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ABSTRACT 

Current analysis procedures for new reinforced concrete structures are typically based on 

linear-elastic principles. However, under certain conditions, it may be necessary to analyze 

a structure to more accurately predict its structural behaviour. Such an analysis can be 

performed using nonlinear analysis procedures which typically require specialized 

software. This type of software is limited in number and most available programs do not 

adequately capture shear-related influences, potentially severely overestimating strength 

and ductility in shear-critical structures. 

The purpose of this study is to develop and verify an analytical procedure for the nonlinear 

analysis of frame structures with the aim of capturing shear-related mechanisms as well as 

flexural and axial effects. A previously developed analysis program, VecTor5, is further 

developed for this purpose. Originally formulated in the early 1980s at the University of 

Toronto, VecTor5 is based on the Modified Compression Field Theory (MCFT) and is 

capable of performing nonlinear frame analyses under temperature and monotonic loading 

conditions. Although providing generally satisfactory simulations, there are a number of 

deficiencies present in its computational algorithms. 

This study consists of three major parts: improvement of the original analysis procedure for 

monotonic loading conditions, expansion of the procedure for general loading conditions 

including the special cases of cyclic and reversed-cyclic loading, and further development 
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of the procedure for dynamic loading conditions including time-varying base accelerations, 

impulse, impact and blast forces, initial mass velocities, and constant mass accelerations. 

Each part is supported by verification studies performed on a large number and variety of 

previously tested structures available in the literature. In addition, considerations in 

nonlinear modelling are discussed with the aim of providing guidelines for general 

modelling applications. 

Analyses of 63 previously tested structures, half of which are shear-critical, demonstrate 

that the developed analytical procedure is highly successful in simulating the experimental 

responses in terms of load-deflection response, reinforcement strains, crack widths, failure 

mode, failure displacement, total energy dissipation, displacement ductility ratio, and post-

peak vibrational characteristics. 
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CHAPTER 1 
INTRODUCTION 

1.1 Need for Advanced Analysis Procedures 

1.1.1 Analysis of Reinforced Concrete Structures 

Over the past few decades, intensive research activity in structural engineering has 

greatly increased our knowledge of the behaviour of concrete structures under both shear 

and flexure. As a result, new analysis and design procedures have been developed and 

incorporated into design codes such as CSA A23.3-04 (Design of Concrete Structures) 

and NBCC 2005 (National Building Code of Canada).  

Occurring at the same time, advancements in computing technology have enabled 

structural engineers to analyze and design structures according to the new design codes 

quickly and easily. The analysis procedures are typically based on linear-elastic 

principles. Even though linear-elastic analyses cannot accurately predict all aspects of 

structural behaviour, such as cracking of concrete and deformations under service loads, 

they are deemed sufficient if the structure is designed according to code. As a result, the 

structure will satisfy strength and serviceability requirements. The reinforcement is 

detailed so that the structure exhibits ductile behaviour with a flexural failure mode. 

Currently, there are numerous easy-to-use software programs which can perform such 

analyses and designs reasonably well. 

1.1.2 Nonlinear Analysis of Reinforced Concrete Structures 

It may be necessary, in some situations, to analyze a structure so as to more accurately 

predict its structural behaviour. Such an analysis may be required for: 

(1) strength, safety and integrity assessment of  

a. damaged or deteriorated structures, 

b. structures which were designed and built 20 to 30 years ago based on 

previous codes, standards or practices considered deficient today, 
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(2) performance assessment of planned structures, 

(3) accurate assessment of large, atypical or unique structures such as nuclear 

containment structures and offshore platforms,  

(4) assessing the expected behaviour of retrofitted structures, 

(5) investigating and selecting a rational retrofit or repair alternative among several 

alternatives, 

(6) addressing questions or problems that arise after construction of a new building, 

or due to the change of use or function of the existing structure, 

(7) forensic analyses in cases of structural failure or collapse. 

For these cases, structural engineers may need to assess the maximum load capacity, 

ultimate displacement capacity, ductility, deficient members/parts and failure mechanism 

of the structure. Such an analysis can be performed using nonlinear analysis procedures 

which typically require specialized software.  

For a structure whose behaviour is dominated by flexural mechanisms, there are a 

number of software programs such as SAP2000 (CSI, 2000) that can perform such an 

analysis with reasonable accuracy in most cases. Therefore, the nonlinear analysis and 

design of flexure-critical structures is generally considered to be a solved problem in 

terms of strength calculation. However, for structures whose behaviour is affected by 

shear-related mechanisms, there is a scarcity of software and the accuracy of the 

programs that do exist is of great concern. The reason for this is that the shear behaviour 

of reinforced concrete is still not very well understood; therefore, the accurate modelling 

of this behaviour remains elusive with many conflicting theoretical approaches and 

constitutive models being proposed.  

1.1.3 Case Study – a Clinker Preheater Tower 

To further clarify the need for advanced analysis procedures, consider a clinker preheater 

tower build in a seismically active zone of El Salvador, Central America, in the late 

1990s. Designed according to ACI code specifications, the tower spans one bay in each 
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orthogonal direction in plan and is seven storeys in elevation as shown in Figure 1.1. 

Following its construction, subsequent design reviews revealed some deficiencies 

including: inadequate shear reinforcement in some of the beams, as shown in Figure 

1.2(b), which may prevent the beams from developing their full flexural capacity, 

inadequate lateral confining reinforcement in some of the lower storey columns, as shown 

in Figure 1.2(a), which may lead to the violation of the strong-column and weak-beam 

seismic design principle, and inadequate penetration of the beam longitudinal 

reinforcement into the columns, which violates seismic detailing provisions. It was also 

determined that the behaviour of the frame in the short direction is more critical. It is now 

desired to analyze this frame structure to assess its safety during a probable earthquake. 

More specifically, its load and displacement capacity, failure mode, and any deficient 

members are to be determined. 

   

         

 

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1.1 Structural Layout of Clinker Preheat 
      Tower: (a) Plan; (b) Elevation 

All dimensions are m.(a) 

(b) 
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Table 1.1 Comparison of Analysis Results for Clinker Preheat Tower 

   

  

For analysis purposes, three software programs were used: SAP2000 (CSI, 2000), 

RUAUMOKO (Carr, 2005) and TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988). 

The frame was modelled using only default options and models which were readily built 

into the programs, i.e., default hinges and all default material behaviour models. All three 

models were created using the same geometry, material and support conditions. The 

analyses were performed in a force-controlled mode under monotonically increasing 

static storey shear forces which were calculated by the linear dynamic response spectrum 

method.  

As a result of this analysis, unacceptably different results were obtained (Table 1.1). 

SAP2000 and RUAUMOKO predicted that the frame will fail in flexure, while 

TEMPEST predicted a sudden shear failure in some of the beams. The largest 

discrepancy was in the ductility predictions for the frame; SAP2000 predicted 

approximately 5.6 times greater displacement for the peak load capacity than did 

TEMPEST (Figure 1.3). 

 

 

Figure 1.2 Cross Section Details of Clinker Preheat Tower: (a) First Storey Column;  
      (b) First Storey Beam 

(a) (b) 

All dimensions are mm.

SAP2000 RUAUMOKO TEMPEST
7343 7783 7213
2.64 1.11 0.47

Failure Load (kN)
Failure Disp. (m)
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In Figure 1.3, the highly ductile load-deflection prediction obtained from SAP2000 

resulted from the assumption of purely flexural behaviour. In other words, the influence 

of shear-related effects was completely neglected in the SAP2000 model by the use of 

default moment hinges. A similar flexure-dominated behaviour was obtained from the 

RUAUMOKO model. In the TEMPEST analysis, on the other hand, the default material 

behaviour models considered inelastic shear-related effects and predicted shear failures 

for the upper storey beams, thereby providing the least ductile response. During the 

TEMPEST analysis, however, deteriorating convergence factors and large unbalanced 

shear forces became apparent beyond a base shear force of 6300 kN. This situation raised 

questions about the validity of the load-deflection curve at the later load stages. More 

details of this analysis are presented in Section 4.10.  

Anticipating a shear-dominated behaviour before the analyses, it is possible to create 

user-defined custom shear hinges in SAP2000 and RUAUMOKO models as exemplified 

in Section 2.3.6 when analyzing a shear-critical frame. However, such an analysis 

requires expert knowledge on the shear-behaviour of reinforced concrete, specialized 

Figure 1.3 Load-Deflection Responses for Clinker Preheat Tower 
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supporting software, such as Response-2000 (Bentz, 2000), and may take significant 

engineering time and effort as discussed in detail in Section 2.3.7.    

The apparent difficulty with accurately modelling strength and ductility of this frame 

exemplifies the need for advanced yet practical analysis procedures which inherently 

include shear-related influences as well as flexure and axial related ones, thereby 

capturing all possible failure mechanisms.  

1.2 Background Development 

1.2.1 Modified Compression Field Theory (MCFT) 

Over the last 30 years at the University of Toronto, research has focused on improving 

analysis procedures for shear-critical reinforced concrete structures with an emphasis on 

simple but realistic material behaviour models for reinforced concrete. 

Research efforts led to the formulation of the MCFT (Vecchio and Collins, 1986) as a 

rational model for predicting the response of reinforced concrete under shear and normal 

stresses. The MCFT is essentially a fully rotating, smeared crack model that represents 

cracked concrete as an orthotropic material with its own stress and strain characteristics. 

Equilibrium, compatibility and stress-strain relationships (constitutive relationships) are 

formulated in terms of average stresses and average strains. Directions of principal 

stresses and principal strains are assumed to be coincident. The constitutive relationships 

in the theory resulted from tests of over 200 reinforced concrete panels, using the panel 

element tester and shell element tester of the University of Toronto as shown in Figure 

1.4, under pure shear or combinations of shear and normal stresses.                                   

In the formulation, cracked concrete is treated as fundamentally different from uncracked 

plain concrete. During the tests of panel elements, it was observed that cracked concrete, 

when under high tensile strain in the direction normal to the compression, exhibited 

reduced compression strength and stiffness. As a result, a realistic compression softening 

relation was incorporated into the theory. In addition, a tension stiffening relation was 

introduced to take account of the presence of post-cracking tensile stresses in the concrete 
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between cracks. Finally, consideration was given to the local stress conditions at crack 

locations to predict reinforcement stresses and strains and shear stresses at the crack 

interface. 

 

 

 

 

 

 

Following its formulation, the MCFT was implemented into various design code 

procedures and advanced analysis tools. The general design method for shear of the 1994 

and 2004 Canadian Concrete Design Code was also based on the MCFT. Meantime, 

various nonlinear finite element computer programs were developed incorporating the 

MCFT. Over the last 20 years, the MCFT has been applied to the analysis of numerous 

reinforced concrete structures and found to provide accurate simulations of behaviour. 

The formulations of the MCFT will be presented in Chapter 3. 

1.2.2 Computer Program TEMPEST 

To apply the MCFT to the analysis of reinforced concrete plane frames, computer 

program TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988) was developed at the 

University of Toronto in the late 1980s. The program was able to analyze frame or frame-

related structures including single beam and column elements under mechanical (axial 

load, shear force, bending moment) and temperature loads.  

Figure 1.4 Concrete Panel Tests at the University of Toronto (Vecchio and Collins, 1986) 

 (a) Panel Element Tester                     (b) Shell Element Tester 



 8

The nonlinear frame analysis procedure in TEMPEST was based on a total load, iterative, 

secant stiffness formulation. The calculation procedure consisted of two interrelated 

analyses. First, a global frame analysis was performed to obtain internal member forces; 

then, sectional analyses were performed using the calculated member end actions. An 

iterative analysis procedure was implemented according to the following sequence: Using 

uncracked gross section properties, an initial linear-elastic frame analysis was performed 

to obtain the first estimate of the resultant internal member forces caused by imposed 

mechanical or thermal loads. Sectional analyses were then performed for each member, at 

various sections along its length. In this calculation, top and bottom fibre strains were 

iteratively determined to equilibrate the internal member forces calculated by the global 

frame analysis. A linear-elastic frame analysis was repeated using the updated section 

properties and fixed end forces. Convergence factors were calculated from unbalanced 

forces, effective stiffnesses and effective areas. The iteration was carried on in a similar 

fashion until adequate convergence was achieved. 

The sectional analyses were based on a layered section approach in which a cross section 

was divided into a number of concrete layers, longitudinal reinforcing bar elements and 

longitudinal prestressing steel elements. Each concrete layer and steel element was then 

analyzed individually based on the MCFT, although sectional compatibility and sectional 

equilibrium was satisfied as a whole. The only sectional compatibility requirement was 

that plane sections must remain plane, while sectional equilibrium requirements included 

balancing the axial force, shear force and bending moment calculated by the global frame 

analysis. 

Originally, TEMPEST was able to perform three different types of shear analyses: multi-

layer analysis, single-layer analysis, and modified single-layer analysis. All of the options 

were based on shear-stress-based analysis in force controlled mode. Accordingly, it was 

only possible to carry out analyses up to the peak load. In other words, it was not possible 

to obtain the post-peak behaviour of the structure being analyzed. 

In a later study (Fulop, 1992), TEMPEST’s computational capabilities were expanded to 

include shear-strain-based analysis and deformation-controlled analysis. The new 
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formulation allowed for (1) displacement controlled analysis in the post-peak regime, (2) 

faster execution time, (3) more stable calculations, all of which significantly improved 

the capability of the program.  

In the late 1990s, the name of the program was changed from TEMPEST to VecTor5 in 

order to be consistent with the other nonlinear analysis programs developed at the 

University of Toronto (e.g., VecTor1, VecTor2, VecTor3, VecTor4, and VecTor6). 

While many of the other VecTor programs have undergone further development in the 

ensuing years, program VecTor5 remained essentially unchanged. 

1.2.3 Sectional Analysis of Structures 

Analysis of structures can be performed using a wide range of approaches. Among them 

are graphical methods such as strut-and-tie models, nonlinear finite element methods, and 

sectional methods. Graphical methods provide rational results but they are labour 

intensive and are therefore limited in the range of applicability. Multi-purpose nonlinear 

finite element methods are quite powerful but their complexity necessitates a computer, 

specialized software and experience with finite element modelling. In addition, the 

complex calculations performed by a computer are difficult if not impossible to check by 

simple means such as hand calculations. 

In the middle ground lie sectional analyses which combine desirable features of both 

methods. They are simple enough to be understood yet powerful enough to provide 

acceptably accurate results. Calculations are performed at a specific location along the 

member for internal forces such as the axial force, shear force and bending moment 

calculated from the global analysis of the structure. VecTor5 is based on this approach. 

1.2.4 Assumptions in the Sectional Analysis of TEMPEST and VecTor5 

To model a reinforced concrete member with reasonable accuracy using a sectional 

method, the member should be relatively slender. As the member becomes deeper (i.e. as 

the span to depth ratio decreases), the longitudinal flexural stress distribution becomes 

nonlinear which violates the engineering beam assumption made. It can be stated that 
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sectional analysis should be performed for members with span-to-depth ratios greater 

than at least 2. If a deeper member is analyzed by sectional procedures, the results will be 

typically overly conservative. 

In the application of sectional analysis techniques in VecTor5, it was assumed that there 

will be no net stress in the transverse direction. However, it is known that high transverse 

stresses are present at locations where the load is introduced or where a support is 

present. These stresses locally increase the strength of the member; therefore, sectional 

analysis should be performed at a distance away from the load or support. Otherwise, the 

predictions will be conservative. A more detailed discussion of this assumption can be 

found in Section 1.5 of Bentz (2000). In VecTor5, this phenomenon is approximately 

accounted for by the newly implemented shear protection algorithm which artificially 

increases the shear strengths of sections within a certain distance from applied loads, 

supports and frame joints. Details of this algorithm are given in Chapter 3.11. 

It is assumed that ‘plane sections remain plane’. This conveniently permits the calculation 

of the longitudinal strain in each layer of concrete, reinforcing steel and prestressing steel 

as a function of the top and bottom fibre strains. 

In the shear-strain-based analysis, which is the favoured analysis option throughout this 

thesis, two simple shear strain distributions were assumed. The first option is a parabolic 

shear strain distribution which is based on experience that has shown that shear strain 

through a section often varies in a nearly parabolic fashion, although it is highly 

dependent on the loading conditions and section details (Vecchio and Collins 1988).  The 

second option is a constant shear strain distribution across the height of the section. Both 

approaches are approximate and will not exactly reflect the actual shear strain distribution 

of cracked reinforced concrete section. They are, however, preferred over theoretically 

more accurate shear-stress-based analysis for the following reasons: (1) they do not 

require a double iterative procedure and therefore are much faster, (2) they do not possess 

the inherent instability of shear-stress-based analysis, thereby giving problem-free 

operation, (3) they can capture post-peak behaviour while shear-stress-based analyses 

terminate at the peak load, and (4) it is seen that they are able to capture the behaviour of 
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test specimens reasonably well. Detailed discussions regarding this issue can be found in 

Vecchio and Collins (1988). 

1.2.5 Deficiencies in TEMPEST 

TEMPEST was a valuable analysis tool for predicting the behaviour of reinforced 

concrete plane frames under monotonically increasing loads or deformations. The 

program was capable of capturing shear-related influences as well as several second-

order effects. However, there were a number of deficiencies in the computational 

algorithm and the analytical results.  

In terms of predicting load-deflection response: 

(1) The program was occasionally producing large unbalanced shear and axial forces 

especially prior to reaching the load capacity of the structure being analyzed. This 

situation tended to require the user to check the output files to determine the 

validity of the load-deflection response around the peak load point. 

(2) In the case of a shear-critical structure, the analyses may continue with large 

unbalanced shear forces into the post-peak regime, providing a response 

resembling a shear-flexure response. 

(3) The program was generally predicting slightly stiffer responses, especially in the 

initial stages of the analyses, than was typically obtained from experiments and 

from VecTor2, a nonlinear finite element analysis program for membrane 

structures based on the MCFT. 

(4) The peak load prediction was generally lower than the experimental results for 

the structures containing little shear reinforcement. 

(5) The ultimate displacement predictions tended to be higher than the experimental 

results especially for shear-critical structures. 

(6) The program was incapable of predicting the response of large beams with no 

transverse reinforcement. It was typically predicting much higher strengths than 

what was experimentally observed. 
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(7) The program was incapable of predicting the ductility of flexure-critical 

structures. The load-deflection responses were typically diminishing after the 

peak load due to shear-related effects even thought the structure was purely 

flexure-critical. 

In terms of computational capabilities: 

(1) The program was only capable of performing analyses under statically increasing 

deformations or loads. 

(2) In the shear-stress controlled mode, the program would occasionally stop the 

analysis by becoming idle, or stop converging before the peak load was attained. 

(3) In the shear-stress controlled mode, the analysis frequently became unstable just 

at the peak load or shortly afterwards. 

(4) In all modes, there was a possibility of termination of analysis because of 

‘floating point divide by zero’ error, which meant there was a zero division 

somewhere in the computation. 

(5) The analysis would occasionally not start due to such input errors as ‘bad 

character in input field” or “end of file”. It was difficult to find such input errors. 

(6) The maximum number of load stages that could be handled was 99. If 100 or 

more load stages were specified, the analysis was terminated. 

1.2.6 Disturbed Stress Field Model (DSFM) 

Since its formulation, the MCFT (Vecchio and Collins, 1986) has been found to provide 

consistently reliable predictions of the response of reinforced concrete with an accuracy 

that is acceptable in most engineering situations. However, some deficiencies have been 

revealed for certain structures under specific loading scenarios. In lightly reinforced 

elements, it is noted that the rotation of principal stress field tends to lag behind the 

rotation of principal strain field. For such an element, the MCFT generally overestimates 

the strength and stiffness due to its enforced alignment of principal strain and principal 

stress fields. Conversely, for heavily reinforced elements, where no or little rotation of 
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principal strain and principal stress fields occurs, the MCFT underestimates the strength 

and stiffness due to its overly softened compression response. 

The Disturbed Stress Field Model (DSFM) was proposed by Vecchio (2000) to address 

these two main weaknesses of the MCFT by extending the MCFT in several aspects. 

Most importantly, in its compatibility relationships, it includes slip deformations at crack 

locations caused by shear stresses being not necessarily zero at the crack surface. This 

allows for the deviation of the principal stress field from the principal strain field. In 

addition, the inclusion of crack slip deformations also removes the complex crack shear 

check which is required by the MCFT. It also includes refined constitutive relationships 

for concrete and reinforcement. The formulations of the DSFM will be presented in 

Chapter 3. 

1.3 Objectives of this Study 

In addition to providing a critical look at the current state-of-the-art, the objectives of this 

study can be summarized into three main categories:  improvement of the original 

analysis procedure (VecTor5) for monotonic loading conditions, further development of 

the procedure for general loading conditions, and further development of the procedure 

for dynamic loading conditions. Each part will be supported by verification studies 

performed on a large number and variety of structures previously tested. In addition, 

considerations in nonlinear modelling will be discussed with the aim of providing 

guidelines for the general modelling applications. A more detailed summary of the 

research objectives is as follows: 

(1) Improve the existing program VecTor5 for monotonic loading conditions:  

a. Completely rewrite the sectional analyses algorithm with an emphasis on 

shear behaviour based on the MCFT (Vecchio and Collins, 1986). 

b. Include refinements in the underlying theories that have occurred in the 

past two decades such as the DSFM (Vecchio, 2000). 

c. Correct all the deficiencies listed in Section 1.2.5. 
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d. Include additional second-order effects such as dowel action, concrete 

dilatation, concrete prestrains, concrete tension softening, and concrete 

crack slip check. 

e. Implement a shear protection algorithm to approximately account for the 

increased strengths of D-regions. 

f. Implement a shear failure check algorithm to detect sudden shear failures 

of members in cases where the specified maximum number of iterations is 

inadequate for the structure being analyzed. 

g. Implement a variable crack spacing calculation. 

h. Improve the existing dynamic averaging scheme. 

i. Include confinement effects in the out-of-plane direction. 

j. Include strain hardening behaviour of transverse reinforcement. 

k. Include reinforcement stress and strain calculations at a crack. 

l. Increase the total number of elements, concrete layers, steel layers, and 

detailed member output which can be handled by the program. 

m. Include a more comprehensive warning mechanism for input errors. 

n. Provide a more detailed output for advanced users. 

o. Reduce computation time and improve stability and convergence. 

