi.
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Fig. 4—Normalized shear stress response for selected

beams: BN50*; BN100%; YB2000°°; and PLS4000.” (Note:

Units in mm; 1.0 mm = 0.04 in.)

strengthens the shear capacity of such beams. When the
results are disaggregated, the effect of the reinforcing ratio
on the CSA predictions becomes clear. Figure 3(b) shows the
disaggregated results for the CSA predictions. The data has
been separated into two categories: longitudinal reinforcing
ratio greater than 2.5% or less than 2.5%. The 2.5% was
selected as a large, yet realistic, reinforcing ratio. It is clear
from the figure that most of the tests poorly captured by the
CSA code have a reinforcement ratio above 2.5%.

Toronto Size Effect series

In what follows, a case study is presented that highlights
the potential applications of the implemented software
pertaining to stochastic simulation. A series of deep beams
with no transverse reinforcement are simulated, and their
reliability is discussed.

The size effect in shear is a well-documented phenomenon
that has been incorporated into several design codes around
the world (for example, CSA A23.3, ACI 318-19, AASHTO,
Eurocode 2). The size effect in most cases is an additional
parameter that is applied to the shear strength. This results
in diminishing returns on the concrete contribution to shear
strength when the depth of the beam increases. It is unclear
how the size effect affects the computed reliability of the
reinforced concrete beam elements.

Four reinforced concrete beams, tested at the University
of Toronto, were selected from the literature for stochastic
simulation.®>-*” The first two beams, BN50 and BN 100, tested
by Podgorniak-Stanik,** had depths of 500 mm (19.7 in.) and
1000 mm (39.4 in.), respectively. The third beam, YB2000,
tested by Yoshida,*® had a depth of 2000 mm (78.4 in.). The
last beam, PLS4000, was a slab strip tested by Quach®’ and
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had a depth of 4000 mm (157.5 in.). Beams BN50, BN100,
and YB2000 had a thickness of 300 mm (11.8 in.). The slab
strip PLS4000 had a thickness of 250 mm (9.8 in.). The
properties of each beam are summarized in Table 2. A plot
of the normalized shear stress at the critical section versus
deflection at the point of load application for each beam is
shown in Fig. 4.

Deterministic analysis—In modeling BN50, a finite
element mesh with a total of 20 elements through the thick-
ness and an average element size of approximately 25 x
25 mm (1.0 x 1.0 in.) was used. The finite element mesh is
shown in Appendix D, Fig. D(b). The steel bearing plates
for the applied load were modeled by one layer of steel
plate material and one layer of bearing material. The longi-
tudinal reinforcing steel was modeled using truss elements.
A maximum crack spacing of 693 mm (27.3 in.) was deter-
mined using Eq. (7).

Specimen BN50 exhibited a bilinear response and a brittle
failure at an ultimate load of 261 kN (58.7 kip) and a deflec-
tion of 5.6 mm (0.22 in.). The failure was the result of a large
shear crack opening up. The finite element model was able
to capture the experimental response of the specimen reason-
ably accurately. The predicted ultimate load and displace-
ment were 266 kN (59.8 kip) and 4.8 mm (0.19 in.), respec-
tively. A plot of the experimental load-deflection response
and the finite element prediction is shown in Fig. 5(a). The
finite element model tends to overestimate the precracked
stiffness of the response but produces a reasonable estimate
for the postcracked stiffness of the experimental response.
The predicted load was 1.9% larger compared to the experi-
mental measured one.

For specimen BN100,% a finite element mesh of 7194
elements was constructed. A total of 21 elements were used
through the depth of the beam with an average element
size of approximately 50 x 50 mm (2.0 x 2.0 in.). The finite
element mesh was similar to the one built for specimen
BN50. A maximum crack spacing of 1226 mm (48.3 in.) was
determined using Eq. (7).