(2) Develop analysis capabilities for general loading conditions: 

a. Include concrete and reinforcement strain histories for general loading. 

b. Implement concrete hysteresis models such as 

i. The Vecchio model with linear  unloading (Vecchio, 1999), 

ii. The Vecchio model with nonlinear unloading (Vecchio, 1999), 

iii. The Palermo model with decay (Palermo and Vecchio, 2003). 

c. Implement steel hysteresis models such as 
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i. The Seckin Model with Bauschinger effect (Seckin, 1981), 

ii. The elastic-plastic model with strain hardening, 

iii. The elastic-plastic model. 

(3) Develop analysis capabilities for dynamic loading conditions: 

a. Consider masses in the modelling process. 

b. Implement direct integration schemes  such as 

i. Newmark’s average acceleration method (1959), 

ii. Newmark’s linear acceleration method (1959), 

iii. Wilson’s Theta Method (1976). 

c. Include viscous damping mechanisms such as 

i. Rayleigh Damping (1878), 

ii. Alternative Damping (Clough and Penzien, 1993). 

d. Consider strain rate effects for both concrete and reinforcement, to account 

for the strength gained under dynamic loading conditions, based on 

i. CEB-FIP (1988 and 1990)  formulations, 

ii. Malvar and Crawford (1998) formulations. 

e. Consider dynamic loads such as 

i. Ground accelerations, 

ii. Impulse or blast loads, 

iii. Impact loads, 

iv. Initial mass velocities, 

v. Constant mass accelerations. 

f. Implement a modal analysis algorithm to calculate mode shapes and 

frequencies. 
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g. Implement algorithms to calculate the mass matrix and dynamic load 

vectors. 

(4) Verify the analytical predictions with a large number and variety of structures 

which were tested previously and reported in the literature and correct any 

shortcomings of the developed procedure. 

(5) Aim at producing a fast, easy-to-use yet reliable tool which is suitable for 

everyday use by both researchers and office design engineers: 

a. Use “default material models” only to show the applicability of the 

procedure developed in general modelling of frame structures and shear 

walls. 

b. Do not require decisions regarding the expected behaviour, failure mode 

or selection of appropriate parameters prior to the analyses. 

(6) Discuss the appropriate use of newly implemented options and appropriate 

selection of several parameters when necessary. 

(7) Discuss important considerations in the nonlinear modelling to provide guidelines 

for the general modelling process. 

1.4 Organization of Thesis 

This thesis focuses on (1) describing the theory and formulations which were 

implemented into VecTor5, (2) validating the analytical tool developed through the 

analyses of structures previously tested, and (3) providing modelling guidelines for frame 

structures and shear walls with the analytical tool developed. 

Chapter 2 contains two main parts: a literature review of previous works on the analysis 

of reinforced concrete frames; a critical look at the nonlinear analysis capabilities of the 

current state-of-the-art software related to frame structures.  
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Chapter 3 describes the theory and formulations for nonlinear analysis of reinforced 

concrete plane frames subjected to monotonic loading conditions and their 

implementation into VecTor5.  

Chapter 4 discusses the application of the developed nonlinear static analysis procedure 

to previously tested structures to verify the newly implemented algorithms. Important 

considerations in nonlinear modelling are also discussed. 

Chapter 5 describes the theoretical principles for nonlinear analysis of reinforced concrete 

frames subjected to general loading conditions and their implementation into the 

analytical procedure developed for monotonic loading conditions.  

Chapter 6 discusses the application of the nonlinear analysis procedure developed for 

general loading conditions to previously tested structures to verify the newly 

implemented algorithms. Important considerations in nonlinear modelling are also 

discussed through the use of practical examples to provide guidelines for general 

modelling applications. 

Chapter 7 describes the theoretical principles for nonlinear analysis of reinforced concrete 

frames subjected to dynamic loading conditions and their implementation into the 

analytical procedure developed for general loading conditions.   

Chapter 8 discusses the application of the newly implemented nonlinear dynamic analysis 

algorithms to previously tested structures to verify the new algorithms. In addition, 

guidelines for modelling of reinforced concrete frame-related structures, particularly 

those subjected to impact loads, are provided.  

Chapter 9 includes the summary of the thesis and discusses the final conclusions and 

recommendations for future research. 

In the appendices, additional comparison graphs for the dynamic analyses performed in 

Chapter 8 and the introduction to the user’s manual of VecTor5 are presented.  
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CHAPTER 2 
NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAMES 

2.1 Chapter Layout 

This chapter is organized in two main parts.  In the first part (Section 2.2), a brief review 

of previous studies on the nonlinear analysis of reinforced concrete frames is presented. 

The nonlinear models developed to date are categorized into three main groups: global 

models, discrete finite member models and microscopic finite element models. Several 

examples of each approach are provided. Discrete finite member models are further 

divided into two categories: lumped nonlinearity models and distributed nonlinearity 

models. Limitations of the lumped nonlinearity models are emphasized. Being the main 

focus of this thesis, distributed nonlinearity models are explored in greater detail. Fibre 

models and the consideration of shear effects are given particular attention.   

In the second part (Section 2.3), three simple structures are analyzed using some currently 

available software in order to gain some insight into current analysis capabilities. 

Previously tested at the University of Toronto laboratories, the structures are subjected to 

monotonically increasing loads until failure. The analysis results are compared to simple 

hand calculations and experimental results. Deficiencies in the analytical predictions are 

identified. SAP2000 (CSI, 2000) and RUOUMOKO (Carr, 2005) were selected as the 

software because of their wide availability and use by office design engineers and 

researchers. In addition, Response-2000 (Bentz, 2000) was used to check hand 

calculations and provide additional input required by the software being used.    

Section 2.3 starts with introductory information on the software used with an emphasis on 

their analysis capabilities, ease of use, general modelling steps, and the applicability of 

analysis results to understanding the failure mechanism. It then follows with details of the 

structures, analytical modelling, and comparison of the results. The section continues 

with a discussion of the difficulties and possible courses of action available when 

modelling reinforced concrete frames. Finally, the section concludes with an emphasis on 

what is needed for better modelling and analysis of reinforced concrete frames. 
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2.2 Review of Previous Studies 

Significant effort has been devoted, in the last several decades, to developing models for 

accurate simulation of the behaviour of reinforced concrete frame elements. One of the 

earliest motivations for this was the desire to simulate the behaviour of reinforced 

concrete elements subjected to seismic excitations. In some cases, it was the desire to 

assess the remaining capacity of a structure after a strong ground motion.  It was known 

in the 1960s that reinforced concrete structures would not elastically respond to the 

maximum earthquake expected during the life of the structures (Blume et al., 1961). The 

determination of the behaviour of structural components was essential for the assessment 

of the inelastic response of the complete structure. The initial stiffness, ultimate capacity 

and ductility demand were some of the parameters needed for this purpose. Due to 

complex interactions between various components of real structures, it was not possible 

to determine the dynamic characteristics only from dynamic tests of scale models. 

Furthermore, the cost of such tests was often substantial especially for large-scale 

specimens (Taucer et al., 1991). 

These difficulties have largely been overcome by static tests on structural components 

(e.g., beams, columns and shear walls) and small-scale structural subassemblies (e.g., 

beam-column joints) under cyclic load reversals. Results from these tests have been used 

to develop and calibrate analytical models. These analytical models have then been used 

to evaluate the nonlinear response of complete structures consisting of similar 

components for which the models were developed. Since the computational cost for data 

processing and storage was prohibitive, such analytical assessments could only be done 

for simple models. However rapid advancements in computing power in the last two 

decades has permitted the use of more complex nonlinear models, thereby reducing 

dependence on tests of scale models and simple analytical models. 

Several models have been proposed to date for the simulation of the nonlinear behaviour 

of reinforced concrete frame structures. These range from simple nonlinear springs which 

lump the behaviour of an entire storey into a one degree-of-freedom system to complex 

three-dimensional finite element formulations that describe the structural behaviour by 
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integrating the stress-strain relationships of the constituent materials (Filippou and Issa, 

1988). These nonlinear models can be categorized, in a more broad sense, into three 

categories: 

(1) Global Models: These models constitute the simplest form of all nonlinear models, 

requiring the least computational power. In these models, the nonlinear behaviour of the 

entire structure is concentrated at selected degrees of freedom. For example, a building 

structure can be modelled with only one lateral degree-of-freedom located at each storey 

level. In this case, each degree-of-freedom represents the interstorey shear-lateral drift 

behaviour which is developed and calibrated by tests of small-scale structures with 

similar details. These models are useful for preliminary analyses and for rough estimates 

of the interstorey drifts and ductility demands. An accurate representation of the 

structural response should not be expected through the use these models; the accurate 

determination of internal member forces from the limited degrees of freedom is 

practically impossible (Taucer et al., 1991).  The accuracy of these models can 

significantly be improved by considering more degrees of freedom. Some of the 

analytical tools for nonlinear analysis in this category are SAP2000 (CSI, 2000) and 

RUAUMOKO (Carr, 2005). 

(2) Discrete Finite Member Models: These models possess more advanced 

formulations compared to global models, and require more computational power. In these 

models, the structure is represented by an assemblage of interconnected elements that 

describe the nonlinear behaviour of reinforced concrete members. The nonlinearity in the 

constituent materials is introduced either at the element level in an average sense or at the 

section level as a more advanced case. Consequently, two types of element formulations 

are possible with the discrete finite member models: lumped nonlinearity member model, 

and distributed nonlinearity member model. As an example, SAP2000 (CSI, 2000) and 

RUAUMOKO (Carr, 2005) can be used as a lumped nonlinearity model; TEMPEST 

(Vecchio, 1987; Vecchio and Collins, 1988), Response-2000 (Bentz, 2000) and 

DRAIN2DX (Prakash, 1992) are based on distributed nonlinearity formulations. Being 



 21

the main focus of this thesis, discrete finite member models are presented in more detail 

in Sections 2.2.1 and 2.2.2. 

(3) Microscopic Finite Element Models: These models possess the most advanced 

formulations developed to date for nonlinear analyses, requiring significant 

computational power and analysis time. In these models, members and joints are 

discretized into a large number of finite elements. Constitutive and geometric 

nonlinearity are typically accounted for at the stress-strain level or averaged over a finite 

region. Bond modelling between concrete and reinforcement, interface friction at the 

cracks, creep, relaxation, thermal effects and geometric crack discontinuities are among 

the physical nonlinearities usually considered by this class of models. The use of these 

models is still limited to the analysis of critical regions such as beam-column joints or, at 

most, small structures consisting of one or two bays and one or two storeys. Some of the 

analytical tools in this class are VecTor2 (Vecchio et al., 2004), UC-Win/WCOMD 

(Okamura and Maekawa, 1991), and ATENA (Cervenka, 2000). 

Discrete finite member models represent the best compromise between simplicity and 

accuracy in the nonlinear analysis of reinforced concrete frame structures. They are the 

simplest class of model allowing significant insight into the nonlinear response at both 

the member and structure level (Taucer et al., 1991). This thesis concentrates on discrete 

finite member models; therefore, a brief review of previous studies in this realm is 

presented below. 

2.2.1 Lumped Nonlinearity Models 

The nonlinear behaviour of reinforced concrete frames tends to be concentrated at the 

ends of beams or columns in the case of seismic loading conditions and at the midspans 

in the case of static loading conditions. Therefore, an early means of modelling this 

behaviour was through the use of zero length plastic hinges as nonlinear springs located 

at the critical locations and connected by linear-elastic elements. Depending on the 

formulation, these models may incorporate a number of springs connected in series or in 

parallel. 
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Clough and Johnston (1966) introduced the earliest parallel component model allowing 

for a bilinear moment-rotation (M-φ) relation. As depicted in Figure 2.1(a), this element 

consists of two parallel elements: one elastic-perfectly plastic to simulate yielding and the 

other perfectly elastic to represent strain-hardening. Takizava (1976) generalized this 

model to multilinear monotonic behaviour to take account of the cracking of the concrete.  

Giberson (1967) formally introduced the series model although it had been reportedly 

used earlier. As shown in Figure 2.1(b), this model consists of a linear-elastic element 

with one equivalent nonlinear rotational spring attached to each end in which the inelastic 

deformations of the member are lumped. This model is more versatile than the original 

Clough model because more complex hysteretic behaviour can be described.  

 

Several lumped plasticity constitutive models have been proposed to date. Such models 

include cyclic stiffness degradation in flexure and shear (Clough and Benuska, 1967; 

Takeda et al. 1970; Brancaleoni et al., 1983), pinching under reversal (Banon et al., 1981; 

Brancaleoni et al., 1983) and fixed-end rotations at the beam-column joint interface due 

to bar pull-out (Otani, 1974; Filippou and Issa, 1988). Ozdemir (1981) provided 

continuous hysteretic relations for the nonlinear springs. An extensive discussion of 

mathematical functions for such models is presented by Iwan (1978). Ciampi and 

Nicoletti (1986) used an algorithm to ensure a least squares fit between analytical results 

and experimental data in a formal system identification method; this was done for a 

selection of parameters for the moment-curvature relation proposed by Brancaleoni et al. 

Figure 2.1 Lumped Plasticity Elements: (a) Parallel Model (Clough and Johnston, 1966);  
      (b) Series Model (Giberson, 1967) (Figure Adopted from Taucer et al. (1992)) 

(a) (b) 
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(1983). To overcome some of the limitations of classical plasticity theory for the 

interaction between axial force and bending moments, Lai et al. (1984) proposed a fibre 

hinge model. This model is made up of a linear-elastic element spanning through the 

entire length of the member and one inelastic element at each end. To overcome the 

limitation of the yield surface of the stress resultant being a function of a reference strain 

that couples the corresponding displacement component, El-Tawil and Deierlein (2001) 

developed a bounding surface plasticity model implemented in the stress-resultant space. 

More details of the above mentioned models and their limitations can be found in Taucer 

et al. (1991). 

Although practical and computationally effective, oversimplification of certain important 

aspects of hysteretic behaviour of reinforced concrete limits the applicability of the 

lumped plasticity models proposed to date. Some of the limitations are: 

(1) Their inability to consider gradual spread of inelastic deformations into the 

member as a function of loading history as demonstrated by Charney and Bertero 

(1982) and Bertero et al. (1984). 

(2) Their restrictive assumptions for the determination of the spring parameters prior 

to the analysis. Anagnostopoulos (1981) demonstrated a strong dependence of model 

parameters, imposed loading pattern and level of inelastic deformations, all of which 

are likely to change during a seismic event. 

(3) Their inability to adequately consider the deformation softening behaviour typical 

of reinforced concrete members. 

(4) Their applicability to only well-detailed flexure-critical members with large 

inelastic deformation capacity at the critical regions. 

The nonlinear behaviour of reinforced concrete frames can be more accurately simulated 

through the use of distributed nonlinearity models, which is the focus of this thesis. 
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2.2.2 Distributed Nonlinearity Models  

In distributed nonlinearity models, material nonlinearity can take place at any element 

section. The element behaviour is formulated from weighted integration of the sectional 

responses. Element integrals are evaluated numerically; therefore, only the behaviour of 

selected sections along the integration points is monitored. The primary unknowns of the 

model are either the element deformations or the element forces, which are determined 

through proper interpolation functions from the global element displacements or forces, 

respectively. Discrete cracks are treated as smeared over a finite length. The constitutive 

behaviour of the cross section is either formulated according to classical plasticity theory 

or is explicitly derived by discretization of the cross section into fibres, as in the case of 

the spread plasticity models.  

Frame models are usually based on either the Hooke-Euler-Bernoulli beam theory 

(Hooke, 1678 and Bernoulli, 1705) or the Timoshenko beam theory (Gere and 

Timoshenko, 1991).  In the Hooke-Euler-Bernoulli beam theory, plane sections are 

assumed to remain plane and normal to the longitudinal axis of the beam; no shear 

deformations arise as shown in Figure 2.2(a).  In the Timoshenko beam theory, plane 

sections remain plane but not normal to the longitudinal axis; the difference between 

normal and the plane section rotations is the shear deformation as shown in Figure 2.2(b). 
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Figure 2.2 Assumptions: (a) Hooke-Euler-Bernoulli Beam Theory; (b) Timoshenko Beam  
                   Theory (FIB, 2008) 
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Both Hooke-Euler-Bernoulli beam elements and Timoshenko beam elements can be 

formulated in the context of either displacement-based or force-based approaches.  

Defined in terms of the nodal displacements, displacement-based approach uses classical 

finite element formulations to derive the element stiffness matrix and the element 

restoring force vector. This approach is used widely as it can be conveniently 

implemented into a general purpose finite element framework. However, in the case of 

reinforced concrete frames where material nonlinearities are considered, the 

displacement-based approach is approximate, requiring refined meshes for satisfactory 

simulation of the frame response.  

Force-based formulations, on the other hand, provide exact solutions regardless of the 

variations in the beam cross section and material nonlinearity. Computing element 

resisting forces, however, is a much more complex issue in force-based formulations, 

arising from the impossibility of directly relating section resisting forces and element 

resisting forces, as in the case of the displacement-based approach. An iterative method 

proposed by Spacone et al. (1996) can be used for this purpose. Although there are more 

computations involved in a force-based approach than in the displacement-based 

approach, the precision of the force-based approach permits the use of a single element 

per structural member, thereby giving way to significant reductions in the global degrees 

of freedom of the structure.  

2.2.2.1 Fibre Models Neglecting Shear Effects 

Fibre models constitute the most advanced formulation in distributed nonlinearity 

models. In these models, the element is subdivided into longitudinal fibres as shown in 

Figure 2.3. The fibre location in the local y, z reference system and the fibre area Afib are 

geometric characteristics of the cross section. The governing compatibility relationship is 

based on the “plane sections remain plane” hypothesis (Hooke, 1678; Bernoulli, 1705; 

Navier, 1826), which forms the basis of the engineering beam theory used in the sectional 

analysis of concrete members. Equilibrium is satisfied through integrating the responses 

of the fibres and equating them to the required sectional forces. Appropriate stress-strain 
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relationships are used for the constituent materials so as to determine the stress 

distribution on the section for a given strain profile.  

 

 

The first force-based fibre element model, proposed by Kaba and Mahin (1984), takes 

into account only uniaxial bending. In this model, the sectional deformations are 

computed from the element deformations through the use of flexibility-dependent 

deformation shape functions. Fibre strains are then calculated using sectional 

deformations, through which fibre stresses and stiffnesses are determined. The section 

stiffness matrix is assembled and inverted to obtain the flexibility matrix. Although 

yielding promising results, this model is reported to have convergence problems (Taucer, 

1991) and is unable to consider element softening. Zeris and Mahin (1988 and 1991) 

extended the formulation of Kaba and Mahin (1984) to the biaxial bending case. 

The above mentioned models are only able to consider flexural effects. In other words, 

the accurate simulation of reinforced concrete members dominated by shear or shear-

flexure cannot be achieved through these models. It is known, however, that several older 

structures built according to previous design codes and practices lack sufficient shear 

reinforcement to guarantee that the flexural capacity of the structure is reached before the 

shear capacity.  

Figure 2.3 Fibre Element: (a) Distribution of Control Sections; (b) Section Subdivision  
       into Fibres (Taucer et al, 1991) 

(b) (a) 
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2.2.2.2 Consideration of Shear Effects 

Many studies have been carried out to develop analytical models to consider shear 

effects. Some of the most widely used models are strut-and-tie models and rational 

theories based on experimental tests.  

Strut-and-tie models (Ritter, 1899; and Mörsh 1902) define the flow of forces and stress 

fields, idealizing a reinforced concrete member as a series of diagonal compression struts 

(concrete) and tension ties (reinforcement). Although applicable to any structural 

member, the relative advantage of this method arises only in applications to areas of 

discontinuity or D-regions, as defined in Section 3.11, where the strain distribution is 

significantly nonlinear violating the basic assumption (plane sections remain plane) of 

fibre analysis. Derived from the theory of plasticity, strut-and-tie models represent a 

design method for complex structural details (FIB, 2008). The strut-and-tie model 

development for a reinforced concrete member is a subjective and iterative process; 

different models can be developed for the same member. Following the principles of 

minimum strain energy, Schlaich et al. (1987) proposed that the model with the least and 

shortest amount of ties is the most appropriate after cracking, assuming that cracked 

concrete struts will deform little as compared to the steel-reinforced ties. FIB (1998) 

stated, however, that this ultimate model may not be valid when evaluating service 

conditions. As a result, the designer should use his or her judgement in selecting an 

appropriate geometry when using the strut-and-tie models. 

Empirical formulations and rational theories have been developed based on the results of 

experimental investigations. Arakawa (1969) proposed an empirical approach to 

determine the ultimate shear strength of reinforced concrete columns and beams. Collins 

and Mitchell (1980) developed the Compression Field Theory (CFT) for members under 

torsion and shear, applying Wagner’s (1929) tension field approach to reinforced 

concrete. The CFT treats cracked concrete as a new material with its own stress-strain 

characteristics, considering cracks as smeared and fully rotating. Equilibrium, 

compatibility and stress and strain relationships are formulated in terms of average 

stresses and average strains. Following a comprehensive experimental study, Vecchio and 
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Collins (1986) proposed the Modified Compression Field Theory (MCFT), which takes 

into account tensile stresses in the cracked concrete and employs experimentally verified 

average stress-average strain relationships for cracked concrete. Consideration is also 

given to the local crack conditions. The MCFT has proven to be a simple yet powerful 

tool in predicting the load-deformation response of reinforced concrete beams with 

different amounts of longitudinal and transverse reinforcement (Vecchio, 2000). The 

formulation of the MCFT is presented in detail in Section 3.2. Okamura and Maekawa 

(1991) proposed nonlinear models for in-plane shear elements based on similar concepts 

as the MCFT except for the adoption of the smeared fixed-crack approach. This method 

has provided successful simulations of the behaviour of reinforced concrete elements as 

indicated by Mostafaei (2006). Vecchio (2000) proposed the Disturbed Stress Field 

Model (DSFM) to address the reduced accuracy of the MCFT under specific conditions 

by extending the MCFT in several aspects. Most importantly, in its compatibility 

relationships, it includes slip deformations at crack locations caused by shear stresses 

being not necessarily zero at the crack surface. It also includes refined constitutive 

relationships for concrete and reinforcement. The Formulation of the DSFM is presented 

in detail in Section 3.3.  Bentz et al. (2005) recently proposed the Simplified Modified 

Compression Field Theory (SMCFT) to predict the shear strength of reinforced concrete 

elements for “back of the envelope” calculations.  

2.2.2.3 Fibre Models Considering Shear Effects 

For considering shear effects, various computation algorithms have been developed based 

on fibre models. Vecchio and Collins (1988) proposed a fibre model based on the MCFT 

to predict the response of reinforced concrete beams loaded in combined shear, moment 

and axial force. In this model, a reinforced or prestressed concrete cross section is 

discretized into a series of concrete and reinforcing and prestressing steel fibres. A 

longitudinal strain distribution is assumed for the section based on the engineering beam 

theory of “plane sections remain plane”. A shear stress distribution is assumed for the 

section such that the sum of the shear stresses in each fibre will be equal to the externally 

applied shear. Using the longitudinal strain and shear stress present at each fibre, 

equilibrium and compatibility conditions are satisfied in computing the longitudinal 
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compressive stress at each fibre. The resultant stresses must balance the applied sectional 

forces N, M and V, as defined by Eq. 3.103, Eq. 3.104 and Eq. 3.105. Vecchio (1987) 

implemented this algorithm, as a force-controlled approach into an existing frame 

analysis procedure resulting in the computational tool TEMPEST. Fulop (1992) 

expanded the analysis capabilities of TEMPEST by implementing a displacement-

controlled approach. 

Pentrangeli et al. (1999) proposed a fibre section model incorporating shear 

deformations. Each fibre in this model has basically three deformations: axial strain, 

transverse strain (in the direction of stirrups) and shear deformations. Given the section 

deformations, the axial strain and shear deformations of each fibre are calculated through 

compatibility. In addition, the stress in the transverse direction is assumed to be zero (i.e., 

no clamping stresses are considered). The corresponding axial stress, shear stress and 

vertical deformation are then calculated to find the stiffnesses of each fibre. The sectional 

stiffness is then determined from the calculated fibre stresses and stiffnesses. The 

constitutive law for concrete in this force-based model is based on the microplane theory.  

Martino et al. (2000) proposed a fibre model incorporating a nonlinear law to describe the 

shear force-shear deformation response. Although the shear response is decoupled from 

the axial and bending responses, the implementation of this model into a force-based 

element permits coupling between axial and bending responses at the element level. 

Bentz (2000) proposed a fibre model based on the MCFT to predict the response of 

reinforced concrete beams, as presented in Section 2.3.2. In this method, he introduced a 

rigorous longitudinal stiffness method to more accurately determine the nonlinear shear 

stress distribution on the cross section, as compared to the fibre model of Vecchio and 

Collins (1988). The full version of the program, Response-2000, is available, free of 

charge, at www.ecf.utoronto.ca/~bentz.  

Bayrak and Sheikh (2001) proposed a plastic hinge analysis technique that can be 

implemented into a fibre analysis framework to incorporate buckling of longitudinal bars 

in the analysis. This method includes slightly different displacement compatibility 
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requirements in addition to equilibrium and constitutive relations to predict the plastic 

hinge response of tied columns. 

Shirai et al. (2001) proposed a macro-element approach to simulate the monotonic and 

cyclic behaviour of shear-dominated reinforced concrete columns. In this model, the total 

deformation of the column is decomposed into flexural and shear components. The 

flexural behaviour is simulated by the fibre element model and the shear behaviour by the 

so-called shear element model. The model was shown to reproduce the monotonic and 

cyclic responses of shear-dominated columns tested at the University of California at San 

Diego (Shirai et al., 2001). 

This current study is concerned with the further development and verification of the 

analytical tool TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988) for the nonlinear 

analysis of frame structures, with a capability of predicting the post-peak behaviour, 

based on the DSFM (Vecchio, 2000). The detailed description of the objectives of this 

study is summarized in Section 1.3. 

2.3 Review of State-of-the-Art 

2.3.1 Review of Modelling and Analysis with SAP2000 

SAP2000 © (CSI, 2005) is a comprehensive analysis package from Computers and 

Structures Inc. for structural analysis and design. It is probably the most widely used 

analysis tool among immediately and easily available analysis software. It can perform 

linear-elastic static, dynamic and time-history analyses for virtually every material with 

known engineering properties, as well as nonlinear static and time-history analyses as 

either a lumped nonlinearity or global model. It possesses a versatile and user-friendly 

graphical interface as well as a fast and powerful analysis engine. Both structure creation 

and the result visualization are conveniently done through the graphical interface. 

Therefore, it is highly suited for practical everyday use by office design engineers. 

To perform a nonlinear static analysis of a reinforced concrete frame with SAP2000 

v.9.0.3, a model of the structure is first created as if it were a linear-elastic static analysis 

problem. If automatic hinges are to be used, longitudinal reinforcement details should be 
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defined including bar sizes, locations, and yield strengths. However, for the shear 

reinforcement, only the yield stress is required as input; neither the reinforcement ratio 

nor the tie or stirrup spacing is required.  

The next step is to assign hinges to desired locations. This is one of the most critical 

phases in the nonlinear modelling process with SAP2000. Both hinge locations and 

selected hinge properties have great influence on the response computed. For the moment 

hinges, the use of a hinge length in the range of cross section depth, h, is a generally 

accepted approach (CSI, 2005); therefore, a hinge length of h is used for the moment 

hinges throughout this study as shown in Figure 2.4. For the selection of the shear hinge 

length, on the other hand, there is much less information available in the literature. In this 

study, 1.5 times of the cross section depth is used for the shear hinge lengths. This length 

is assumed based on CSA A23.3-04 where the term dv x cot θ is used to determine the 

length of a shear crack on the longitudinal projection. Assuming an effective shear depth 

dv of 0.80 x h, and a shear crack inclination angle of 29 to 35º corresponding to the 

conditions at ultimate, a shear hinge length of 1.5 x h is found. The selection of larger 

inclination angles (in the range of 35 to 40º) will result in shorter hinge lengths (in the 

range of h) and more conservative results. End offsets are also used to account for 

overlapping cross sections at all connections. The use of rigid or semi-rigid end offsets 

reduces displacements as they limit rotations of the connecting beams and columns. 

 
Figure 2.4 Hinge Locations Assumed in Typical Frame Elements  
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There are six default hinge options available in version 9.0.3: Axial (P), Torsion (T),   

Moment (M2 or M3), Shear (V2 or V3), Coupled (P-M2-M3), and Coupled Fibre (P-M2-

M3). The hinge properties are calculated by the program for the cross section and 

reinforcement details provided. For moment hinges, SAP2000 (CSI, 2005) uses Tables 6-

7 and 6-8 of FEMA 356 (2000).  

The behaviour response assumed by SAP2000 for moment hinges (moment-curvature or 

moment-rotation relationship) and shear hinges (shear force-shear deformation 

relationship) is given in Figure 2.5. Based on this curve, no plastic deformation occurs 

until point B where the hinge yields. This is followed by a yield plateau or strain 

hardening behaviour until point C which represents the ultimate capacity of the hinge. 

After point C, the hinge’s force capacity immediately drops to point D which corresponds 

to the residual strength of the hinge. Point E represents the ultimate displacement 

capacity of the hinge after which total failure of the hinge is reached at point F (CSI, 

2005). There are three stages marked between point B and C for information purposes: 

IO corresponds to immediate occupancy, LS to life safety, and CP to collapse prevention. 

 

 

 

 

 

If there is no reinforcement defined and if no design is requested, the program uses the 

minimum allowable reinforcement ratios for the generation of automatic hinge properties. 

Generated hinge properties can be explicitly viewed and modified, if desired. For 

advanced users, user-defined hinges can be created. In this case, the complete flexural or 

shear hinge behaviour of all hinges defined should be manually supplied to the program. 

Figure 2.5 Hinge Behaviour Curve (Figure Adopted from CSI, 2005) 
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When using default hinges, the automatically calculated behaviour of the shear hinge 

raises some questions about its accuracy because no information about the shear 

reinforcement is required in the modelling process except the yield stress. The shear yield 

force calculation used by SAP2000 is presented in Eq. 2.1 (CSI, 2005). The notation for 

this equation is not defined in CSI (2005); the following definitions were provided by the 

CSI technical support team: As is the shear area of the cross section in inch2, typically 

assumed by SAP2000 as 5/6 times the gross cross-sectional area for rectangular cross 

sections, f’c is the compressive strength of concrete in psi,  fy is the yield stress of the 

shear reinforcement in psi, Asv  is the cross-sectional area of the shear reinforcement per 

unit length in inch, and d is the shear reinforcement spacing in inch. In this case, the 

resulting shear yield force Vy  becomes in psi. 

2y s c y svV A f f A d′= × × + × ×            (2.1) 

The next step is to define the load application procedure and nonlinear parameters. Load 

application can either be force or displacement-controlled. Nonlinear parameters include 

the selection of small or large displacements and P-Δ effects. The hinge unloading 

method is also selected here. The ‘unload entire structure’ option is recommended by CSI 

(2005) and thus used in this study. Based on this assumption, when a hinge drops its load 

(i.e., reaches Point D in Figure 2.5), the entire structure is unloaded until that hinge 

reaches its load immediately before the load drop (i.e., Point C in Figure 2.5). The 

program then reverts to increasing the applied load on the whole structure; other parts of 

the structure may now pick up the load that was removed from the unloaded hinge. There 

are other options such as ‘apply local redistribution’ and ‘restart using secant stiffnesses’, 

which are recommended by CSI (2005) if the ‘unload entire structure’ option could not 

find a solution. This phenomenon was not encountered in this study.  

After the analysis, the load versus deflection curve can be visualized through the 

graphical interface or can be printed out in a data file. In addition, the hinge conditions 

(B, IO, LS, CP, D, and E) may be seen at each load stage using the graphical interface, 

which is useful when evaluating the failure mechanism of the structure. 
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2.3.2 Review of Modelling and Analysis with Response-2000 

Developed at the University of Toronto as a distributed nonlinearity fibre model 

specifically for reinforced concrete, Response-2000 (Bentz, 2000) is a nonlinear sectional 

analysis program for beam-columns based on the MCFT (Vecchio and Collins, 1986). 

The program allows for axial force, bending moment, shear force, thermal and shrinkage 

strains, as well as time-dependent creep strains to be applied to the cross section. It is also 

capable of performing pushover analyses of simply supported beams up to the peak load. 

The program performs a rigorous dual-section analysis to determine the shear stress 

distribution on the cross section by the axial stiffness method developed by Bentz (2000). 

In sectional analysis mode, the program can predict a wide range of responses including 

moment-curvature, shear force-shear strain and moment-axial force interaction responses, 

all of which are used herein either to check hand calculations performed or to supply 

necessary input for SAP2000 and RUAUMOKO. The program has a user-friendly 

interface for both the model creation and results visualization, which provides ample 

information, encouraging more detailed investigation of the analysis results. 

Consequently, it is a convenient tool for both structural engineers and researchers. 

In order to perform a sectional analysis, cross section details including both the 

longitudinal and transverse reinforcement configurations as well as the reinforcement and 

concrete properties are input using the graphical interface. When the model is finalized, 

the analysis can be initiated through the solve menu.  

When the analysis is complete, the program immediately switches to a display of the 

analysis results. All relevant graphs can be seen in detail on the screen, and data for 

desired graphs can be acquired easily for further manipulation, for example, in a 

spreadsheet program. Also notable is the graphical representation of crack orientation and 

crack widths which may help the user understand the dominant behaviour of the cross 

section or beam member. 
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2.3.3 Review of Modelling and Analysis with RUAUMOKO 

Developed at the University of Canterbury, RUAUMOKO (Carr, 2005) is an analysis 

program mainly intended for buildings and bridges subjected to earthquake and other 

dynamic excitations. Based on either a lumped nonlinearity or a global model, the 

program is capable of performing nonlinear static and dynamic analyses for a wide range 

of materials including steel, reinforced concrete, timber, masonry and soil. With the 

version dated 14 February 2006, the structure creation and result visualization is done 

using standard text-editors such as Microsoft Windows Notepad.  

In order to model a structure for analysis with RUAUMOKO, one input text file is 

usually required which includes principal analysis options, frame control parameters, 

output intervals and plotting control parameters,  iteration control and wave velocities,  

nodal points and member incidence list, section properties, lumped nodal weights,  

external static loads, dynamic load factors,  earthquake accelerograms and so on. The text 

input file has to be prepared from nil based on the structure being analyzed, analysis type, 

and loading conditions; therefore, the users’ manuals should be carefully studied and 

necessary input parameters should be carefully selected out of a large number of possible 

values and options. This is a complex process and caution should be exercised.  

It is necessary to calculate the complete axial force (N) versus moment (M) interaction 

diagram for each cross section used and to supply six predetermined (N, M) data points to 

the program as input. This calculation can be quite laborious; therefore, it usually 

requires the use of other software such as Response-2000. In addition, if there are forces 

acting on the span of the members, fixed end forces for each member have to be 

calculated and supplied to the program manually. As a result, the input text file creation 

for RUAUMOKO may take considerable time depending on the structure being analyzed. 

It is necessary to select one of the fifty-two available hysteresis models for the material 

used. The more comprehensive the model, the more input related to the selected model is 

required. In Figure 2.6, one of the complex hysteresis rules and required input parameters 

is presented.  
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In this study, one of the simpler models, the elasto-plastic hysteresis, is selected as it does 

not require any additional input (Figure 2.7). 

 

One of the most important decisions in the modelling process is whether to include 

inelastic shear deformations or not. This decision is directly related to the structural 

behaviour and if shear-dominated behaviour is expected, inelastic shear deformations 

should be included. However, such an inclusion requires additional input as shown in 

Figure 2.8 and Table 2.1. There are several uncertainties and difficulties associated with 

the calculation of the required values. One relates to the interaction of axial force and 

shear yield force. It is known that the presence of axial compression force generally 

increases the shear yield force and therefore should be considered in such a calculation. 

Figure 2.7 Elasto-plastic Hysteresis (Carr, 2004) 

Figure 2.6 (a) Wayne Stewart Degrading Stiffness Hysteresis,  
(b) Input Parameters Required for this Hysteresis         

(Carr, 2005) 
(a)

FU Ultimate force or moment ( > 0.0)
FI Intercept force or moment ( > 0.0)
PTRI Tri-linear factor beyond ultimate force or moment
PUNL Unloading stiffness factor ( > 1.0)
GAP+ Initial slackness, positive axis ( > 0.0)
GAP- Initial slackness, negative axis ( < 0.0)
BETA Beta or Softening factor ( ≥ 1.0)
ALPHA Reloading or Pinch power factor ( ≤ 1.0)
LOOP  = 0 Loop as defined

= 1 Modified loop

(b)
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Another is that the shear yield force may be dependent on the ratio of bending moment to 

shear, depending on the theory used for the consideration of shear strength. Therefore, 

dependent on the applied load, the shear hinge properties should change which will 

require an iterative process until the peak load is reached. In addition, the SINA 

hysteresis required (Figure 2.8) will likely be different at each hinge location (at each end 

of each member used) due to the changing M/V ratio and axial forces, which may require 

significant pre-calculations for the definition of the SINA hysteresis. For these reasons, it 

is very difficult and laborious to consider inelastic shear behaviour in the model. 

 

 

Vy Shear yield strength ( > 0.0)
Vcr Shear cracking strength (> 0.0)
Vee Shear crack closing coree (> 0.0)
Alfa Bi-linear factor, cracking to yield ( R < Alfa < 0.0)
R Tri-linear factor after yield (> 0.01)
Duct1 Shear ductility where strength degradation starts

If less than 1.0 then no shear strength degradation
Duct2 Shear ductility where shear strength degradation stops (> Duct1)
Vres Residual shear strength as proportion of Vy (0.01 < Vres < 1.0)
Phi1 Flexural ductility where shear strength degradation starts

If less than 1.0 then no shear strength degradation
Phi2 Flexural ductility where shear strength degradation stops (>Phi1)
Pres Residual shear strength as proportion of Vy (0.01 < Pres < 1.0)

(Note: Vres*Pres*Vy must be somewhat greater than Vcr)
Ido  =0  In-elastic shear yield may occur (default)

 =1  Retrofit assumed, message printed, shear remains elastic.
 =2  Failure assumed, message printed, analysis terminated.  

Figure 2.8 SINA Hysteresis for the Consideration of Inelastic Shear Behaviour (Carr, 2005) 

Table 2.1 Input Parameters for the Consideration of Inelastic Shear Behaviour (Carr, 2005) 
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Another important consideration in the modelling process is whether to include degrading 

material strengths. It was shown by Vecchio and Collins (1986) that the compression 

response of cracked concrete is characterized by significant degrees of softening arising 

from the effects of transverse cracking. This behaviour will likely be an important 

mechanism when loading the structure to failure or when performing a cyclic or reversed 

cyclic analysis. Therefore, modelling of the degrading strength should be included in the 

model. However, such an inclusion requires additional input as shown in Figure 2.9 and 

Table 2.2.   

 

 

DUCT1 Ductility at which degradation begins ( > 1.0)
DUCT2 Ductility at which degradation stops ( > DUCT1)
RDUCT Residual strength as a fraction of the initial yield strength
DUCT3 Ductility at 0.01 initial strength ( blank or> DUCT2)
RCYC % reduction of strength per cycle of inelastic behaviour (ILOS =4, 5, 6 or 7 only)  

There are uncertainties and difficulties in the calculation of the strength reduction 

parameters. One of them is that the principal tensile strain in the concrete affects this 

degradation and should be considered. For this reason, it is very difficult, if not 

impossible, to consider degrading material strength behaviour in the model as it depends 

on the strain state. 

DUC3=0 or blank     

0.01      

RDUCT      

1.0     

Multiplier on 
Yield Force 

Ductility               
(or cycle number) DUCT1    

   ≥1.0       
DUCT2    DUCT3    

Figure 2.9 Strength Reduction Variation (Carr, 2005) 

Table 2.2 Input Parameters for the Consideration of Strength Reduction (Carr, 2005) 
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In this study, due to the reasons mentioned above, neither inelastic shear behaviour nor 

strength degradation is considered in the RUAUMOKO models used. 

When the input file is complete, an analysis can be initiated by running 

RUAUMOKO2D.exe and answering additional questions interactively. When the 

analysis is complete, the deflected shape of the structure is displayed momentarily on the 

screen. The program creates a single text file which includes member end actions and 

maximum member ductilities for each of the load stage considered. Other than member 

end forces and ductilities, however, the program does not provide information on member 

conditions which may help in understanding the failure mechanism of the structure. Load 

versus deflection curves can be obtained by help of the data extraction program provided. 

In the author’s view, to perform a pushover analysis of a reinforced concrete frame, 

RUAUMOKO requires a certain level of experience in nonlinear modelling of frame 

structures and a good understanding of material behaviour so that the appropriate 

behaviour models can be selected. The user will probably need secondary software to 

obtain the input values required by RUAUMOKO.  

To illustrate the use of the software described above and to compare the analytical results 

to hand calculations, three simple structures, previously tested at the laboratories of the 

University of Toronto, are examined in the following sections. 

2.3.4 Nonlinear Analysis of a Flexure-Critical Beam 

The beam in consideration was taken from an experimental study which was carried out 

at the University of Toronto in 2003 to investigate the long term structural performance 

of shear- and flexure-critical reinforced concrete beams (Aguilera, 2003). Having a 270 x 

400 mm cross section, Beam B1 was simply supported and spanned a clear distance of 

3.65 m between two roller supports, leaving 350 mm overhang on each side (Figure 

2.10). The loading involved the application of two point loads in a displacement-

controlled mode. The concrete strength was determined from standard cylinders. The 



longitudinal and transverse reinforcem ent properties were found fr om standard coupon 

tests, as shown in Table 2.3. 

 

Dimensions: mm 

Figure 2.10 Details of Beam B1 
 

Table 2.3 Material Properties of the Beam B1 
 

As db fy fu Es Esh εsh εu f'c ε0 Ec Gc μ

(mm2) (mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3) (MPa) (x10-3) (MPa) (MPa)

20M 300 19.5 429 621 206000 1605 9.3 128.9 33.8 2.00* 26200* 10917* 0.2*
#3 71 9.5 507 779 199000 2433 9.5 121.3 *assumed

Reinforcement Concrete

 

2.3.4.1 Hand Calculation 

Cracking Load 

The load w hich causes first crack ing at the bo ttom face of the beam  at the m idspan was 

calculated based on  transformed section properties (A t and  I t). The crac king s tress was 

assumed to be 0.33 ' 1.92cr cf f M    Pa  as suggested by CSA A23.3-04. Based on 

this calculation, the cracking load w as found to be 24.6 kN, while the cracking curvature 

was 0.76 x 10-6 /mm based on an effective stiffness value of 0.5xEIt as suggested by Table 

6.5 of FEMA 356 (2000). 
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Moment-Curvature Relationship 

The moment-curvature relationship was calculated through the use of rectangular stress 

blocks, with the assumption of a parabolic stress-strain curve, in Eq. 2.2 and Eq. 2.3, 

where εt is the strain at the top of the cross section and εo is the strain corresponding to the 

peak stress of concrete (Collins and Mitchell, 1991). 