The onset of failure occurred at a peak load of 370 kN
(83.2 kip) and a peak deflection of 5.87 mm (0.23 in.).
The finite element model predicted a peak load of 406 kN
(91.3 kip) and a peak deflection of 5.98 mm (0.24 in.). This
was in reasonably good agreement with the experimental
results, with the peak load calculated to be 9.7% larger than
the experimental one. A comparison of the experimental and
predicted load-deflection response is shown in Fig. 5(b).
Note that the initial stiffness predicted by the finite element
model is stiffer than the experimental results. It is possible
that the beam was precracked due to accidental loading
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before testing or due to restrained shrinkage. However,
because the peak response is modeled reasonably well and
the initial stiffness of the other three specimens was in good
agreement with the experimental results, this discrepancy is
not considered important to this study.

Specimen YB2000 was tested by Yoshida® as part of a
series of deep beam tests with varying amount of transverse
reinforcement. A maximum crack spacing, determined using
Eq. (7), was calculated to be 2181 mm (85.9 in.). The finite
element model was able to produce reasonable predictions
of the initial stiffness and cracking load for the YB2000
specimen. However, the postcrack stiffness, ultimate load,
and deflection at ultimate were overestimated. The finite
element model predicted a failure load of 562 kN (126.3 kip)
with a deflection of 8.79 mm (0.35 in.). A comparison of
the finite element and experimental load-deflection curves is
presented in Fig. 5(c). Although the finite element prediction
overestimates the experimental response by approximately
22% in regard to ultimate strength, it was considered reason-
able enough to continue with stochastic simulation.

The specimen PLS4000 tested by Quach®’” was a deep
beam specimen meant to represent a slice of a deep slab
foundation. The mesh used for simulation is shown in
Appendix D, Fig. D(c). A maximum crack spacing of
4035 mm (158.9 in.) was selected based on Eq. (7). Similar
to specimen YB2000, this test was designed to have two
shear tests in one specimen. The west span contained 20M
T-headed shear reinforcement, with the cross-sectional area
of 300 mm? (0.465 in.?), spaced at 1500 mm (59 in.). The
east span contained no transverse reinforcement and is thus
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the subject of this study. The experimentally measured peak
load was 685 kN (154 kip) with a peak deflection of 12 mm
(0.47 in.). The finite element analysis predicted a peak
load of 761 kN (171 kip) and a deflection at peak load of
12.2 mm (0.48 in.). The calculated peak load was 11% larger
than the experimentally measured one. A comparison of the
experimental and finite element load-deflection curves is
shown in Fig. 5(d). [llustrated in Appendix F is the compar-
ison between the simulated versus observed crack patterns
at failure for Specimen PLS4000. The crack pattern was
captured reasonably well, with failure being initiated by the
development of a large diagonal crack both analytically and
experimentally.

All four deterministic finite element models were reason-
ably successful in predicting the experiments, given the
high degree of scatter typically obtained from various other
modeling procedures and software for such elements.?” For
Specimens BN50 and BN100, the transition between the
uncracked response and cracked response was not clearly
captured experimentally; however, the experimental peak
loads and displacements were in good agreement with the
analytical ones. For YB2000 and PLS4000, the precracked
stiffnesses were accurately captured. A good match for the
transition between cracked and uncracked stiffness was
obtained for Specimen YB2000. However, for PLS4000,
the cracking load was overestimated. In all cases, a reason-
able agreement between the experimental and analytical
results was obtained for the postcracked stiffness, the peak
load, and deflection. Note that all analyses were done using
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Table 3—Stochastic simulation input properties for concrete

Variable Model Mean value, MPa | Standard deviation, MPa Coefficient of variation, %
Compressive strength f;'= 30 MPa Bartlett and MacGregor® 38.57 7.14 18.6
Tensile strength f;’=1.81 MPa Modified Mirza et al.’ 1.81 0.23 12.7
Modulus of elasticity E.= 25,084 MPa Modified Mirza et al.’ 25,084 2006.7 8.0

Note: 1 MPa = 145 psi.

Table 4—Stochastic simulation results

Specimen No. of simulations Statistical distribution Wpeak Loads KN A= Wpeak Load/Rcsa Simulated COV p-value xz/ KS
BN 50 200 Normal 235.0 1.200 0.116 0.563/0.342
BN 100 300 Normal 3244 1.040 0.092 0.932/0.475
YB 2000 398 Normal 513.9 1.101 0.091 0.464/0.536
PLS4000 175 Normal 652.3 1.226 0.112 0.365/0.134
Average 1.142 0.103

default models and parameters, and no attempt was made to
fine-tune the analyses.

In addition, the CSA A23.3'8 code was used to determine
the shear strength of the selected specimens. A plot of the
code predictions is shown in Appendix G. In this plot, the
shear is generalized into a 1.0 m (39.4 in.) wide section.
Each of the experimental results for the selected specimens
is plotted on the figure. These results were determined as the
summation between the applied shear and the shear due to
the self-weight of the specimen.

Stochastic simulation results—Stochastic simulation was
conducted for the selected specimens from the Toronto
size effect series. The number of simulations for each spec-
imen varied based on computation time. Each simulation
consisted of a random field using LHS for the specified
concrete strength, assumed to be 30 MPa (4350 psi). The
steel properties were assumed to be deterministic. This was
done because the mechanical properties of the longitudinal
reinforcement have limited influence on the behavior of
shear-critical beams with no transverse reinforcement. The
strain in the steel is influenced only by the steel modulus
of elasticity, which exhibits only small variability. The
stochastic analysis parameters for concrete are outlined in
Table 3.

The distributions from Table 3 represent the global
distributions. However, as discussed previously, the local
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spatial variation is lower. For the purpose of this study, the
spatial variation due to the random fields was based on the
measured properties of PLS4000.3” A correlation length of
1200 mm (47.2 in.) and the random field coefficient of vari-
ation of 5.0% were selected. The simulation results produce
a series of load-deflection curves. A typical plot of the
stochastic simulation results is plotted in Fig. 6(a). The peak
loads obtained from the stochastic simulations can then be
analyzed as a set of random data. A statistical distribution
is fitted to the results of each simulation. Figure 6(b) shows
an example of the distribution of the peak load for specimen
YB2000. Additional details on the stochastic simulation
results are discussed by Hunter.?’

The results of each simulation were determined to be
normally distributed. A y?> goodness-of-fit test and a KS test
were used to assess the fits. The p-values for each statis-
tical test are shown in Table 4. The average bias factor and
coefficient of variation are also presented in the table. These
average values are used in the reliability analysis.

Each of the stochastic simulations showed a mean value
very close to the nominal resistance calculated by the
CSA A23.3 general method. A plot of the general method
compared with the stochastic simulation results is presented
in Fig. 7. The simulation results were transformed from
applied peak load to shear force per meter.
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DISCUSSION

Two sets of reliability analyses were conducted. The first
set evaluates the reliability of each specimen. The second
treats the reliability of the specimens as a whole, in compar-
ison with the CSA code. The specimens being analyzed
are not part of a real structure, and thus they have no real
definition of live load and dead load. It is for this reason
that the loading ratio is specified. However, if the dead load
is simply the self-weight of the specimens, then the ratio
between nominal strength and self-weight decreases as the
depth of the beam increases. Thus, when calculating the reli-
ability of a given structural element with unknown dead and
live loads, a different approach is required. Both methods
considered rely on codified calculations of the nominal resis-
tance of the member. For this analysis, the CSA code is used
for the nominal resistance.

For a typical reliability analysis, the load statistics are
based on the load combinations and the loads acting on the
global structure. In the case of this study, as no specific live
load can be defined for any of the specimens, an approach
similar to Szerszen and Nowak3® is adopted. The loading
ratio, v, is defined as

v =D/D+L) (10)

If the loading ratio ranges from 0 to 1, the live load can
be determined based on the dead load and the loading ratio
or vice versa. The live load can be divided into two catego-
ries: the sustained live load and the transient live load. The
sustained live load is also referred to as the load at any arbi-
trary point in time, while the structure is under normal occu-
pancy. The transient live load represents conditions when the
load is at a maximum. Loading statistics compiled from the
literature can be found in Szerszen and Nowak.?