 4
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In order to verify the calculations, Response-2000 was used. A similar response was 

obtained up to the yield strain of the tensile steel; afterwards, Response-2000 predicted 

higher moment values (Figure 2.11). This difference was caused by the assumption of a 

parabolic stress strain curve in the rectangular stress block approach. However, based on 

a layer-by-layer sectional analysis approach, Response-2000 uses a more general stress-

strain response for concrete, which keeps the analysis continuing with the strain 

hardening behaviour of steel (Bentz, 2000). For consistency, the hand-calculated 

moment-curvature response is used in the following calculations.  
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Based on the response shown on Figure 2.11 (hand calculation), the yield moment and 

yield curvature are 122.9 kNm and 8.4 x 10-6 /mm, while ultimate moment and ultimate 

curvature are 131.2 kNm and 54.4 x 10-6 /mm. 

Figure 2.11 Moment-Curvature Response of Beam B1 



Midspan Deflection 

The midspan deflection, δ, calculation was carried out usin g the elastic for mula of Eq. 

2.4, based on the effective stiffness value of 0.5 xEI as suggested by Table 6.5 of FEMA 

356 (2000). In Eq. 2.4, P is the lo ad in N, E is the m odulus of elasticity of concrete in 

MPa and I is the moment of inertia of the beam section in mm4. For the ultimate load of P 

= 201.8 kN, the ultimate deflection was calculated to be 9.75 mm. 

90.90 10 ( )
0.5


  

 
P

mm
E I

               (2.4) 

2.3.4.2 Analysis with SAP2000 

In the SAP2000 m odelling of the be am, the cr oss section was defined with exactly the  

same m aterial prop erties as us ed in  the h and calculation. The concrete shear area was 

input as 0.09 m2, being 5/6 times the gross-sectional area as recommended by CSI (2005). 

One default mom ent hinge was placed at the midspan of the beam  and the analysis was 

performed i n the displacem ent-controlled m ode (Figure 2.12) . It should be noted that 

neither the spacing or the percentage of the shear reinforcement nor the s train hardening 

properties of the longitudinal reinforcement are required by the program.  

 

Figure 2.12 SAP2000 Model of Beam B1  

At the end of analysis, the SAP2000 output in dicated that the default hinge properties 

were calculated to be M 127.5y kNm  127.6u and M kNm . 
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2.3.4.3 Analysis with RUAUMOKO 

For the RUAUMOKO model, a bending moment - axial force interaction diagram is 

required for the cross section of the beam, for which Response-2000 was used. The 

resultant graph is presented in Figure 2.13. 

-4000

-3000

-2000

-1000

0

1000

-250 -200 -150 -100 -50 0 50 100 150 200 250

Moment (kNm)

A
xi

al
 F

or
ce

 (k
N

) 

 

 

The model used for the RUAUMOKO analysis was essentially the same as the SAP2000 

model (Figure 2.12). The only difference was that three members were used with a 

moment hinge at each end. The hinge length was assumed to be the same as the depth of 

the cross section; that is, 400 mm. It was noted that changing the hinge length had no 

influence on the results.  

From the RUAUMOKO analysis, the beam’s ultimate moment capacity was calculated to 

be 137.5 kNm, which was obvious from the input interaction diagram for zero axial load. 

2.3.4.4 Comparison of the Analytical and Experimental Results 

As seen in Table 2.4, the cracking load of the beam was predicted reasonably well by 

hand calculation. However, it was not possible to determine the cracking load by either 

SAP2000 or RUAUMOKO, as these programs use linear-elastic calculations until the 

yield point of the hinge is reached without considering the cracking of concrete. 

Figure 2.13 Moment-Axial Force Interaction Response of Beam B1 
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Both computer programs and hand calculations produced similar yield loads for the beam 

with a maximum deviation of 6% from the experimental value for the hand calculation. 

As for the ultimate load, similar predictions were obtained with a maximum deviation of 

11% from the experimental value in the SAP2000 calculation.  

The stiffness of the beam was overestimated even though an effective stiffness value of 

0.5 x EI was used; the yield displacement was predicted by all three calculations to be 

slightly more than half of the experimental value. 

The failure modes were found to be reasonably consistent with the experimental 

observations. As defined in the modelling process, both programs predicted flexural 

yielding of the hinges.  

 

Hand Calc. SAP2000 Ruaumoko Experiment
Load (kN) 26.4 n/a n/a 31.0+

Curvature (rad/km) 0.76 n/a n/a n/r

Midspan Disp. (mm) 0.6 n/a n/a 1.0+

Load (kN) 189.1 196.1 211.5 200.0

Curvature (rad/km) 8.4 n/a n/a n/r

Midspan Disp. (mm) 9.1 9.5 10.2 17.2

Load (kN) 201.8 196.2 211.5 218.0

Curvature (rad/km) 54.4 n/a n/a 48.0

Midspan Disp. (mm) 9.8 32.3 n/a >50

Behaviour Flexure Flexure Flexure Flexure
 + estimated

C
ra

ck
in

g
Yi

el
di

ng
U

lti
m

at
e

n/a: not available    n/r: not reported  
 
Based on Figure 2.14, neither of the programs was able to predict the displacement 

capacity of the beam with reasonable accuracy. SAP2000 estimated the failure of the 

beam occurring at a significantly less midspan displacement than that of the experiment. 

As for the RUAUMOKO analysis, it was not possible to determine the ultimate 

displacement; the same load was returned by the program while midspan displacement 

was increasing. This behaviour occurred due to the elastic-plastic hinge assumption 

made. It should be noted that the experimental graph reported in Aguilera (2003) was 

Table 2.4 Comparison of Analytical and Experimental Results for Beam B1 
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terminated at a 50 mm lateral displacement; the experimental failure displacement of the 

beam was likely higher than 50 mm.  
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It is obvious from Figure 2.14 that both SAP2000 and RUAUMOKO performed a linear-

elastic analysis until the yielding of the midspan hinge. After that point, SAP2000 

conservatively neglected the strain hardening effects of the reinforcement and returned 

the same load value until the plastic deformation capacity of the hinge was reached and 

the hinge dropped load (Point F in Figure 2.5). RUAUMOKO, on the other hand, 

continued with the analysis, predicting the same yield load under increasing midspan 

displacement. 

In conclusion, both the first yielding and the ultimate load capacity of this flexure-critical 

simply supported beam were predicted accurately. As for the failure displacement, a 

reasonable estimate was not achieved. 

 

 

 

Figure 2.14 Comparison of Load-Deflection Responses for Beam B1 



2.3.5 Nonlinear Analysis of a Flexure-Critical Frame 

A one-span, two-storey, flexure- critical reinforced concrete frame was tested by  Vecchio 

and Em ara (1992) to gain further insight in to the m agnitude and influence of shear 

deformations in flexure-critical frame structur es and to asses s the accura cy of analytical 

procedures developed. 

The frame was constructed with a centre-to-c entre span of  3500 mm , a storey height of 

2000 mm a nd an overall height of 4600 mm a s shown in Figure 2.15. All beam s and 

columns were 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400 

mm deep. The fram e was built in tegral with a la rge, heavily reinforced concrete base to 

create an essentially fixed f oundation. The base was fixed to the lab floor using ten pairs 

of bolts which were post-tensioned to preven t slip. Material properties were determ ined 

from concrete cylinder tests and steel coupon tests, as summarized in Table 2.5. 

 

Dimensions: mm

Figure 2.15 Details of Vecchio and Emara Frame  

 46



 47

As db fy fu Es Esh εsh εu f'c ε0 Ec Gc μ

(mm2) (mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3) (MPa) (x10-3) (MPa) (MPa)

No.20 300 19.5 418 596 192500 3100 9.5 66.9 30 1.85 23674 9864* 0.2*

No.10 100 11.3 454 640 200000* 3100* 9.5* 69.5 * estimated

Reinforcement Concrete

 

The testing of the frame involved applying an axial load of 700 kN to each column, 

maintained constant throughout the test, while monotonically applying a lateral load to 

the second storey beam until the ultimate capacity of the frame was reached. The column 

loads were provided by two pairs of 450 kN capacity hydraulic jacks, applied through 

two transverse beams in the force-controlled mode. The lateral load was provided by a 

1000 kN capacity actuator, mounted laterally against a reacting strong wall, in a 

displacement mode. 

2.3.5.1 Hand Calculation 

As there were significant axial forces acting, the hand calculation was done in an iterative 

manner in order to take account of the change in the axial force values as the lateral force 

on the frame increased. First, the ultimate moment capacities of cross sections were 

determined using stress block factors. In this calculation, the initial axial forces of 

members were used; that is, 700 kN axial compression for the columns and no axial force 

for the beams. The beam ultimate moment capacity was calculated to be 174 kNm by 

hand calculation and 206 kNm by Response-2000. As Response-2000 includes strain 

hardening of steel and considers a more general concrete stress-strain response, its 

prediction of 206 kNm is used as the ultimate capacity. Then, using linear-elastic frame 

analyses, a lateral load was determined which would cause the acting moment inside the 

clear span of one of the members to reach the corresponding calculated flexural capacity. 

In this calculation, the effective stiffness values recommended by FEMA 356 (2000) 

were used as shown in Figure 2.16.  Corresponding to that lateral load, the axial force 

values for each member were determined and the ultimate moment capacities of the cross 

sections were re-calculated accordingly. A new estimate of lateral load was determined 

and the same procedure was carried on in an iterative manner. 

Table 2.5 Material Properties of Vecchio and Emara Frame 
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2.3.5 Nonlinear Analysis of a Flexure-Critical Frame 

A one-span, two-storey, flexure-critical reinforced concrete frame was tested by Vecchio 

and Emara (1992) to gain further insight into the magnitude and influence of shear 

deformations in flexure-critical frame structures and to assess the accuracy of analytical 

procedures developed. 

The frame was constructed with a centre-to-centre span of 3500 mm, a storey height of 

2000 mm and an overall height of 4600 mm as shown in Figure 2.15. All beams and 

columns were 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400 

mm deep. The frame was built integral with a large, heavily reinforced concrete base to 

create an essentially fixed foundation. The base was fixed to the lab floor using ten pairs 

of bolts which were post-tensioned to prevent slip. Material properties were determined 

from concrete cylinder tests and steel coupon tests, as summarized in Table 2.5. 

 

 

 

Figure 2.15 Details of Vecchio and Emara Frame 

Dimensions: mm



 49

corresponding PM interaction surface in the plane of the frame. The automatic hinge 

calculations performed by SAP2000 are mainly based on FEMA 356 (2000).  

 

 

 

 

 

 

 

As coupled automatic PM hinges were not available for the beams, default moment 

hinges were defined similar to those of the columns. The output indicated that SAP2000 

calculated the yield moment for the cross section based on the longitudinal reinforcement 

details provided and assumed almost the same moment capacity for the ultimate 

condition.  

Rigid end offsets with rigid end factors of 1.0, which correspond to a fully rigid 

connection, were used in order to account for the overlapping portions of the beam-

column connections as suggested by FEMA 356 (2000) Clause 6.5.2. 

Figure 2.17 SAP2000 Model of Vecchio and Emara Frame 
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Neither the transverse reinforcement spacing or ratio nor the strain hardening properties 

of the longitudinal steel were required by the program as input. 

2.3.5.3 Analysis with RUAUMOKO 

The analytical model used in the RUAUMOKO analysis is shown in Figure 2.18. To be 

consistent with the other analyses, fully rigid end zones were used and the analysis was 

performed with the assumption of small displacements. Hinge lengths were also assumed 

to be the same as the section height; namely, 400mm. It was later noted that the use of 

different hinge length did not affect the results. 

As mentioned previously, RUAUMOKO requires complete M-N interaction responses 

for all of the cross sections used. For simplicity, only one cross section with 25 mm clear 

cover was used, rather than two cross sections with 20 mm and 30 mm clear covers. The 

interaction diagram to be supplied to RUAUMOKO was calculated by both hand and 

Response-2000. The two responses were found to be quite similar. 

  

  

 

 

 

 

 

 

 

Figure 2.18 RUAUMOKO Model of Vecchio and Emara Frame 
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2.3.5.4 Comparison of the Analytical and Experimental Results 

As seen in Table 2.6, both programs and the hand calculation predicted similar yield 

loads for the frame with a maximum deviation of 11 percent from the experimental value 

in the SAP2000 calculation. Similarly, the peak load capacity of the frame was predicted 

with good accuracy with a maximum deviation of 7 percent from the experimental value 

in the SAP2000 calculation. This underestimation was expected because SAP2000 

neglects the strain hardening of the longitudinal reinforcement, thereby providing a lower 

bound estimate. 

Hand Calc. SAP2000 RUAUMOKO Experiment

Load (kN) 252 238 265 264

Disp. (mm) 18.7 18.9 22.0 30.2

Load (kN) 312 309 339 332

Max Disp. (mm) 23.1 80.6 n/a >154

Behaviour Flexure Flexure Flexure Flexure

Failure Mode 1 Plastic 
Hinge

6  Plastic 
Hinges

4 Plastic  
Hinges

6 Plastic 
Hinges

n/a: not available
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Table 2.6 Comparison of Analytical and Experimental Results for Vecchio and  
     Emara Frame 

Figure 2.19 Comparison of Load-Deflection Responses for Vecchio and Emara Frame 
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As seen in Figure 2.19, the lateral stiffness of the frame was predicted reasonably well 

with the use of effective stiffness values of 0.5 x E I in all three calculations. 

The failure modes were also found to be consistent with the experimental observations. 

As defined in the modelling process, both programs predicted flexural yielding of the 

hinges. The final condition of the hinges is presented in Figure 2.20 based on the hinge 

behaviour given in Figure 2.5. It should be noted that, in the RUAUMOKO model, after 

the yielding point B, the hinge continues carrying the same load without any drop in its 

capacity due to the elastic-plastic hysteresis assumption made. In the hand calculation, 

the failure was assumed to be caused by the first yielding of B1 R hinge in Figure 2.16.  

 

 

However, inspection of Figure 2.19 reveals that neither of the programs could predict the 

displacement capacity of the frame with reasonable accuracy. SAP2000 provided an 

overly conservative estimate of less than half of the experimental displacement capacity. 

RUAUMOKO did not provide any indication of the ultimate displacement; the analysis 

carried on sustaining the ultimate load based on the elastic-plastic hinge behaviour. It 

should be noted that the experiment was terminated at a 154 mm lateral displacement due 

C 

D LS 

LS LS 

LS B 

B B 

B 

Figure 2.20 Final Conditions of Hinges for Vecchio and Emara Frame: (a) SAP2000;  
        (b) RUAUMOKO 

(a) (b) 



 53

to stroke limitations; the experimental failure displacement of the beam would likely have 

been higher than 154 mm. 

In conclusion, both the first yielding and ultimate load capacity of this flexure-critical 

frame were estimated accurately. As for the failure displacement, a reasonable estimate 

was not achieved. 

2.3.6 Nonlinear Analysis of a Shear-Critical Frame 

A one-span, two-storey, shear-critical reinforced concrete frame was tested by Duong et 

al. (2007) to study the behaviour of shear-critical reinforced concrete frames under 

seismic loading conditions and to corroborate analytical procedures. 

The frame was constructed with a centre-to-centre span of 1900 mm, a storey height of 

2100 mm and an overall height of 4600 mm (Figure 2.21). All beam and columns were 

nominally 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400 

mm deep. The frame was built integral with a large, heavily reinforced concrete base to 

create an essentially fixed foundation. The base was fixed to the lab floor using six pairs 

of bolts which were post-tensioned to prevent slip. The material properties, determined 

from concrete cylinder tests and steel coupon tests, are summarized in Table 2.7. 

Testing of the frame consisted of two phases. In Phase A, the test program involved 

applying an axial load of 420 kN to each column, maintained constant throughout the 

test, while monotonically applying a lateral displacement to the second storey beam until 

the ultimate capacity of the frame was reached. The column loads were provided by two 

450 kN capacity hydraulic jacks through two transverse beams in a force-controlled 

mode. The horizontal load was provided by a 1000 kN capacity actuator mounted 

laterally against a reacting strong wall in a displacement-controlled mode. 
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As db fy fu Es Esh εsh εu f'c ε0 Ec Gc μ

(mm2) (mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3) (MPa) (x10-3) (MPa) (MPa)

No.20 300 19.5 447 603 198400 1372 17.1 130.8 42.9 2.31 30058 13069* 0.2*

No.10 100 11.3 455 583 192400 1195 22.8 129.9 * estimated

US #3 71 11.3 506 615 210000 1025 28.3 134.6

Reinforcement Concrete

 

2.3.6.1 Hand Calculation 

Similar to the frame analyzed in the preceding section, hand calculation of this frame’s 

response was performed in an iterative manner in order to consider axial force and axial 

restraint effects. The model used for hand calculation is presented in Figure 2.22, where 

the effective stiffness values of 0.5xEI were used for all members as recommended by 

Table 6.5 of FEMA (2000). Note that the effective stiffness values smaller than 0.5xEI 

for members in tension and larger than 0.5xEI for member in compression, as suggested 

by Paulay and Priestley (1992), may lead to better prediction of the frame’s response. 

Figure 2.21 Details of Duong Frame 

Table 2.7 Material Properties of Duong Frame 



 55

First, a linear-elastic analysis of the frame was performed for 100 kN lateral load. The 

shear force and bending moment values for both ends of each member, at dv = 0.9 x 350 = 

315 mm away from the face of the columns, were determined. Then, based on the 

General Method of the CSA A23.3-04, Clause 11, the shear capacities of the members 

were calculated and found to be less than the acting shear at the predetermined locations 

shown in Figure 2.22. The moment capacities were also calculated using rectangular 

stress blocks and were found to be less than the acting moment at the predetermined 

locations shown in Figure 2.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lateral load was gradually increased until the moment or shear capacity of one of the 

members was reached at the locations shown on Figure 2.22.  When the lateral load 

reached 245 kN, the corresponding bending moment and shear force diagram for this 

beam were found to be as follows: 

Figure 2.22 Model of Duong Frame for Hand Calculation 
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According to Figure 2.23, the bending moment acting at the face of the column (i.e., 200 

mm away from the joint) at B1 R was 155.9 kN. The moment capacity of the beam was 

calculated to be 176.4rM kNm=  . As 176.4 151.5r fM kNm M kNm=  > =  , the beam had 

not yet reached its flexural capacity.  

The shear capacity of the beam was calculated as 199.2 kN based on the General Method 

of CSA A23.3-04, Clause 11. As the shear force on the first storey beam B1 R became 

approximately equal to its shear capacity, it was confirmed that at a lateral load of 245 

kN, the first storey beam would have reached its shear capacity. 

There is also another important mechanism in the behaviour of this frame which should 

be considered. Subjected to bending, reinforced concrete sections typically develop 

flexural cracks resulting in average tensile strains on the tension face being much larger 

than the compressive strains on the compression face. This results in a tensile average 

strain at the mid-height of the section giving, when integrated over the depth of the 

section, a net elongation. However, when the member is restrained from freely 

elongating, as in this case by the columns, an axial compressive force is induced in the 

member. This axial compression force increases both the flexural and shear capacities of 

the member. This mechanism, known as membrane action, should be considered when 

estimating the shear capacity of this frame.  

Figure 2.23 Shear Force (V) and Moment (M) Diagram for Lateral Load of 240 kN for  
        Duong Frame 
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With the help of Response-2000, the elongation of the first storey beam under its ultimate 

condition was calculated to be 1.17 mm. Due to the columns on each sides of the beam, 

this elongation will cause axial compression on the beam which can be calculated as 

3

12C
h

Δ× (Ε × Ι)
= ×                              (2.6) 

9

3

12 30058 1.60 10 ) (1.17 0.5) kN extra compression
1700

C × (0.5× × ×
= × ×  = 35    

In the calculation above, the effective flexural stiffness of the columns was assumed to be 

half of its uncracked value, at the ultimate condition, based on Table 6.5 of FEMA 356 

(2000). Using the additional compression value of 35 kN, the shear capacity of the beam 

was calculated to be 211.4 kN and the corresponding lateral load value to be 252 kN. 

This load corresponds to the yielding of the beam B1 R in shear and therefore can be 

accepted to be a lower bound estimate of this frame’s failure load. 

2.3.6.2 Analysis with SAP2000 

Using the same material properties and geometry, the SAP2000 model of the structure 

was created (Figure 2.24). The bases of the columns were modelled as fixed without 

including the base beam. For simplicity, only two cross sections were used in the model: 

one for the beams and one for the columns.  

For each column and beam, two default bending moment hinges were defined as 

automatic hinges at each end of the elements just inside their clear spans. The automatic 

hinge properties were found by SAP2000 by calculating the yield moment for the cross 

section based on the longitudinal reinforcement details provided and assuming almost the 

same moment capacity for the ultimate condition. In other words, no strain hardening of 

the longitudinal reinforcement was considered by SAP2000. The ultimate rotation 

capacity for this calculation is typically taken by SAP2000 from Table 6.7 or Table 6.8 of 

FEMA 356 (2000). Inspection of the hinge behaviour calculated by SAP2000 revealed 

that the yield moment of the beam was calculated as 174.6 kNm, which is somewhat 

greater than the hand-calculated value of 167.2 kNm. 
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As the structure is known to be shear-critical, default shear hinges were assigned to each 

end of all members. In order to determine the location of the hinges, it was assumed that 

the hinge length would be approximately 1.5 times the height of the cross section 

(1.5×400 = 600 mm) and the hinge was placed at the centre of the hinge length as 

described in Section 2.3.1. Similar inspection of the hinge behaviour calculated by 

SAP2000 revealed that the yield shear force for the beam was calculated to be 87.2 kN 

which is quite contrary to the hand-calculated value of 211.4 kN. This unreasonably low 

estimation of shear strength for the beams is expected to lower the peak load capacity of 

the frame in the SAP2000 analysis. 

Figure 2.24 SAP2000 Model of Duong Frame 
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Figure 2.25 RUAUMOKO Model of Duong Frame 

Rigid end offsets with rigid end factors of 1.0 were used in order to account for the 

overlapping portions of the beam-column connections as suggested by FEMA 356 Clause 

6.5.2. Neither the transverse reinforcement spacing or ratio nor the strain hardening 

properties of longitudinal reinforcement were defined as they are not demanded by the 

program. 