Method 1—With the first method, the dead load is consid-
ered an unknown value, the nominal resistance is considered
to be known, and the loading ratio is specified. In the case of
this study, CSA load factors and material resistance factors
are assumed. Thus, the load factors for dead and live load
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are taken as 1.25 and 1.5, respectively. With respect to the
resistance factor, the beams are shear-critical and contain no
transverse reinforcement. As such, the resistance factor for
the structural element can be taken as the material resistance
factor for concrete (0.65). The limit state function can be
described as

1.25D + 1.5L < 0.65R, (11)

where D and L are the specified dead and live loads, respec-
tively; and R, is the nominal resistance.

Substituting Eq. (10) into (11) and solving for the dead
load yields

65R
b 063K,

125415 ¥
v

Szerszen and Nowak®® note that a realistic loading ratio
for beams ranges from 0.3 and 0.7; however, a loading ratio
between 0 and 1 is used for this analysis.

The mean values of the dead and live loads (yp and ;) are
defined as the product between the bias factors (Ap and A;)
and the nominal values (D and L)

(12)

Hp =ApD and p =L 13)

This first method is useful for comparing the reliability
between the selected specimens because the nominal resis-
tance and statistical parameters for each are known. The
unknown loading parameters on the tested specimens can be
determined to calculate code acceptable loading.

Method 2—With the second method, a dead load is
assumed. The required nominal resistance is then computed
by solving Eq. (11) for the nominal resistance

065
R = (14)
[1.25+151'—”'r}5
y

The nominal resistance can then be used to determine the
statistical parameters of the member resistance curve. To do
so, a model that relates the nominal resistance and the mean
resistance is required. A bias factor is generally used to relate
the mean resistance with the nominal resistance. The statis-
tical resistance model used for this analysis is taken as

R=R,xMxPxF (15)
where M is the material property parameter; R, X M is taken
as the results of the stochastic simulation; P is the profes-
sional factor; and F is the fabrication factor.

The statistical properties of R can be calculated as

Hr = ArRy (16)

Opr = VR},LR (17)
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where iz and oy are the mean and standard deviation of the
resistance; Ay is the bias factor for the resistance; and V; is
the coefficient of variation.

The bias factor and the coefficient of variation can be
determined as

Ar =My X Ap X Ag (18)

V=AW, +0, ) +(V,) (19)

where Ay, = 1.142 is the bias factor for M calculated in
Table 4; Ap = 1.106 is the bias factor for P, calculated previ-
ously in Section VecTor2 Professional Factor; A\ = 1.004 is
the bias factor for F calculated based on thickness measure-
ments performed by Quach®’ for Specimen PLS4000. The
mean value of the thickness measurements was 251 mm
(9.88 in.), and the nominal thickness was 250 mm (9.84 in.).
Thus, A = 251/250 = 1.004; V3, = 0.103 is the coefficient
of variation for M calculated in Table 4; Vp = 0.174 is the
coefficient of variation for P calculated in Eq. (9); and VE
= 0.01 is the coefficient of variation for F calculated based
on thickness measurements performed by Quach?’ for Spec-
imen PLS4000 through a series of sleeves cast into the spec-
imen as part of the formwork.

For cases where there are multiple load combinations,
Method 2 can be employed where the maximum nominal
resistance Ry, is computed from each load combination. The
resulting statistical parameters then use Turkstra’s Rule for
load combinations (Nowak and Collins*).

With the statistical parameters for the loading and the
resistance, the reliability index can be calculated for either
method using Eq. (5). Both methods produce identical
results for reliability, regardless of the assumed dead load, if
the statistical parameters for the resistance are identical. The
second method has the advantage of being able to consider
multiple load combinations.