2.3.6.3 Analysis with RUAUMOKO 

The analytical model used in the RUAUMOKO analysis is shown in Figure 2.25. To be 

consistent with other analyses, rigid end zones were used and the analysis was performed 

with the assumption of small displacements. The hinge lengths were also assumed to be 

the same as the section height; namely, 400mm. It was also noted that the use of different 

hinge lengths did not change the results. The axial force and bending moment interaction 

responses for both cross sections were calculated with the help of Response-2000 and 

supplied to RUAUMOKO. 

 

 

  
 

 

 

 

 

 

 

 

 

 



 60

2.3.6.4 Comparison of the Analytical and Experimental Results 

As seen in Table 2.8, RUAUMOKO predicted the first yielding of the reinforcement with 

an excellent accuracy. This was, however, caused by the flexural behaviour assumed in 

the model. In other words, there were no shear hinges defined in the RUAUMOKO 

analysis which could have yielded prior to the flexural hinges. In both the hand 

calculation and the SAP2000 prediction, no yielding of flexural hinges was predicted; the 

yielding of the shear hinge caused failure. 

The peak load capacity of the frame was poorly predicted. SAP2000 underestimated the 

strength by 70%; while RUAUMOKO overestimated it by 27%. RUAUMOKO predicted 

a failure load which corresponded to the flexural capacity of the frame. The erroneous 

prediction of SAP2000 was caused by the use of the automatic shear hinges built into the 

program. Inspection of the generated hinge properties of SAP2000 revealed that the shear 

capacity of the first storey beam was estimated as 87.2 kN while the general method of 

CSA A23.3-04 predicted a value of approximately 210 kN. The actual beam shear failure 

load from the test was reported in Duong (2006) to be around 210 kN. 

As for the hand calculation, the strength was calculated to be 252 kN which corresponded 

to the yield shear force of beam B1 R in Figure 2.22. This value, therefore, can be 

accepted to be the lower bound estimate of the peak load capacity of the frame.  

 

Hand Calc. SAP2000 Ruaumoko Experiment

Load (kN) 288 295

Disp. (mm) 12.0 26.6

Load (kN) 252.0 100.0 408.9 323.0

Max Disp. (mm) 10.0 4.0 n/a 44.7

Behaviour Shear Shear Flexure Flexural-Shear

Damage Mode Shear Failure of
B1 R

Shear Failure of
B1 L and B1 R n/a

Shear Damage of 
B1 L and Extensive 
Flexural Cracking

n/a: not available
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no yielding no yielding

 

Table 2.8 Comparison of Analytical and Experimental Results for Duong Frame 
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The failure mode of the frame was also predicted with a varying degree of success. 

Failure was caused by shear yielding of the first storey shear hinges in the SAP2000 

model. However, RUAUMOKO returned a flexural failure mechanism with yielding of 

four moment hinges as shown in Figure 2.26. 
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Figure 2.26 Final Conditions of Hinges for Duong Frame: (a) SAP2000; (b) RUAUMOKO 
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Inspection of Figure 2.27 reveals that neither program was able to produce an acceptable 

ultimate displacement capacity for the frame. SAP2000 predicted an unreasonable 4.0 

mm. The RUAUMOKO analysis did not provide any indication of the ultimate 

displacement; the analysis carried on sustaining the ultimate load based on the elastic-

plastic hinge behaviour. The actual failure displacement in the test was expected to be 

only slightly more than the 44.8 mm attained (Duong, 2006); the loading was stopped to 

prevent a catastrophic shear failure of the beam because repair of the beam was to take 

place. 

In conclusion, neither the strength nor the ductility of this shear-critical frame was 

calculated with acceptable accuracy by the use of default hinges of SAP2000 and 

RUAUMOKO. In fact, highly contradictory and misleading responses were obtained. 

2.3.6.5 Analysis with SAP2000 (User-Defined Hinges) 

As the prediction of SAP2000 with default shear hinges was unacceptable, it was decided 

to create user-defined moment and shear hinges and repeat the same analysis. 

For this purpose, exactly the same model of the structure was used (Figure 2.24). With 

the help of Response-2000, the moment-curvature (M - Ø) responses for both the beam 

and column sections were calculated. In this calculation, the axial forces were assumed to 

be zero and the moment hinge lengths were assumed to be equal to the height of the cross 

sections, h. As a result, the rotation values were calculated as 

Rotation hφ= ×                  (2.5) 

The shear hinge behaviour was also calculated with Response-2000. For this calculation, 

the ratios of bending moment to shear force were required for all shear hinges. Thus, an 

initial linear-elastic analysis of the frame was performed to find the required ratios. Then, 

the shear force-shear strain (V - γ) responses were obtained from Response-2000 

assuming zero axial loads for all members. The shear hinge lengths were assumed to be 
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equal to 1.5 times the depth of the cross sections as defined in Section 2.3.1, and the 

shear displacements were calculated using Eq. 2.6.  

)Shear Displacement hγ = × (1.5×            (2.6) 

The results of these calculations were then idealized as the hinge behaviour given in 

Figure 2.5 for SAP2000 input. It was important not to assign a negative slope for any 

branch of Figure 2.5 in order to avoid stability problems during the analysis (CSI, 2005). 

For information purposes, the IO, LS and CP points were approximately determined and 

supplied to SAP2000. 

2.3.6.6 Analysis with SAP2000 (User-Defined Hinges, Refined Model) 

As the axial force effects were not included in the analytical model previously, it was 

decided to consider them to determine their influence on the predicted response. This 

inclusion, however, required an iterative solution procedure as the axial forces are 

dependent on the lateral loads acting on the structure. For this reason, first, the axial 

forces of all members were obtained corresponding to the failure load found in the 

analysis in Section 2.3.6.5. Then, both the shear and moment hinge calculations were 

repeated by Response-2000 and the results were input into SAP2000 to get a second 

estimate of the failure load of the frame. Then, using the new estimate of the failure load, 

the same procedure was repeated until convergence was achieved. It should be noted that 

this calculation was quite laborious and took a significant amount of time. 

2.3.6.7 Comparison of SAP2000 Predictions 

As shown in Table 2.9, the models with user-defined moment and shear hinges provided 

acceptable estimates of the major occurrences in the behaviour of the frame. The model 

with user defined hinges underestimated the first flexural yielding load by 20 percent, 

while the refined model which also included axial force effects predicted the same event 

with only 4 percent overestimation. 
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One of the most important values, the load capacity of the frame, was predicted 

successfully. The model with user defined hinges underestimated the peak load by 15 

percent, while the refined model which also includes axial force effects accurately 

predicted the load capacity with only 2 percent deviation from the experimental value. 

Automatic    
M and V 
Hinges

User Defined 
M and V 
Hinges

User Defined M 
and V Hinges 

(Refined)
Experiment

Load (kN) no yielding 244.0 278.6 295.0

Disp. (mm) - 14.9 18.5 26.6

Load (kN) 100.0 266.7 314.6 323.0

Max Disp. (mm) 4.0 19.2 26.4 44.7

Behaviour Shear Flexural-Shear Flexural-Shear Flexural-Shear

Damage Mode
Shear Failure 
of B1 L and   

B1 R

Shear Failure
of B1 R 

Shear Failure of
B1 R

Shear Damage of B1 
L and Extensive 

Flexural Cracking

Fl
ex

ur
e 
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The failure mode of the frame was also predicted successfully. Both models predicted the 

shear failure of B1R and the flexural yielding of both column bases (Figure 2.28). The 

only differences in the prediction of the two models were the final conditions of the shear 

hinges. As the axial force effects were considered in the refined model, the shear hinge 

B1R carried more shear force and, under increasing applied horizontal force, the other 

shear hinges moved into more advanced levels of plastic deformations as seen in Figure 

2.5. 

As seen in Figure 2.29, the lateral stiffness of the frame was predicted very well with the 

use of effective stiffness values of 0.5 x EI in all three calculations. However, the ultimate 

displacement capacity of the frame was not predicted successfully; both models 

underestimated the failure displacement significantly.  

 

 

Table 2.9 Comparison of Analytical and Experimental Results for Duong Frame 
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In conclusion, with the use of user-defined shear hinges, the strength of this shear-critical 

frame was calculated reasonably well. The ductility was not predicted with similar 

success; nonetheless, the prediction was not misleading as it was with the use of default 

shear hinges. Note that the creation of user-defined hinges required expert knowledge and 

was quite laborious, taking significant time to develop even for such a small frame. 

2.3.7 Discussion 

Based on the analysis results, both computer programs provided estimates of the peak 

load capacity of flexure-critical structures which were well within the margins of 

accuracy one can expect to achieve with nonlinear analysis of reinforced concrete.  

However, the ultimate displacements corresponding to the failure conditions of the 

structures were not calculated with same degree of accuracy. Ultimate displacements are 

an important parameter when evaluating the seismic performance of structures including 

ductility ratios and energy absorption capacities. Seismic design provisions in modern 

design codes are not based on the actual lateral loads that a structure must resist and 

remain elastic, but rather on the lateral displacement level that it can withstand without 

collapsing (Christopoulos and Filiatrault, 2006).  

In the case of a reinforced concrete frame with dominant shear behaviour, reliable and 

reasonable predictions of neither the peak load nor the ultimate displacement could be 

achieved.  

It was clearly seen, in this chapter, that modelling simple structures, as simple as a simply 

supported beam, requires a certain amount of experience and expertise in behaviour and 

modelling of reinforced concrete structures.  Previous knowledge of the failure mode of 

the structure is required so that the appropriate hinges are used – shear or moment. If the 

expected failure mode is shear, there is a daunting task awaiting the analyst.  

It was realized during this study that, when modelling a reinforced concrete frame 

structure, there are usually three courses of action available, one of which should be 

taken.  
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The first one is the use of default or automatic consideration of shear behaviour available 

in some of the analysis software presently in use. However, there is usually insufficient 

information available on the theoretical basis on which those calculations are performed. 

The assumed shear behaviour may be based on empirical formulations for a certain type 

of system or there may be several assumptions made which may not be valid for the 

problem at hand. The output generated by the programs tends to be difficult to verify. 

Therefore, it is usually necessary to take it on trust that the program works properly.  

This course of action was taken when modelling and analyzing the Duong frame by 

SAP2000. Both the modelling and analysis processes went without any problem or 

warning. The program predicted the shear failure at the end, but the result was 

unacceptable in terms of both strength and ductility; less than one third of the 

experimental failure load was predicted. This clearly shows that using generic or 

unknown models to simulate the behaviour of reinforced concrete in shear can easily lead 

to grossly inaccurate results. 

The second course of action, when modelling a reinforced concrete frame, is to calculate 

the shear behaviours of the structural components and to supply the results to the 

software being used. In this way, the analyst has full control of the assumptions and 

theories used. However, this calculation requires expert knowledge on the shear 

behaviour of concrete and can be quite laborious. For example, for the General Method of 

the CSA A23.3-04, Clause 11, knowledge of the axial forces and ratios of bending 

moment to shear force are required for all of the shear hinges used; these values change 

when the load on the structure is increased. Because the failure load is not known, an 

iterative solution process is required. As a result, the complexity and repetition involved 

will most likely require the use of other software such as Response-2000. After 

calculation of the necessary values, the process of inputting them into a text file, one by 

one, inherently involves a high risk for input errors. It may also take significant time 

depending on the scale of the structure being modelled. 

This course of action was taken when modelling and analyzing the Duong frame for a 

second time using SAP2000. Based on the frame properties, user-defined hinges were 
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created for consideration of both shear and flexure. As a result, an acceptable estimate of 

the load capacity of the structure was achieved. However, even for such a small frame 

(only one bay and two storeys), the level of expertise required and the magnitude of pre-

calculations performed were significant with considerable time and effort spent. 

The third course of action is to ignore shear behaviour and assume the structure is 

flexure-critical. Such an approach is often taken when the analyst does not have sufficient 

knowledge of the structural behaviour, or is intimidated by the amount of work required 

to consider shear behaviour. In this case, if the structure happens to be shear-critical, the 

analyst usually ends up with a large overestimation of both the ultimate load and the 

ultimate displacement capacity of the frame. Such an analysis was performed in this 

study for demonstrative purposes. The shear-critical Duong frame was modelled using 

RUAUMOKO without considering inelastic shear behaviour. At the end of analysis, the 

program overestimated the strength of the structure by 26 percent even if the structure 

was not purely shear-critical; there were significant flexural influences in the test. This 

clearly shows that ignoring shear related mechanisms may lead to grossly unconservative 

results. 

2.3.8 Conclusion 

These apparent difficulties with accurately modelling the strength and ductility of 

reinforced concrete frames led to this thesis study. It is believed that the tools needed for 

such an analysis should not require previous knowledge of the failure mechanism of the 

structure and should not require expert knowledge on the selection of material models 

and assumptions in the analysis. It is also desired that these tools only require basic 

material and sectional properties and do not need previously calculated values as input, 

such as axial force-moment or shear force-shear deformation relations for the cross 

sections used. 
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CHAPTER 3 

MONOTONIC LOADING: THEORY AND IMPLEMENTATION 

3.1 Chapter Layout 

This chapter describes theoretical principles for the nonlinear analysis of reinforced 

concrete frames subjected to monotonic loading conditions and their implementation into 

the analytical framework of VecTor5  (Vecchio, 1987; Vecchio and Collins, 1988) for 

monotonic loading conditions. Throughout the chapter, the existing formulations that 

were modified and the new algorithms that were added are described in detail. For the 

sake of completeness, the unaltered formulations of the original procedure are briefly 

described. 

The chapter starts with a detailed summary of the Modified Compression Field Theory 

(MCFT) and the Disturbed Stress Field Model (DSFM), on which the sectional analyses 

of the developed procedure were based. It is then followed by the general description of 

the nonlinear analysis procedure employed. The chapter continues with the formulations 

of the global frame analysis and the nonlinear sectional analysis procedures. Finally, the 

chapter ends with the newly implemented algorithms and second-order mechanisms. In 

addition, when necessary, the appropriate use of the different formulations and options 

implemented are discussed. 

3.2 Modified Compression Field Theory (MCFT) 

The MCFT (Vecchio and Collins, 1986) is an analytical model for predicting the 

response of two-dimensional reinforced concrete structures subjected to in-plane shear 

and normal stresses. The MCFT considers cracked concrete as a new orthotropic material 

using a smeared rotating crack approach. In this approach, as dictated by the loading or 

material response, the crack direction reorients gradually as opposed to the fixed crack 

approach where the crack orientation remains fixed in the direction of first cracking. 

Central to the theory is the assumption that the directions of principal stress and principal 

strain remain coincident. Even though cracks are smeared, and stress and strain values are 

averaged, consideration is also given to the local stresses and strains at cracks. The theory 
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consists of three sets of relationships: compatibility, equilibrium, and constitutive 

relationships. The stress-strain relationships (constitutive relationships) were derived 

empirically from tests of 30 reinforced concrete panels subjected to uniform in-plane 

normal and shear stresses as shown in Figure 3.1. Since then, the constitutive 

relationships of the theory have been validated by more than 200 reinforced concrete 

panel element tests.  

 

 

3.2.1 Assumptions 

Key assumptions made in the MCFT include: 

(1) Reinforcement is uniformly distributed across the element. 

(2) Cracks are smeared and able to rotate. 

(3) Loads are applied uniformly on the element. 

(4) Formulations are based on average stresses and strains over a distance that 

includes several cracks. 

(5) The direction of principal strain is the same as the direction of principal stress. 

(6) Independent of loading history, there is a unique stress state for each strain state. 

(7) Perfect bond between the reinforcement and the concrete exists. 

(8) Shear stresses on the reinforcement are negligible. 

Figure 3.1 Panel Element PV20 Tested at the University of Toronto (Vecchio and  
      Collins, 1986) 
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Figure 3.2 Average Concrete Strains (Wong and Vecchio, 2002) 

(9) Average tensile stress in the concrete is limited to the reserve strength of the 

reinforcement at the cracks. 

(10)  Independent constitutive relationships are considered for concrete and 

reinforcement. 

3.2.2 Compatibility Relations 

Under external loads, the concrete component may experience normal and shear strains 

as shown in Figure 3.2. 

 

 

Compatibility requires that any deformation experienced by the concrete must be 

identical to the deformation experienced by the reinforcement, as perfect bond between 

the reinforcement and the concrete is assumed. Therefore, for non-prestressed 

reinforcement, the average strain in the reinforcement is equal to the average strain in the 

concrete. Although the MCFT can handle any number of reinforcement components and 

orientations, in the formulation of the proposed procedure, only two orthogonal directions 

are considered: x (longitudinal) and y (transverse). Thus, the compatibility equations 

become as follows:  

x cx sxε ε ε= =                  (3.1) 

y cy syε ε ε= =                     (3.2) 
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where xε and yε  are element total strains, cxε and cyε are concrete total strains, and 

sxε and syε are reinforcement total strains. 

If the average element total shear strain is also known, with the aid of a Mohr’s circle of 

strain (Figure 3.3), the total average principal tensile and compressive strains can be 

calculated as follows:  

 

2 21 ( )
2 2

x y
c x y xy

ε ε
ε ε ε γ1

+
= + × + +    (3.3) 

2 2
2

1 ( )
2 2

x y
c x y xy

ε ε
ε ε ε γ

+
= − × + +    (3.4)  

 

From the Mohr’s circle of strain, the orientation of the average principal tensile strain is 

1tan
2

xy

x y
ε

γ
θ

ε ε
−

⎡ ⎤1
= × ⎢ ⎥

−⎢ ⎥⎣ ⎦
                        (3.5) 

It should be remembered that, in the MCFT, the inclination of the principal strain field, 

εθ  is assumed to be equal to the inclination of the principal stress field, σθ . Thus,  

ε σθ θ θ= =                  (3.6) 

3.2.3 Equilibrium Relations 

Under externally applied stresses, the concrete and reinforcement components may 

experience stresses as shown in Figure 3.4. 

Figure 3.3 Mohr’s Circle of  
       Average Strains 
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Figure 3.4 Free Body Diagram of a Reinforced Concrete Element Showing Average  
      Stresses (Wong and Vecchio, 2002) 

 

 

Equilibrium of forces requires that the resultant of the externally applied normal stresses 

in the x-and y-direction, ( xσ , yσ ), be resisted by average concrete stresses ( cxf , cyf ) and 

average reinforcement ( sxf , syf ) stresses in the x- and y-directions. Equilibrium of 

moment requires that the externally applied shear stress ( xyτ ) be entirely balanced by an 

average shear stress ( cxyv ) in the concrete. No dowel action is taken into account in this 

equilibrium. It will be added explicitly into the global frame analysis algorithm of 

analysis procedure developed. 

These equilibrium conditions can be summarized as follows: 

x cx x sxf fσ ρ= + ×                 (3.7) 

y cy y syf fσ ρ= + ×              (3.8) 

xy cxyvτ =                  (3.9) 

where xρ and yρ are the smeared reinforcement ratios in the x- and y-directions. 

The average concrete stresses can be calculated by making use of the Mohr’s circle of 

stress as shown in Figure 3.5. 



 74

 

( )1 cot 90cx c cxyf f v θ= − × −     (3.10) 

( )1 tan 90cy c cxyf f v θ= − × −     (3.11) 

 

 

 

3.2.4 Constitutive Relations 

Constitutive relations are required to associate average stresses with average strains for 

both the concrete and the reinforcement. They were derived from a comprehensive series 

of panel element tests (Vecchio and Collins, 1986). 

3.2.4.1 Concrete in Compression 

During the panel element tests (Vecchio and Collins, 1986), it was found that the average 

stress-strain relations in cracked reinforced concrete are substantially different than those 

obtained from uniaxial element tests. That is, when simultaneously subjected to high 

tensile strains in the direction normal to the compression, cracked concrete exhibited 

softer and weaker response compared to uncracked uniaxially compressed concrete. This 

led to the so-called compression softening formulation (Figure 3.6). 

f’c 
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εcε0 

fc2 

fc2 

ε2 ε1 
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εc2 

fc2 

fc2 

Figure 3.6 Stress-Strain Relationship for Cracked Concrete in Compression (Vecchio  
      and Collins, 1986) 

Figure 3.5 Mohr’s Circle of  
      Average Stresses 
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In the original 1982 formulation, based on 30 panel tests, both the strength and strain 

were softened as follow: 

1

0

1 1
0.8 0.34

d
c

β ε
ε

=   ≤  
− ×

           (3.12) 

where p d cf fβ ′= ×                                 (3.13)  

and p dε β ε0= ×            (3.14)  

The MCFT uses the Hognestad parabola to relate strains with stresses as follows: 

 
2

2 2
2 2 c c

c p
p p

f f
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ε ε⎢ ⎥= × × −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
          (3.15) 

In the equations above, f’c is the concrete cylinder compressive strength and ε0 is the 

strain corresponding to f’c. 

3.2.4.2 Uncracked Concrete in Tension 

The pre-cracking response of concrete is modeled as a linear response. 

1 1c c cf ε= Ε ×           for  10 c crε ε≤ ≤             (3.16) 

where cr
cr

c

f
E

ε =   ;  2 c
c

fE
ε0

′
= ×  and 0.33cr cf f ′= ×                    (3.17; 3.18 and 3.19) 

In the equations above, cE is the initial tangent modulus of the concrete in compression, 

and crf  and crε  are the cracking stress and strain, respectively. 
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Figure 3.7 Stress-Strain Relationship for Concrete in Tension (Vecchio and Collins, 1986) 

3.2.4.3 Cracked Concrete in Tension 

As observed from the panel element tests, significant tensile stresses were carried by the 

concrete between the cracks even at very high values of average tensile strain. This 

observation led to the so-called tension stiffening formulation (Figure 3.7).  
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11 200
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+ ×

   for relatively small elements.   1c crε ε>     (3.20) 

1
11 500

cr
c

c

ff
ε

=
+ ×

  for larger elements.   1c crε ε>        (3.21) 

3.2.4.4 Reinforcement in Tension or Compression 

The reinforcement response in compression or tension is represented by a bilinear 

relationship between the average strains and stresses as follows: 

si si sif E ε= ×    for   0 si yiε ε≤ ≤      (3.22) 

si yif f=     for       yi siε ε≤       (3.23) 

where the subscript i refers to either the x- or y-component of reinforcement, sif  is the 

stress, and yif  is the yield stress. Figure 3.8 depicts the resulting reinforcement response. 

fc1 

εc1εcr 

fc1

fc1 

εc1
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Figure 3.8 Stress-Strain Relationship for Reinforcement (Vecchio and Collins, 1986) 
 

3.2.5 Local Crack Conditions  

As described above, compatibility, equilibrium and constitutive relations were derived 

using average stress and strain values. However, it must be ensured that the average 

stresses are compatible with the condition of the cracked concrete. 

In Figure 3.9(a), the average stresses at a section between cracks perpendicular to the 

tensile principal strain are depicted, while in Figure 3.9(b), the local stresses on a free 

crack surface are shown. 

 

 

 

 

 

fsi 

Esi

1

fyi 

εyi 
εsi 

Figure 3.9 Stresses of a Reinforced Concrete Element: (a) Average Stresses;  
      (b) Local Stresses at Crack (Wong and Vecchio, 2002) 
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Tension stiffening mechanisms allow cracked concrete to carry average tensile stresses. It 

is assumed that concrete carries no tensile stress at the crack; therefore, the average 

tensile stress must be carried by an increase in the reinforcement stresses at the crack. 

This is limited by the reserve capacity of the reinforcement, i.e., ( )yi sif f , for which the 

following equation must be satisfied:   

   2 2
1 cos sinc x yx sx y yy syf f f f f                         (3.24) 

where x  and y  are the reinforcement ratios, yxf  and yyf  are the yield stresses, sxf  and 

syf  are the stresses in the reinforcement in the x- and y-directions, and is the inclination 

of the principal tensile stress. 

Local increases in the reinforcement stresses, which are required by the above equation, 

can be calculated by static equilibrium in the direction normal to the crack surface 

(Figure 3.9(b)). The resulting equation becomes 

     2 2
1 cos cos 90c x scrx sx y scry syf f f f f                            (3.25)   

Local increases in the reinforcement stresses usually cause interface shear stresses to 

develop on the crack surface because the reinforcement is generally crossed by a crack at 

a skew angle. These shear stresses can be statically determined from Figure 3.9(b), as 

follows: 

       cos sin cos 90 sin 90ci x scr x sx y scr y syv f f f f                       (3.26) 

where civ  is the shear stress along the crack surface, and scrxf  and scrxf  are the local 

stresses in the reinforcement in the x- and y-directions. 
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Figure 3.10 Transmitting Shear Stresses across Crack by Aggregate Interlock (Vecchio  
         and Collins, 1986) 

The amount of interface shear stress that can be carried by the concrete is limited to the 

so-called aggregate interlock mechanism which loses its efficiency as the crack width, w , 

increases or the maximum aggregate size, a , decreases (Figure 3.10).  

 

 

Based on the analysis of aggregate interlock by Walraven (1981), the MCFT limits the 

interface shear stress to the following value: 

0.18
240.31

16

c
ci

f
v w

a

′×
≤ ×

+
+

  ( )in mm and MPa             (3.27) 

If this value is exceeded, shear slip along the crack surface occurs; this deformation 

component is not explicitly considered by the MCFT. For this reason, in case of 

exceedance, the principal tensile stress is reduced until civ equals its maximum value.  

The average crack width, w , can be taken as the product of the average concrete tensile 

stress and the average crack spacing perpendicular to cracks, mS θ . 

1c mw s θε= ×               (3.28) 

The average crack spacing depends on the crack control characteristics of both the 

longitudinal (x) and transverse (y) reinforcement, which can be taken as 

fci vci 

vci fci 

a

w 
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cos sinm

mx my

s

s s

θ θ θ
1

=
+

              (3.29) 

where mxs  is the average crack spacing that would result if the element was subjected to 

longitudinal tension, while mys is the average crack spacing that would result if the 

element was subjected to transverse tension. 

3.3 Disturbed Stress Field Model (DSFM) 

The Disturbed Stress Field Model (Vecchio, 2000) is an advanced reformulation of the 

MCFT that was specifically developed to address reduced accuracy encountered in the 

MCFT under specific circumstances by extending the MCFT in several aspects. 

Experience with the MCFT for over 20 years has shown that the MCFT underestimates 

the shear strength and stiffness of panels containing heavy amounts of reinforcement in 

both directions when subjected to biaxial compression and shear (e.g., Panel PV23 shown 

in Figure 3.11(a)). In addition, the shear strength and stiffness of panels containing light 

amounts of transverse reinforcement are overestimated by the MCFT (e.g., Panel PB20 

shown in Figure 3.11(b)). 

 
These inaccuracies were believed to be partly connected to the assumption of the 

principal stress and strain axes being collinear. Examination of test data revealed that the 

direction of principal stress lags behind the direction of principal strain in some cases 
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                    (b) Panel PB20 (Vecchio, 2000) 
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Figure 3.12 Deviation of Principal Stress and Principal Strain Directions (Vecchio, 2000) 

(Figure 3.12).  This observation led to the removal of the restriction found in the MCFT 

that the principal stress and strain directions must be coincident. This was achieved by 

the explicit inclusion of crack slip deformations in the compatibility relations of the 

DSFM. Through the consideration of these crack slip deformations, it also became 

possible to eliminate the complex crack slip check required by the MCFT. 

 

 

In addition, the DSFM incorporated improved constitutive relations for both concrete and 

reinforcement. 

3.3.1 Compatibility Relations 

Based on the panel element tests, the change in the principal stress direction was usually 

observed to lag behind the change in the principal strain direction (Figure 3.12). This is 

attributed to the way that the stress and strain fields developed. The total or apparent 

strains emerge as a response to both continuum strains (Figure 3.2) and discontinuous 
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shear slip (Figure 3.13), while the concrete stresses emerge as a response to only 

continuum strains caused by applied stresses.  

To take this phenomena into account, the DSFM decomposes the total strains into net 

concrete strains, ,cx cyε ε  and cxyγ , and concrete crack slip strains, ,s s
x yε ε  and  s

xyγ . 

Therefore, 

s
x cx xε ε ε= +              (3.30) 

s
y cy yε ε ε= +             (3.31) 

s
xy cxy xyγ γ γ= +             (3.32) 

With the help of the Mohr’s circle of strain, the principal strains are calculated as follows: 

2 21 ( )
2 2

cx cy
c cx cy cxy

ε ε
ε ε ε γ1

+
= + × + +           (3.33) 

2 2
2

1 ( )
2 2

cx cy
c cx cy cxy

ε ε
ε ε ε γ

+
= − × + +          (3.34) 

It should be noted that the principal strains are obtained using net concrete strains in the 

DSFM as opposed to total strains in the MCFT. 

From the Mohr’s circle of strain (Figure 3.3), the orientation of the average principal 

tensile strain is 

1tan
2

cxy

cx cy
σ

γ
θ

ε ε
−

⎡ ⎤1
= × ⎢ ⎥

−⎢ ⎥⎣ ⎦
           (3.35) 

Calculated using net concrete strains, σθ  corresponds to the inclination of the stress field 

as opposed to the strain field in the MCFT. Therefore,  
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Figure 3.13 Deformations due to Crack Shear Slip (Vecchio and Wong, 2002) 

σθ θ=              (3.36) 

The concrete crack slip strains, ,s s
x yε ε  and  s

xyγ  are calculated from the average crack 

slip strain, sδ , which is defined by 

s
s

ms θ

δ
γ =                 (3.37) 

where ms θ  is the average crack spacing defined by Eq. 3.29. 

 
 

The average crack slip strain, sδ , can be calculated by the expression of Walraven (1981) 

as follows: 

0.8 0.7071.8 (0.234 0.20)
ci

s
cc

v
w w f

δ − −=
× + × − ×

         (3.38) 

where civ  is the interface shear stress as defined by Eq. 3.27, w  is the average crack 

width as defined by Eq. 3.28, and ccf  is the concrete cube strength which may be taken 

as  

1.2 ′= ×cc cf f        where cf ′  is the concrete cylinder strength.     (3.39) 

y

x

θ
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2

δs
s

 w 
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Although the DSFM can handle any number of reinforcement components and 

orientations, in the formulation of the proposed analysis procedure, only two orthogonal 

directions are considered: x-direction (longitudinal) and y-direction (transverse). Thus, 

the compatibility equations become as follows:  

sx xε ε=             (3.40) 

sy yε ε=              (3.41) 

where xε and yε  are the element total strains, and sxε and syε are the reinforcement total 

strains in the x- and y-directions. 

3.3.2 Equilibrium Relations 

As with the MCFT (Figure 3.4), the equilibrium conditions can be summarized as 

follows: 

x cx x sxf fσ ρ= + ×             (3.7) 

y cy y syf fσ ρ= + ×             (3.8) 

xy cxyvτ =             (3.9) 

where xρ and yρ are the smeared reinforcement ratios, sxf  and  syf  are the reinforcement 

stresses in the x- and y-directions, xyτ  is the applied shear stress and cxyv  is the average 

shear stress in the concrete. 

As with the MCFT, there is no dowel action taken into account in this equilibrium. It will 

be added explicitly into the global frame analysis algorithm of the analytical procedure 

developed. 

The average concrete stresses can be calculated by making use of the Mohr’s circle of 

stress (Figure 3.5) as follows: 
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( )1 cot 90cx c cxyf f v θ= − × ° −            (3.10) 

( )1 tan 90cy c cxyf f v θ= − × ° −            (3.11) 

3.3.3 Constitutive Relations 

The constitutive relations of the DSFM are a revised and refined version of those of the 

MCFT, as explained in the following section. 

3.3.3.1 Concrete in Compression 

The compression softening relation used in the DSFM is similar to that in the MCFT, but 

is softened to a lesser degree.  

The Vecchio-A formulation, which is mainly used in the finite element programs, is as 

follow: 

0.8

1

2

1 1

0.1925 0.28
d

c

c

β
ε
ε

=   ≤  
⎛ ⎞

× − −⎜ ⎟
⎝ ⎠

          (3.42) 

For easier implementations in design procedures, it was reported that accuracy is not 

much reduced when using the Vecchio-B formulation which only requires principal 

compressive tensile strain as follows: 

1

0

1 1
0.1285 0.37

d
c

β
ε
ε

=   ≤  
⎛ ⎞

× −⎜ ⎟
⎝ ⎠

           (3.43) 

The DSFM softens both the compressive strength and corresponding peak strain as 

follows: 

p d cf fβ ′= ×                         (3.13) 
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 p dε β ε0= ×                     (3.14)  

3.3.3.2 Uncracked Concrete in Tension 

The pre-cracking response of concrete is modeled as a linear response. 

1 1 1c c cf ε= Ε ×            for  10 c crε ε≤ ≤           (3.16) 

where cr
cr

c

f
E

ε =   ;  2 c
c

fE
ε0

′
= ×  and 0.33 'cr cf f= ×                    (3.17; 3.18 and 3.19) 

In the above equations, cE is the initial tangent modulus of concrete in compression, and 

crf  and crε  are the cracking stress and strain, respectively. 

3.3.3.3 Cracked Concrete in Tension 

The DSFM considers post-cracking tensile stresses as a result of two independent 

mechanisms; namely, tension stiffening and tension softening.  

Tension stiffening refers to the presence of average tensile stresses in cracked concrete as 

a result of load transfer between concrete and reinforcement via bond stresses. Tension 

stiffening in the DSFM is based on the formulation of Bentz (2000 and 2005) who 

showed that the reinforcement ratio and bar diameter affect the degree of tension 

stiffening. His formulation was modified by Vecchio (2000) to account for multi-

directional reinforcement, as follows: 

 1
11

a cr
c

t c

ff
c ε

=
+ ×

             (3.44) 

where  3.6t dc t m= × ×   and  0.6dt =               (3.45) and (3.46) 

441 cos sinyx

bx bym d d
ρρ θ θ

××
= × + ×           (3.47) 



It should be noted that 1
a

cf  is limited to the amount which can be transmitted across 

cracks as defined by Eq. 3.25. 

Tension softening refers to fracture-associated mechanisms. This phenomenon may be 

significant in lightly reinforced concrete members such as beams containing no transverse 

reinforcement. The tension softening formulation used in the DSFM is as follows: 

 1
1 1 0b c cr

c cr
ch cr

f f ε ε
ε ε

⎛ ⎞−= × − ≥⎜ ⎟−⎝ ⎠
              (3.48) 

where 
2 f

ch
r cr

G
L f

ε
×

=
×

                         (3.49) 

where fG  is the facture energy of concrete taken as , and  is the 

reference length taken as  of Eq. 3.29. 

375 10fG −= ×  Ν / mm rL

mS θ

The resulting average tensile principal stress is the larger of the tension stiffening and 

tension softening stresses: 

(1 1max ,a b
c c )1cf f f=            (3.50) 

3.3.3.4 Reinforcement in Tension or Compression 

As shown in Figure 3.14, the reinforcement response in compression or tension is 

represented by a trilinear relationship between average strains and stresses as follows: 

si sif E ε= × si     for   0 si yε ε≤ ≤ i      (3.51) 

si yif f=   

)

    for      (3.52) yi si shiε ε ε≤ ≤

(si yi shi si shif f E ε ε= + × −    for < < shi si uε ε ε       (3.53) 
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0sif                   for        si u           (3.54) 

where the subscript i refers to either the x- or y-component of reinforcement, sif  is the 

stress, yif  is the yield stress, uif is the ultimate stress, si  is the strain, yi is the yield 

strain, shi  is the strain at the onset of strain hardening, and ui  is the ultimate stress. 

 

3.3.4 Local Crack Conditions  

As in the MCFT, it is assumed that the average tensile stress in the concrete must be 

carried by an increase in the reinforcement stresses at the crack, and is limited to the 

reserve capacity of the reinforcement for which Eq. 3.24 must be satisfied. 

   2 2
1 cos sinc x yx sx y yy syf f f f f                   (3.24) 

The local reinforcement stresses can be calculated by static equilibrium in the direction 

normal to the crack surface (Figure 3.9(b)). The resulting equation becomes             

     2 2
1 1 cos cos 90a b

c c x scrx sx y scry syf f f f f f                      (3.25) 

In Eq. 3.25, fc1
a refers to the concrete tensile stress due to the tension stiffening 

mechanism (Eq. 3.44), and fc1
b refers to the concrete tensile stress due to the tension 

softening mechanism (Eq. 3.48).  If the tension softening mechanism is governing (i.e., 
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Figure 3.14 Stress-Strain Relationship for Reinforcement 



 89

fc1
b > fc1

a), the left-hand side of Eq. 3.25 is taken as zero, thereby yielding scrx sxf f= and 

scry syf f= . 

Unlike MCFT, there is no need to limit the interface shear stress because the crack slip 

deformations are explicitly incorporated into the DSFM formulations. Elimination of this 

complex calculation gives the DSFM an advantage when implementing it into finite 

element programs. 

Defined by Eq. 3.26, the interface shear stress, civ , is still calculated and used in the slip 

strain calculations. 

( ) ( ) ( ) ( )cos sin cos 90 sin 90ci x scr x sx y scr y syv f f f fρ θ θ ρ θ ° θ °= × − × × + × − × − × −      (3.26) 

3.4 Brief Description of the Nonlinear Analysis Procedure 

3.4.1 Overview of the Proposed Analysis Procedure 

The nonlinear frame analysis procedure involves a total load, iterative, secant stiffness 

formulation. It is capable of performing analyses for the combined effects of both 

mechanical (axial load, shear force, bending moment) and thermal loads while 

considering several second-order effects: geometric nonlinearity, concrete dilatation, 

concrete confined strength and reinforcement dowel action. In addition, based on the 

MCFT or the DSFM, realistic constitutive relations are utilized which include such 

mechanisms as compression softening, tension stiffening, tension softening, crack slip 

check and element slip distortions. 

The calculation procedure consists of two interrelated analyses. First, a global frame 

analysis is performed to obtain the member end forces and displacements which are used 

to calculate member deformations. Using the calculated member deformations, sectional 

analyses are then performed to determine the sectional member forces. Both the global 

frame analysis and the sectional analyses are performed iteratively, thereby resulting in a 
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double iterative procedure. The analysis is carried on until the member end forces 

obtained from the global analysis and from the sectional analysis converge. 

3.4.2 Unbalanced Force Approach 

The nonlinear analysis procedure is based on the concept of unbalanced forces. In this 

approach, gross member properties are used (i.e., Ig, Eg and Ag) throughout the analysis. 

The basic analysis steps of the global frame analysis are listed below for a particular load 

stage: 

(1) Determine all the forces acting on the structure including mechanical loads, 

temperature loads, and compatibility restoring forces. 

(2) Perform a global linear-elastic frame analysis of the structure to determine the 

member end-actions, i.e., M, N and V. 

(3) Determine the axial and shear strain distributions for each member. 

(4) Perform sectional analysis iterations for each member to calculate the sectional 

forces. 

(5) Calculate the unbalanced forces (i.e., the differences between sectional and global 

forces) for each member. 

(6) Add the unbalanced forces to the compatibility restoring forces to be applied to the 

structure. 

(7) Return to step (1) until all unbalanced forces become zero. 

The analytical procedures summarized above are explained in detail in the following 

sections. 

3.4.3 Compatibility Restoring Forces 

Compatibility restoring forces can be defined as virtual static loads which are used to 

force member deformations in the frame analysis to match those in the nonlinear 

sectional analysis. This procedure is performed through global frame analysis iterations 

during which the unbalanced forces are added to the compatibility restoring forces until 



no additional unbalanced forces are produced by the members. Compatibility restoring 

forces are applied to the ends of each member in a self-equilibrating manner (Figure 

3.15). As a result, they do not affect reactions. 

 
Figure 3.15 Compatibility Restoring Forces in Element-Oriented Axes  

3.5 Nonlinear Thermal Analysis 

One of the most important analysis capabilities of TEMPEST was its ability to analyze 

reinforced concrete frames subjected to thermal loads. The analytical model used in this 

calculation was not restricted by any particular set of simplifying assumptions. The 

sectional analysis procedure used for this purpose could account for nonlinear material 

response and time- and temperature-dependent effects (Vecchio, 1987). 

At elevated temperatures, strength, stiffness and other mechanical properties of concrete 

and reinforcing steel are significantly affected. Therefore, strength-temperature 

dependence must be taken into account in determining a section’s response to load. In 

TEMPEST, eight modification factors were used for that purpose. Based on Eurocode 2, 

Part 1.2, Section 3 (1992), they were all built into the program as presented in Figure 

3.16. 
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Figure 3.16 Modification Factors due to Elevated Temperatures 
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For members under thermal load, TEMPEST determined nonlinear temperature profiles 

for each layer using standard one-dimensional heat flow principles. The temperature at 

the mid-depth of each concrete layer, reinforcing bar and prestressing steel component 

was determined using the following equation (Eq. 3.55).          (3-55) 

[ ] 2

22 1 2 1
2 1

1
1

cos( ) cos( )( ) 2 sin s

k n t
h

i
ns

T n T T n TT T x n xT T e
h n h

ππ π π
π

2− × × ×∞

=

⎧ ⎫⎡ ⎤′ ′× − − × −− × ⎪ ⎪⎛ ⎞⎣ ⎦= + + × ×⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑  

where iT  is the temperature (°C) at midpoint of component i, 1T  is the temperature at the 

bottom surface, 2T  is the temperature at the top surface, 1T ′  is the initial temperature at 

the bottom surface, 2T ′  is the initial temperature at the top surface, x is the distance 

( )mm  from the bottom surface to the midpoint of element i, t is the time elapsed ( )hr , 

and k is the coefficient of thermal conductivity ( )2mm hr  of concrete (Vecchio, 1987). 

An example of the resulting temperature gradient based on Eq. 3.55 is given in Figure 

3.17. 

Figure 3.16 Modification Factors due to Elevated Temperatures (continued) 
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Figure 3.18 Degrees of Freedom of a Typical Frame Member in Element-Oriented Axes

 

 

The thermal calculations presented above were retained in VecTor5 and the resulting 

thermal analysis procedure was verified through several simple applications. Having 

determined the temperature of the concrete layers and the reinforcing and prestressing bar 

layers, the newly implemented sectional calculations are performed with the thermally 

induced prestrains added to the elastic concrete and steel prestrains as explained in 

Section 3.7. 

3.6 Global Linear-Elastic Frame Analysis 

A typical plane frame member is shown in Figure 3.18. The nodes at the ends of the 

member are denoted as j and k. The degrees of freedom of the typical member i are 

indicated relative to the member-oriented local coordinate system axes, XM, YM and ZM in 

Figure 3.18. The member axes are rotated from global coordinate system axes, x, y, z 

about ZM axis by the angle γ. 

 

 

 

Figure 3.17 Nonlinear Temperature Gradient across Cross Section Depth 
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The elastic plane frame analysis routine used as the basis for the procedure is that 

described by Weaver and Gere (1990) with some additions (Vecchio, 1987). As in most 

elastic frame analysis programs, fixed-end forces are determined to define a load vector. 

A global stiffness matrix is assembled and inverted, and final deflections and force 

distribution are then calculated directly. 

The only significant difference is in the handling of fixed-end forces. In most elastic 

frame analyses, fixed-end forces are determined solely from the magnitude of the applied 

loads and from the properties of members on which they act. However, this direct 

approach cannot be used in a nonlinear analysis procedure based on the concept of 

unbalanced forces where the compatibility restoring forces must be added to the fixed-

end forces. As explained above, the compatibility restoring forces change based on the 

unbalanced forces calculated. As a result, the elastic frame analysis should be performed 

iteratively until the compatibility restoring forces converge (i.e., all unbalanced forces 

became zero). A flowchart indicating the global frame analysis steps is presented in 

Figure 3.19, where the newly added steps are shown with bold type and the modified 

steps with dotted lines. 
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Figure 3.19 Flow Chart for the Global Frame Analysis 
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3.6.1 Read Input Data 

A nonlinear frame analysis starts with reading input text files which include structure, 

load, job and auxiliary data files.  