The reliability for each specimen is calculated using the
first method and the CSA code predictions for the nominal
resistance. The results of the reliability analysis are shown
in Fig. 8. The CSA reliability for all specimens is almost
identical. This is in part due to the similar material factor,
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bias factors, and coefficients of variation, but also due to the
professional factor. The variability of the professional factor
dominates the variability of the resistance model, and thus
all bias factors and coefficients of variation for each spec-
imen trend toward the same value. The average reliability
index for the CSA code calculations is 2.96. This is below
the target reliability index of Br = 3.5 suggested by Szerszen
and Nowak.*® It suggests that in the case of shear-critical
reinforced concrete elements without skin reinforcement and
containing no transverse reinforcement, their design may not
meet the required reliability. This is particularly concerning
in deep concrete mat foundations, which act as large, deep
flexural elements which are often designed without trans-
verse reinforcement, the subject of the PLS4000 study
by Quach.?’

CONCLUSIONS

Several sampling techniques for stochastic simulation
were successfully implemented in the NLFEA program
VecTor2. The software was expanded to perform Monte
Carlo simulations, Latin hypercube simulation, random field
generation, and correlated sampling (both MC and LHS).

The professional factor for VecTor2, as well as for any
other analytical tool, is unique to the structure type being
analyzed. In this work, the professional factor statistics were
obtained by comparing the experimental to predicted ratios
of the peak loads for a large number of deterministic tests
involving shear-critical beams containing no transverse rein-
forcement. The process for creating finite element models in
VecTor2 was successfully automated. From a study involving
a database of 318 beams tested, the professional factor was
found to be normally distributed with a mean value of 1.106
and a coefficient of variation of 0.174. This professional
factor was incorporated into the reliability analysis.

The implemented stochastic simulation tools were used
to assess the reliability of shear-critical reinforced concrete
beams without transverse reinforcement. Four beams from the
“Toronto Size Effect Series” were selected, and a stochastic
simulation for each beam was completed. The results of the
stochastic simulation were then used in a reliability analysis
for the CSA A23.3'8 code. For the specimens investigated
in this study, the analysis results showed that there was no
influence of the size effect on the predicted reliability for the
CSA A23.3'% code. However, the average reliability index
for the CSA A23.3" code, calculated to be 2.96, is below
the target reliability index of 3.5. This suggests that further
investigation is required to assess the load factors and safety
factors for this class of structure, particularly with respect to
the shear strength of deep concrete mat foundations, transfer
slabs, or outrigger slabs, which may be designed in absence
of transverse shear reinforcement.

RECOMMENDATIONS FOR FUTURE WORK

Some limitations and deficiencies were identified, suggesting
the following aspects are in need of further research.

1. There has not been a Canadian update to the statistical
descriptions of concrete strength in approximately 20 years.
It is recommended that cylinders be collected from across
Canada from multiple concrete suppliers to create a database
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of concrete cylinder strengths. Additionally, tests for the
tangent modulus of elasticity and tensile strength of concrete
should be included in the study.

2. A similar reliability study for the ACI 318-19 code is
recommended as a future study.

3. From an analytical perspective, shortcomings in the
current implementations need to be addressed. First, it is
recommended that correlated Latin hypercube sampling be
added to the alternate method for simulating random fields.
This will lead to improved sampling accuracy for smaller
sample sizes. Second, it is recommended that cross-cor-
related random fields be implemented such that the direct
correlation between compressive random fields and tensile
random fields is not used.

4. Additional stochastic properties should be added to
the current software formulation. Stochastic variables for
the steel reinforcing bar area, the depth of steel reinforce-
ment, the thickness of structural elements, and the remaining
physical dimensions should be incorporated into stochastic
analysis methods.

5. To aid in usability, stochastic simulation post processing
should be incorporated within a postprocessor.

6. Lastly, nonlinear finite element analysis tools (specif-
ically, program VecTor2) should be expanded to determin-
istically and stochastically assess deteriorated structures
including corrosion of steel reinforcement. A tool that can
assess the reliability of deteriorated infrastructure could
prove invaluable in ensuring that the structures most at risk
receive appropriate funding.
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