3.6.2 Determination of Members for Shear Protection 

This algorithm is described in Section 3.11. 
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Figure 3.19 Flow Chart for the Global Frame Analysis (continued) 
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3.6.3 Calculation of Current Mechanical Fixed-end Forces 

The algorithm used to calculate the mechanical fixed-end forces is as described by 

Weaver and Gere (1990). The fixed-end forces must be recalculated at each load stage as 

the loads usually change from one load stage to another.  

3.6.4 Calculation of Thermal Gradients 

Thermal gradients are time-dependent and are calculated based on Eq. 3.55 for each 

concrete layer, reinforcing bar and prestressing steel component. When performing a 

temperature analysis, a time step is defined rather than a load step. At each time step, the 

nonlinear thermal gradients must be re-evaluated. 

3.6.5 Calculation of Initial Strains 

The initial strains for each reinforcing bar and prestressing steel component are calculated 

with Eq. 3.56. 

4slp p s TRS tε ε α= Δ + × × Δ              (3.56) 

where pεΔ is the locked-in prestrain for prestressing steel bars, sα  is the coefficient of 

thermal expansion of the reinforcement ( )1 C  ° , TRS4 is the modification factor for sα  

as shown in Figure 3.16, and tΔ  is the temperature change. 

3.6.6 Calculation of Dynamic Averaging Factors 

Averaging factors are used for averaging the unbalanced forces to increase computational 

speed. This calculation is described in detail in Section 3.10. 

3.6.7 Calculation of Shear Compatibility Strain 

A shear compatibility strain, ltcγ , as defined by Eq. 3.57, is calculated for each member 

based on the unbalanced shear force for the member determined from the previous global 
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frame iteration. For the first two global frame iterations, the unbalanced shear force is 

assumed to be zero. 

31.15pre
ltc ltc

c t

FUS DAVG
G A

γ γ= + × ×
×

          (3.57) 

where ltcγ is the shear compatibility strain to be used in the current global frame iteration, 

pre
ltcγ is the shear compatibility strain of the previous global frame iteration, FUS is the 

unbalanced shear force, Gc is the elastic shear modulus as defined by Eq. 3.58, At is the 

transformed cross-sectional area, and DAVG3 is the dynamic averaging factor for the 

shear compatibility strain as explained in Section 3.10.  As the shear area factor for a 

solid rectangular section is 1.2 and for a solid circular section 1.11, a factor of 1.15 is 

assumed in Eq. 3.57 for general cross sections. The shear modulus is calculated as 

2 (1 )
c

c
EG

v
=

× +
            (3.58) 

where Ec is the modulus of elasticity of concrete, and ν is the Poisson’s ratio which is 

initially assumed to be 0.15.       

3.6.8 Calculation of Compatibility Restoring Forces 

The axial, moment and shear compatibility restoring forces are determined for each frame 

member as follows: 

1
preAR AR FUA DAVG TURBO= + × ×           (3.59) 

2
preMR MR FUM DAVG= + ×           (3.60) 

32

12( )pre prec z
ltc

x

SR SR SR DAVG
L

γ × Ε × Ι
= + × − ×         (3.61) 

where ARpre, MRpre and SRpre are the axial, moment and shear compatibility restoring 

forces from the previous global frame iteration, FUA and FUM are the unbalanced axial 

force and bending moment, DAVG1, DAVG2 and DAVG3 are the dynamic averaging 
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factor described in Section 3.10, Iz is the moment of inertia of the cross section, and Lx is 

the length of the member. The term TURBO is used to increase the stability and speed of 

the unbalanced axial force calculation. It assumes a minimum value of 0.5 when the axial 

strain is in the range of zero. As the axial strain of the member increases or decreases, the 

value of TURBO increases to a predefined maximum value. The default maximum value 

is set to 2.0. / 2xSR L  is also added to fixed-end moments to satisfy equilibrium (Figure 

3.20).  

 

 

3.6.9 Calculation of Joint Displacements, Reactions and Member End-Actions 

A load vector {p}, consisting of fixed-end forces due to both applied mechanical loads 

and fictitious compatibility restoring forces, first is assembled. A structural stiffness 

matrix [k] is then created and assembled based on the procedure described by Weaver and 

Gere (1990). Decomposition and inversion is carried out according to the Gauss 

elimination procedure. Joint displacements {u} are determined through the partitioned 

matrix approach. Support reactions and member end-actions relative to the elemental 

axes are calculated based on Weaver and Gere (1990). This calculation procedure was 

taken directly from the original formulation of TEMPEST. 

     k u p        and          u k p
          (3.62) 

3.6.10 Update of Frame Geometry 

Based on the calculated displacements of the nodes, the new coordinates of all nodes are 

determined and new member lengths and direction cosines are calculated. This update is 

Figure 3.20 Compatibility Restoring Forces in Element-Oriented Axes 
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Figure 3.21 Longitudinal Strain Distribution  
                     across Cross Section  Depth 

performed at each global frame iteration in order to consider geometric nonlinearity. 

More details of this calculation are presented in Section 3.13.1. 

3.6.11 Perform Nonlinear Sectional Analyses 

This is one of the most important new algorithms implemented into the proposed 

analytical tool. The purpose of this calculation is to determine the nonlinear response of 

each section to imposed sectional deformations; that is, to find the resulting sectional 

forces M, N and V. This calculation can be performed using either of two different shear 

analysis modes: (1) shear-strain-based and (2) shear-stress-based. In both approaches, the 

longitudinal strain distribution is determined from the global frame analysis results. 

Using the updated nodal displacements and the initial member lengths, the change in the 

lengths of the members is calculated to find the axial strains at the mid-depths of the 

members, clε , as defined in Eq. 3.63 (Figure 3.21). The curvatures of the members, φ , are 

calculated from the two end rotations, iϕ  and 1iϕ + ,and the updated member lengths, L, as 

defined by Eq. 3.64. 

o
cl

o

L L
L

ε −
=       (3.63) 

1i i

L
ϕ ϕφ ++

=       (3.64) 

, 2
s

x top cl
hε ε φ= − ×      (3.65) 

, 2
s

x bot cl
hε ε φ= + ×      (3.66) 

where Lo is the initial length of the member, and hs is the cross section height. 

In the shear-strain-based analysis, the average shear strain for each member is calculated 

by Eq. 3.57 and is distributed across the cross section depth based on either of two 

different assumptions. The first available assumption is that the calculated ltcγ is uniform 

εx,top 

εx,bot 

εcl

ϕ hs / 2 

hs / 2 
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throughout the cross section depth, while the second one is that the calculated ltcγ varies 

parabolically with ltcγ being the value at the mid-depth of the cross section. In this 

approach, the strain in the transverse direction, yε , must converge to find the required 

axial stresses in the concrete layers, cxσ , at the end of the sectional calculations.  

In the shear-stress-based analysis, a uniform shear flow is assumed across the cross 

section depth based on Eq. 3.67 and the corresponding shear strains of the layers are 

calculated through sectional calculations. This approach is more demanding in terms of 

computation as both ltcγ and yε for each concrete layer must be determined to find the 

required axial stress in each concrete layer, cxσ . 

c

Vq
y

=              (3.67) 

By default, the shear-strain-based analysis (parabolic distribution) is selected due to its 

ability to continue the analysis into the post-peak regime and its fast and numerically 

stable execution. Both approaches are usable with either the MCFT or the DSFM (by 

default), as desired. 

Sectional analyses are performed iteratively for each concrete and steel layer present in 

each member. The purpose of the iterations performed for the concrete layers is to 

determine the axial and shear stresses in the shear-strain-based analysis as formulated in 

Section 3.7.2, or to determine the axial stresses in the shear-stress-based analysis as 

formulated in Section 3.7.4. At the same time the stresses in the reinforcing or 

prestressing bars are calculated as formulated in Section 3.7.5, and superimposed on the 

concrete response to obtain the sectional forces (i.e., N, V, M) as defined in Section 3.7.7. 

In addition, the local crack calculations are performed as defined in Section 3.7.6  These 

iterative calculations are performed during each global frame analysis iteration, creating a 

double iterative solution technique.  
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3.6.12 Calculation of Fixed-End Forces due to Dowel Resistance 

The dowel resistance provided by the reinforcing bars may be significant in some cases, 

for example, in beams or columns with low percentages of shear reinforcement. 

Therefore, this resistance is taken into account in the analysis calculation and is added to 

the fixed-end forces.  Details of this implementation are given in Section 3.13.2. 

3.6.13 Calculation of End Factors and Member Forces 

End factors are used to average the end actions of members to determine one axial force, 

one shear force and one bending moment value for each member. In order to account for 

a possible concentration of deformations at one particular end of the member, the end 

with higher actions is typically given a higher weighting in this averaging process. 

Details of this implementation are given in Section 3.8. 

3.6.14 Calculation of Unbalanced Forces 

Unbalanced forces are the differences between member forces calculated by the global 

frame analysis and those obtained from the nonlinear sectional analysis, as follows: 

seci iunbal iN N N= −              (3.68) 

seci iunbal iM M M= −             (3.69) 

seci iunbal iV V V= −             (3.70) 

In the case of a shear-stress-based analysis, there are no unbalanced shear forces 

produced as the shear force calculated by the global frame analysis is directly used to 

calculate shear flow in the sectional analyses. 

3.6.15 Calculation of Convergence Factors 

There are three options available for this purpose. The default option is ‘weighted 

displacements’. Details of this calculation are given in Section 3.9. 



 104

3.6.16 Update stress and Strain Histories 

Information such as the stresses and strains in the concrete layers and reinforcing and 

prestressing steel layers, concrete crack conditions, and parameters required for cyclic 

models are stored to the computer memory. This information is especially useful when 

performing cyclic, reversed cyclic or dynamic analysis with the developed analysis tool. 

However, in the case of monotonic loading, they are also used as some parts of the 

structure may be unloading or the neutral axes of the member sections may be shifting 

which may cause some layers to unload.  

3.6.17 Check for Ruptured Reinforcement  

All reinforcement strains are checked with their rupture strains to determine bar fractures. 

If a bar fracture is encountered, the stress in that bar is taken as zero for all subsequent 

load stages.  

3.6.18 Storage of Results 

The analysis results pertaining the current load stage are stored in an ASCII file which 

then can be viewed with a text editor such as Microsoft Windows Notepad. This file 

contains detailed information regarding structure deformations, reactions and concrete 

and reinforcement conditions. It is also possible to store the analysis results in a binary 

file. This file can be used as a seed file when starting an analysis from the damaged 

condition of the structure at the end of a previous analysis and applying a new load 

condition on the structure. 

3.7 Sectional Analysis 

The response of each reinforced or prestressed concrete section to thermal and 

mechanical loads is determined using a layered section approach in which the cross 

section is divided into a number of concrete layers, longitudinal reinforcing bar layers 

and longitudinal prestressing steel layers (Figure 3.22). The procedure requires supply of 

the concrete layer widths, ib  and heights, ih , reinforcing and prestressing steel areas, sjA , 

and basic mechanical properties of concrete, reinforcing steel (longitudinal and 

transverse) and prestressing steel (longitudinal) as shown in Figure 3.22. 



 

 

 

 

 

 

Figure 3.22 Input Parameters for Sectional Analysis of VecTor5  

In Figure 3.22, f’c is the concrete compressive strength, ρti and ρzi are the transverse and 

out-of-plane reinforcement ratios respectively, Sti is the spacing of the transverse 

reinforcement in the longitudinal direction, fyi and fui are the yield and ultimate stresses of 

the transverse reinforcement respectively, Esti and Eshti are the Young’s and the strain 

hardening moduli of the transverse reinforcement, εshti is the strain at the onset of strain 

hardening, Asj is the total cross-sectional area of the longitudinal reinforcement, and  Δεpj 

is the locked-in strain for a prestressing steel layer. 

Each concrete layer and steel element is then analyzed individually based on the MCFT 

or the DSFM, although sectional compatibility and sectional equilibrium conditions are 

satisfied as a whole. The main sectional compatibility requirement enforced is that plane 

sections must remain plane, while the sectional equilibrium requirements include 

balancing the axial force, shear force and bending moment which are calculated by the 

global frame analysis. An assumption regarding the shear strain or shear flow distribution 

is also made as explained below. In addition, the clamping stresses in the transverse 

direction are assumed to be zero, which permits the calculation of the total concrete 

strains in the transverse direction in a shear-strain-based analysis as explained in Section 

3.7.2, or the axial concrete stresses in a shear-strain-based analysis as explained in 

Section 3.7.4. It should be noted that the assumption of zero clamping stresses is not 

always true as explained in Section 1.2.4. 

In this layered representation of a cross section, the ‘plane sections remain plane’ 

hypothesis permits the calculation of the longitudinal strain in each layer of concrete, 
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Figure 3.23 Longitudinal and Shear Strain Distribution across Cross Section Depth 

reinforcing steel and prestressing steel as a function of the top and bottom fibre strains 

(Figure 3.21). It is further assumed that the strains in each layer are uniform and equal to 

the strains at the centre of the layer (Figure 3.23). Therefore, the longitudinal strain 

distribution (Figure 3.21) can simply be determined from the axial deformation and 

curvature values calculated by the global frame analysis as defined by Eq. 3.63 to 3.66.  

As for the consideration of shear, there are basically two different procedures available, 

as previously indicated: a shear-stress-based analysis, and a shear-strain-based analysis. 

Based on these two procedures, five different shear analysis options are available. They 

are: (0) Shear not Considered, (1) Uniform Shear Flow Distribution (Multi-Layer 

Analysis), (2) Uniform Shear Strain Distribution (Multi-Layer Analysis), (3) Parabolic 

Shear Strain Distribution (Multi-Layer Analysis), and (4) Parabolic Shear Strain 

Distribution (Single-Layer Analysis) (Figure 3.23). 

 

 

With option (0), the shear-related effects are neglected: that is, 0xyγ =  for all layers of all 

members. This will significantly simplify and speed up the calculations. This option may 

be useful when analyzing a structure which is clearly flexure-dominated or evaluating the 

effects of shear deformations after running one of the other options. 

3.7.1 Calculation of Longitudinal Reinforcement Ratios for Sectional Calculations 

In the application of the MCFT or the DSFM to the sectional analysis, smeared 

reinforcement ratios should be known for each concrete layer in order to form the 
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composite material stiffness matrix. Transverse reinforcement ratios are assigned to each 

concrete layer; therefore, no calculation is required to determine them. However, as the 

longitudinal reinforcement is defined as discrete bars for each cross section, it should be 

smeared within the concrete layer as a percentage.  

To smear the defined longitudinal reinforcement within the concrete layers, the 

reinforcement layers are assumed to be effective for each member in a tributary area of 

7.5 times the bar diameters as suggested by CEB-FIB (1990). Based on this approach, the 

effective concrete areas for each reinforcement are calculated and the smeared 

reinforcement ratios are then determined as the quotient of the total reinforcement area 

divided by the effective concrete area. The resulting reinforcement ratio is used directly 

in the sectional analyses when analyzing the related concrete layer. If there is a layer in 

which more than one layer of reinforcement is contributing, the reinforcement ratios are 

added for that particular layer and the material properties of the two contributing 

reinforcement layers are averaged based on their total areas. 

For clarification purposes, consider a cross section with three layers of reinforcement as 

shown in Figure 3.24. Assume the following properties: db1 = db2 = 10 mm and db3 = 20 

mm, A1 = 314 mm2, A2 = 157 mm2 and A3 = 1257 mm2, fy1 = fy2 = 400 MPa and fy3 = 

500 MPa. 

 

 
Figure 3.24 Determination of Smeared Reinforcement Properties for Each Concrete Layer 
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Based on the given properties, the smeared reinforcement ratios and averaged steel 

properties are calculated as follows: 

1
1

1

314 1.05%
100eff

trb

A
A

ρ = = =
× 300

 

2
2

2

157 0.52%
150eff

trb

A
A

ρ = = =
× 200

 

3
3

3

1257 2.79%
100eff

trb

A
A

ρ = = =
× 300 + 75× 200

 

157 400 1257 500 489
157

× + ×
= =

+1257yefff MPa for the overlapping reinforcement ratios. 

3.7.2 Shear-Strain-Based Analysis 

In the shear-strain-based analysis, the shear strain at the mid-depth of the cross section is 

determined from the global frame analysis based on the unbalanced shear force as 

defined by Eq. 3.57. 

The distribution of this strain to the concrete layers must be determined before starting 

the sectional calculations. For this purpose, one of two assumptions can be made: a 

uniform shear strain distribution, or a parabolic shear strain distribution (Figure 3.25). 

 

 Figure 3.25 Available Assumptions for Shear Strain Distribution: (a) Uniform Shear Strain;  
        (b) Parabolic Shear Strain 

(a) (b) 



The purpose of the shear-strain-based analysis is to calculate the longitudinal stress  

and shear stress 

cxσ

xyτ  of each concrete layer. Known from the global frame analysis are xε  

and xyγ , while required is . After finding , the unknowns,  and yε yε cxσ xyτ  can be found 

directly. 

In its most general form, the total strains are assumed to consist of: (1) concrete net 

strains (the strains that cause stress), (2) concrete elastic offset strains (due to lateral 

expansion, thermal, shrinkage and prestrain effects), (3) concrete plastic offset strains 

(due to cyclic loading and damage), and (4) concrete crack slip offset strains (due to shear 

slip as considered by the DSFM). The resulting vector becomes 

o p s
c c c  

x

c y

xy

ε
ε ε ε ε ε ε

γ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

         (3.71) 

As perfect bond between concrete and reinforcement is assumed, the total strain of the 

reinforcement equals the total strain of concrete, and consists of: (1) reinforcement net 

strains (the strains that cause stress), (2) reinforcement elastic offset strains (due to 

thermal and prestrain effects), and (3) reinforcement plastic offset strains (due to cyclic 

loading and yielding). The resulting vector becomes 

  
x

o p
s s s y

xy

ε
ε ε ε ε ε

γ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢
⎢ ⎥⎣ ⎦

⎥          (3.72) 

In order to calculate the principal strains in this layer, should be determined as both yε xε  

and xyγ are known. Any value can be assumed for  to start the iterative calculation 

process. In the analytical tool developed, for faster execution, the starting value of is 

taken from the previous sectional iteration. If this is the first sectional iteration, it is taken 

yε

yε
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from the previous load stage. If this is the first load stage, it is taken as zero. The 

principal strains,  and , can be calculated conveniently by means of a Mohr’s circle 

(Figure 3.5). The corresponding principal stresses, 

1cε 2cε

1cf  and 2cf , are calculated based on 

the MCFT or the DSFM as described in Section 3.2 and Section 3.3.  

The concrete material secant moduli are then calculated based on Figure 3.26(a) as 

follows: 

1
1

1

c
c

c

fE
ε

=             (3.73) 

2
2

2

c
c

c

fE
ε

=             (3.74) 

1

1 2

c c
c

c c

E EG
E E

×=
+

2              (3.75) 

As the MCFT and the DSFM consider reinforced concrete as an orthotropic material in 

the principal stress directions, it is necessary to formulate the concrete material stiffness 

matrix, [Dc]’, relative to those directions as follows: 

[ ]
1

2

0 0
0 0E

G

si×

0 0

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

c

c c

c

E
D

×

                         (3.76) 

The concrete material stiffness matrix can then be transformed to the global x and y axes 

as follows:        

[ ]
2 2

2 2

cos sin cos
sin cos cos

2 cos n cos sin cos
cT

θ θ θ
θ θ θ

θ θ θ θ θ θ

⎡ ⎤×
⎢ ⎥= ⎢ ⎥
⎢ ⎥− × × −⎣ ⎦

2 2

sin
sin

sin2×

θ
θ−        (3.77) 
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[ ] [ ] [ ] [ ]T
c c cD T D T′= × × c            (3.78) 

Figure 3.26 Determination of Secant Moduli: (a) Concrete; (b) Reinforcement 

 

 

Reinforcement secant moduli are calculated based on Figure 3.26(b) as follows: 

sx
sx

sx

fE
ε

=              (3.79) 

sy
sy

sy

f
E

ε
=               (3.80) 

Because the reinforcement components lie in two orthogonal directions, the global x and 

y axes, the reinforcement stiffness matrix becomes as shown below.  

[ ]
0 0

0
0 0

×⎡ ⎤
⎢= ×⎢
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x sx

s y

E
D

ρ
ρ 0
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⎥syE 0

0 0 0

×⎡ ⎤
⎢ ⎥= ×⎢ ⎥
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x sx

s y sy

E
D E

ρ
ρ          (3.81)          (3.81) 

The resulting composite material stiffness matrix is calculated as The resulting composite material stiffness matrix is calculated as 

[ ] [ ] [ ]cD D D= + s            (3.82) 

 fc 
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ciE  
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εsi
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siE
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      oD                    (3.83) 

In the equation above, both the  D matrix and the    vector are based on total strains, 

necessitating the deduction of o    which is a pseudo stress m atrix arising from the 

strain offsets shown in Figure 3.26: 

01

02
1

03

n
o o

c s
i i
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S
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

 
               
  

            (3.84) 
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                                  
            

     (3.85) 
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           (3.86) 

The layer stresses can then be calculated as follows: 
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   
  

          (3.87) 

Taking advantage of the assum ption that there are no clamping stresses in the transv erse 

direction, Eq. 3.87 can be expanded as 

21 22 23 02 0y x y xyD D D S                     (3.88) 
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This assumption perm its the calculation of the total strain in the transverse direction, 

which is the basic unknown in the procedure. 

21 23 02

22

x xy
y

D D

D

S 


    
           (3.89) 

Using the calculated y  value, the new  principal stresses are determ ined and the above 

calculations are repeated until the y  value converges or the specified m aximum number 

of iterations is reach ed (100 iteratio ns by default). At the en d of these calculation s, the 

required stress values are calculated as follows: 

11 12 13 01      x x y xyD D D S              (3.90) 

31 32 33 03xy x y xyD D D S                   (3.91) 

3.7.3 Approximate Single-Layer Analysis 

A new approxim ate analysis procedure was deve loped for very fast execution to get an 

estimate of the stru ctural behaviour by considering shear -related influences only 

approximately. According to th is analysis option, the above calculations including full 

shear effects are on ly performed for the con crete layer located at the m id-depth of the  

cross section where the shear strain  is ltc . The longitudinal reinforcem ent properties of 

the mid-depth layer are calculated by unifor mly smearing all longitud inal reinforcement 

present in the cross section to all concrete layers in order to avoid a mid-depth layer with 

no smeared longitudinal reinforcement. The shear stress, xy , is calculated in exactly th e 

same manner as explained above for the m id-depth layer. All layers are then analyzed 

based on flexural effects only (i.e., 0ltc  ), and the shear stres ses of all layers are 

assumed to be equal to the value calculated for the mid-depth layer. 

This analysis option runs very quickly and is  useful when analyzing a model for the first 

time to adjust load steps and to check the model and structural behaviour for input errors. 
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A second analysis with full shear consideration is recommended for a more thorough 

consideration of shear-related effects. 

3.7.4 Shear-Stress-Based Analysis 

In a shear-stress-based analysis, the shear flow, q,  acting on a cross section is determined 

from the global frame analysis based on the shear force, V,  calculated as below. 

c

Vq
y

=               (3.67) 

where cy  equals the section depth in which the transverse reinforcement is assigned; that 

is, the clear cover is assumed to not carry any shear flow. If the cross section does not 

contain transverse reinforcement, cy  is assumed to be two thirds of the section depth 

(Figure 3.27). 

 
Figure 3.27 Determination of Shear Flow for Concrete Layers  

The shear stress xyτ  is calculated, for concrete layers carrying shear stress, as follows: 

xy
i

q
b

τ =              (3.92) 

The purpose of the shear-stress-based analysis is to calculate the longitudinal stress, , 

within each concrete layer. Known from the global frame analysis are 

cxσ

xε  and xyτ  while 
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required are xyγ and . After finding yε xyγ  and , the unknown, yε xσ  can be calculated 

directly. This procedure requires more iterations than the shear-strain-based procedure as 

two unknowns are evaluated iteratively. It also includes a matrix inversion at each 

iteration, which further increases the computational demand. 

Consider again a single concrete layer which has a certain percentage of longitudinal and 

transverse reinforcement (Figure 3.23, shaded layer). In order to calculate the principal 

strains in this layer, both  and yε xyγ  are needed. Any values can be assumed to start the 

iterative calculation process. In the analytical tool developed, for faster execution, they 

are taken from the previous sectional iteration as explained in the shear-strain-based 

analysis. 

The principal stresses are found and the composite material stiffness matrix is assembled 

in the same way as formulated for the shear-strain-based analysis. 

The layer stresses can be evaluated by Eq. 3.83. However, the total strains have to be 

determined first, requiring the inverse of composite material stiffness matrix [ ]D . 

[ ] [ ] [ ]1− ⎡= × + = × +⎣
o Cσ σ⎡ ⎤⎣ ⎦

13

23

33

C
C
C

⎡ ⎤

⎢ ⎥⎣ ⎦

⎤⎦σ

yσ +

oDε σ

12

22

3

y

C C
C C
C C

ε ⎢= ⎢

         (3.93) 

11 01

21 02

31 2 03

x x

xy xy

S
S
S

ε σ

γ τ

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥⎥×⎢ ⎥ ⎢ ⎥⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

         (3.94) 

From the matrix above, xε  can be expressed as follows: 

( ) ( )11 01 02 03y yC S Cε σ σ= × × + × ( xτ + )S12+ 13+x xC S+        (3.95) 
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Taking advantage of the assumption that there are no clamping stresses in the transverse 

direction (i.e., ), the axial stress of the concrete can be easily found rearranging Eq. 

3.95 as follows: 

0yσ =

( ) ( )12 02 13 03
01

11

x xy
x

C S C S
S

C
ε τ

σ
− × − × +

= −         (3.96) 

Using the calculated xσ  value, the two unknown values can now be calculated as 

( ) ( ) (21 01 22 02 23 03y x xyC S C S Cε σ τ= × + +  × + × + )S

)S

       (3.97) 

( ) ( ) (31 01 32 02 33 03xy x xyC S C S Cγ σ τ= × + + × + × +         (3.98) 

Using the calculated  and yε xyγ  values, the new principal stresses are determined and the 

above calculations are repeated until convergence of  and yε xyγ  are achieved or the 

specified maximum number of iterations is reached (100 iterations by default). At the end 

of these calculations, the xσ  value can then be taken as the resulting longitudinal stress of 

the concrete layer. 

3.7.5 Reinforcement Response 

The reinforcement response must be superimposed on the concrete response to determine 

the necessary nonlinear sectional forces. For this purpose, the reinforcement strains 

should first be determined. Two reinforcement components are considered in the analysis 

procedure developed: longitudinal and transverse reinforcement.  

In the most general case, the longitudinal reinforcement strain is composed of: (1) net 

strain  (i.e., the strain that causes stress), (2) prestrain offset strains  (due to 

prestressing), (3) elastic offset strains  (due to thermal effects), and (4) 

netε pεΔ

4s T RSα × Δ × Τ
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plastic offset strains p
sε   (due to cyclic loading and yielding). The resulting strain 

becomes 

4net p
si p T RSε ε ε α ε= − Δ + × Τ +s × Δ s           (3.99) 

where TRS4 is the modification factor for sα  as shown in Figure 3.16. The total strain siε  

for each reinforcing or prestressing bar can be conveniently determined from the 

longitudinal strain distribution given in Figure 3.23. In this calculation, the strain values 

corresponding to the centre of the bar are considered. 

As for the transverse reinforcement, the total strain is similarly decomposed into its 

components. The only difference is that no prestrains are considered for the transverse 

reinforcement. 

4net p
yi yi s yiSε ε α ε= + × Δ +T TR×                               (3.100) 

After determining the net strains for the reinforcement components, the corresponding 

stresses are calculated using the tri-linear reinforcement response described in Figure 

3.14.  

3.7.6 Local Crack Calculations 

As explained in Sections 3.2.5 and 3.3.4, the MCFT and the DSFM require the 

consideration of local crack conditions. The purpose of this calculation is to determine 

the reinforcement stress and strain values at the cracks and to make sure that the average 

concrete stresses can be transmitted across the cracks by the reserve capacity of the 

reinforcement. In addition, the shear stresses vci developed at the crack interface are 

calculated.  

The local crack calculations are performed using a newly implemented subroutine during 

each sectional analysis iteration for each concrete layer. A flow chart of this subroutine is 

presented in Figure 3.28. 
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As indicated by Figure 3.28, the local crack calculations start by assuming a small value 

(1x10-9) for the incremental strain, Δε1cr. The smeared longitudinal and transverse 

reinforcement strains at the crack are then calculated by Eq. 3.101 and Eq. 3.102, 

respectively. 

2
14 cnet p

scri p s s crT RS os                    

in

            (3.101) 

2
14 snet p

ycri yi s yi crT TRS                             (3.102) 

Through use of the calculated strains, the corresponding longitudinal and transverse 

reinforcement stresses are calculated as described in Sections 5.4.4.1 and 5.4.4.2, 

respectively. If Eq. 3.25 is not satisfied, the incremental strain value is adjusted and the 

same calculations are repeated until satisfactory convergence is achieved or the maximum 

number of iterations (currently 300) is reached. As the final step, the interface shear stress 

vci is calculated through the use of Eq. 3.26.  

Because the local crack calculations are performed for each concrete layer in each 

member at each sectional analysis iteration based on an iterative formulation as explained 

Initialize Variables 

∆ε1cr=0.0 and εinc=1x10-9 

Add εinc to ∆ε1cr 

Calculate Smeared 
Long. Reinf. Strain and 

Stress at the Crack 

Calculate Smeared 
Trans. Reinf. Strain and 

Stress at the Crack

Adjust εinc 

Calculate Vci 

    Figure 3.28 Flow Chart for the Local Crack Calculation Algorithm of VecTor5 
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= Max?
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above, the execution of this subroutine at each global frame analysis iteration increases 

the overall computation time significantly. Therefore, this calculation is performed once 

for every 20 global frame analysis iterations. For the iterations in which this calculation is 

not performed, the previously determined local crack calculation values are used. 

Considering a maximum number of 100 global frame analysis iterations, which is the 

default value, this calculation will be performed up to five times for each load stage.   

It is also necessary to make sure that the reserve capacity of the reinforcement is 

sufficient to transfer the average concrete tensile stresses, fc1, across cracks. This 

calculation is performed based on Eq. 3.24 for each concrete layer in each sectional 

analysis iteration of each global frame analysis iteration. If the reserve reinforcement 

capacity is found to be insufficient, the average principal tensile stress, fc1, is reduced 

accordingly.  

Moreover, the reserve capacity of each discrete reinforcing and prestressing steel layer is 

checked based on Eq. 3.24. This calculation is performed for each concrete layer during 

each sectional analysis iteration of each global frame analysis iteration. For the concrete 

layer in consideration, the contributing discrete steel layers are determined considering a 

tributary distance of 7.5 times the bar diameter as explained in Section 3.7.1. For the 

contributing steel layers, the right-hand side of Eq. 3.24 is calculated and the principal 

tensile stress of the concrete layer in consideration is limited to that value. 

3.7.7 Resultant Sectional Member Forces 

After determining both the concrete and reinforcement responses, the resultant sectional 

forces are obtained as follows: 

sec
1 1

ncl nsl

xi i i sxi s
i j

N b h fσ
= =

= × × + ×∑ ∑ jA                   (3.103) 

sec
1 1

ncl nsl

xi i i ci sxi sj sj
i j

M b h y f A yσ
= =

= × × × + × ×∑ ∑                   (3.104) 
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sec
1

ncl

xy i
i

V bτ
=

= × ×∑ ih                      (3.105) 

The calculated forces are returned to the global frame analysis algorithm where they are 

checked with the member forces obtained from the global linear-elastic frame analysis. 

The differences between the sectional and global calculated forces are the unbalanced 

forces; these are used to define the compatibility restoring forces. The objective of the 

global frame analysis is to ideally make all unbalanced forces zero before proceeding to a 

new load or time stage. 

3.7.8 Discussion of Shear-Stress- and Shear-Strain-Based Analysis Options 

One of the most rigorous and theoretically accurate procedures for determination of the 

sectional shear force is to perform a dual section analysis where two adjacent sections are 

selected and analyzed iteratively for the assumed shear stress distribution (Vecchio and 

Collins, 1988). The analysis ends when the assumed and calculated shear stress 

distributions converge. Although theoretically accurate, this approach takes significant 

computation time and has some stability issues as reported by Bentz (2000). As a result, 

this approach is not used in the analytical procedure developed here where two iterative 

analysis algorithms (global frame analysis and sectional analyses) are present and another 

double iterative procedure is not desired.  

Analyses conducted using the rigorous dual layer analysis (e.g., in programs SMAL and 

VecTor1) have often shown the shear flow distribution to be fairly uniform across the 

area between the top and bottom reinforcement (Vecchio and Collins, 1988). This 

observation led to the constant shear flow assumption of VecTor5 for much quicker 

computation. In this way the analysis of second section, and therefore the double iteration 

is not required, increasing the computation speed significantly. 

Experience has also shown that the shear strain through the section often varies in a 

nearly parabolic fashion, although it is somewhat dependent on the loading conditions 

and sectional details (Vecchio and Collins, 1988). This led to the assumption of a 

 120



 121

parabolic shear strain distribution in the VecTor5 analysis. In this way, the computation 

intensity and computation time decrease significantly as compared to the uniform shear 

flow assumption. The other, and perhaps the biggest, advantage of this method is that the 

analysis is very stable and continues into the post-peak regimes. Post-peak behaviour is 

necessary when determining the ductility of the structures and, therefore, one of the most 

important outputs which is sought as a result of a nonlinear analysis. 

For the reasons noted above, the shear-stress-based analysis option is more suitable for 

force-controlled analyses until the load capacity of the structure is reached. In the force 

controlled analysis, post-peak behaviour cannot be determined whether using either the 

shear-stress or strain-based analyses; therefore, the disadvantage of termination at the 

peak load level in the shear-stress-based analysis disappears. As for shear-strain-based 

analyses, they are recommended for deformation-controlled analyses where post-peak 

behaviour is needed. 

3.7.9 Average Crack Spacing Formulation 

An estimate of the average crack spacing is needed in the MCFT for the crack slip check 

and in the DSFM for the crack slip calculation. Therefore, a reasonable estimate of the 

average crack spacing for each reinforced concrete layer is essential for the sectional 

analyses. 

In the analytical procedure developed, a variable crack spacing formulation is newly 

adapted from Collins and Mitchell (1991) based on the CEB-FIB Code (1978). In 

contrast to the constant crack spacing, the variable crack spacing model considers the fact 

that the crack spacing becomes larger as the distance from the reinforcement increases. 

Thus, for uniform tensile straining (i.e., k2 = 0.25), the average crack spacing in the 

longitudinal and transverse directions can be estimated as follows: 

12 0.25
10

x bx
mx x

x

s ds c k
ρ

⎛ ⎞= × + + × ×⎜ ⎟
⎝ ⎠

                   (3.106) 



 122

12 0.25
10

by
my y

y

dss c k
ρ

⎛ ⎞= × + + × ×⎜ ⎟
⎝ ⎠

                   (3.107) 

where bxd  and byd  are the diameters of the reinforcing bars in the x- and y-directions, 1k  

is 0.4 for deformed bars and 0.8 for plain bars or bonded strands; other variables are 

defined in Figure 3.29. 

 
 

Based on the formulation above, each concrete layer may have different crack spacings in 

the longitudinal and transverse directions based on the reinforcement quantity and 

configuration. For analytical purposes, a maximum limit equal to the section depth, h, is 

applied to the transverse crack spacing. The resulting spacing for each concrete layer is 

printed out in the expanded structure data file for verification purposes. 

3.8 Member End Factors 

Average member forces are determined from the member end-actions calculated by the 

global frame analysis and used in the sectional calculations. If both ends of a member 

have the same end-actions, those values can directly be used for that member. However, 

the ends of a member usually have different values of bending moments. In this case, an 

appropriate averaging scheme for those two values is required. In this averaging, it is 

Figure 3.29 Parameters Influencing Crack Spacing (Collins and Mitchell, 1991) 
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important to conservatively account for the end with the higher value as local plastic 

hinging may be forming at that end.  

For this reason, two end factors (EFj and EFk) for each member are calculated for 

averaging purposes: one for end j and one for end k (Figure 3.30). In the proposed 

analysis procedure, the resultant member moment is calculated as follows: 

j j k kBM EF BM EF BM= × + ×                    (3.108) 

1.00i kEF EF+ =                      (3.109) 

To clarify the determination of the end factors, consider a member with end j and end k 

and assume that the bending moment at end j is higher than at end k.  

 

If all layers of member i are uncracked, the end factors are initially taken as 0.5. Under 

increased compressive straining, however, concrete damage due to crushing may be 

occurring at the end with higher bending moment. To take this into account, it is assumed 

that after a maximum compressive strain of -2.0 x 10-3, end factor EFj is gradually 

increased to 0.75 while end factor EFk is gradually reduced to 0.25 with increasing 

compressive strains up to -3.0 x 10-3. Afterwards, the 0.75 and 0.25 end factors are held 

constant (Figure 3.31). The assumed compressive strain values are selected so that when 

the CSA A23.3 Clause 10.1.3 stipulated concrete crushing strain of -3.5 x 10-3 is reached, 

the end factor of 0.75 will be in use for the end with the higher moment value.  

Figure 3.30 Member i with End Actions 
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Figure 3.31 Variation of Maximum End Factor for Uncracked Members 
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For cracked members, independent of the maximum concrete compressive strain, an end 

factor of 0.75 is assumed for the end with the higher bending moment while an end factor 

of 0.25 is used for the other end. 

Exactly the same calculation is performed for axial forces. For shear forces, an averaging 

factor of 0.5 is assumed at both ends. 

3.9 Convergence Factors 

Convergence factors are needed at the end of the global frame analysis and are 

determined based on the selected criterion. The first available criterion is unbalanced 

forces. According to this criterion, the convergence factor is calculated as follows: 

2 2 2

1 sec sec sec

11
3

i i i

i i i

n
unbal unbal unbal

i

N V M
CF

n N V M=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + × + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟× ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑                 (3.110) 

where 
iunbalN ,

iunbalV and 
iunbalM are the unbalanced forces defined in Eq. 3.68 to 3.70, n is 

the total number of members. 

The second option is weighted displacements. This criterion is the default option used in 

the analytical tool developed. Here, the convergence factor is determined as  
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( )
3 2

1

11
3

n
pre

i

CF Di Di
n

×

=

= + × −
× ∑                    (3.111) 

where Di is the nodal displacements and n is the total number of nodes. 

The third option is maximum displacements, which is not suitable for deformation-

controlled analysis as the maximum displacement may be the one which is applied to the 

structure. This criterion calculates the convergence factor as follows: 

max max

max

1
pre

pre

D DCF
D

⎛ ⎞−
= + ⎜ ⎟

⎝ ⎠
          (3.112) 

In the formulations above, the subscript pre signifies that the value obtained from the 

previous global frame iteration. 

When the specified convergence limit is achieved or the maximum number of iterations 

is reached, the global frame analysis completes the calculations related to the current load 

stage and moves on to the next load stage. 

3.10 Dynamic Averaging Factors 

In iterative numerical analyses, it is common to use an averaging scheme to ensure a 

gradual and stable convergence to the exact result. In most schemes, the value calculated 

in the previous iteration is averaged with the value calculated in the current iteration. In 

this averaging scheme, the factor used for averaging purposes must be selected. In 

general applications, a factor of 0.5 can be assumed to weight the two iteration outcomes 

equally.  

The smaller the averaging factor, the more weight is assumed for the previous value. For 

example, consider the calculation of a secant stiffness value, 2cE , in a particular 

reinforced concrete layer and assume that a second iteration is being performed. At the 

end of this iteration, the resulting value of 2cE is calculated as 
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2 1
2 2 2(1 )current ite ite

c c cE AVGF E AVGF E= × + − ×        (3.113) 

Smaller values for the averaging factor (0.1 0.5AVGF≤ < ) typically result in more 

stable convergence to the final result but tend to increase the number of iterations 

required, thereby increasing the computation time. Averaging factors greater than 0.5 

provide faster convergence but the analyses may be numerically less stable as the factor 

increases. As both stability and fast execution are main concerns, the optimum selection 

of this factor should be based on the convergence characteristics experienced in the 

current iteration. In other words, an ideal averaging factor would be the one that has the 

ability to change at each iteration depending on how smoothly the exact result is being 

approached. Based on this, if the exact result is approached gradually, the averaging 

factor would be increased for faster convergence. However, if the solution keeps 

overshooting and undershooting the exact result, the averaging factor would be reduced. 

To take this phenomenon into account, a dynamic averaging factor is used in the analysis 

procedure developed when averaging the unbalanced forces. In this calculation, each 

member has three averaging factors stored in the computer memory. Those factors are 

used when calculating: (1) unbalanced axial forces, (2) unbalanced bending moments, 

and (3) unbalanced shear forces, all of which should ideally have an exact value of zero 

at the end of the load stage. With the dynamic averaging scheme, if the unbalanced force 

is gradually decreasing, the averaging factor is increased for that member. If the 

unbalanced force keeps changing its sign, then the averaging factor is reduced. It is 

assumed that dynamic averaging factor can assume values between 0.1 and 1. By default, 

the dynamic averaging scheme is used in the proposed analysis tool. Examples of 

variation of unbalanced forces are presented in Figure 3.32(a) for the members critical in 

flexure and in Figure 3.32(b) for the members critical in shear. 
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Figure 3.32 Unbalanced Forces (a) Vecchio and Emara Frame in Section 4.7,  
         Member 74; (b) Duong Frame in Section 4.8, Member 61 

(a) (b) 
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Figure 3.33 A Reinforced Concrete Frame: (a) B- and D-Regions; (b) Bending Moment  
                    Distribution (Schlaich et al., 1987)

3.11 Shear Protection Algorithm 

The regions of a structure where the hypothesis of plane strain distribution (Hooke, 1678 

and Bernoulli, 1705) is valid are commonly referred to as B-regions (where B refers to 

beam) (Schlaich et al., 1987).  B-regions can be analyzed by sectional calculations such 

as those employed in the analytical tool developed. However, this method is not directly 

applicable to other regions where the strain distribution is significantly nonlinear; that is, 

near concentrated loads, corners, supports and other discontinuities. Such regions are 

commonly called D-regions (where D refers to discontinuity, disturbance, or detail). 

Modelling of D-regions with sectional analysis procedures typically produces overly 

conservative results. This deficiency is typically a result of direct strut action in the 

concrete, in the case of a support or a joint, where the load goes directly into the support 

or connecting beam or column without causing additional stresses in the stirrups or ties. 

In the case of a point load, significant compressive clamping stresses emerge under and 

adjacent to the point load, which significantly increase the shear strength of those 

regions. As examples, B- and D-regions are shown in Figure 3.33(a) for a reinforced 

concrete frame and in Figure 3.34 for a simply supported beam. It also happens that those 

disturbed regions usually have high sectional forces as shown in Figure 3.33(b). 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 3.34 B- and D-Regions of a Simply Supported Beam (Schlaich et al., 1987) 

 

 

 

 

Experience with VecTor5 has shown that D-regions are vulnerable to premature shear 

failures because both concrete strut action and clamping stresses are neglected in the 

sectional calculations. As a result, to account for this phenomenon in D-regions, an 

algorithm called shear protection was introduced into the proposed analysis procedure. 

This algorithm first determines the frame joints (i.e., connection of beams and columns) 

by checking the direction cosines of the members, and then locates the faces of the 

columns and beams. Starting from the face, the members which fall within distance 0.7 x 

h are then determined. Finally, the algorithm reduces the calculated shear forces of those 

members by 50 percent. In this calculation, the distance in which the shear force 

reduction is assumed (0.7 x h) is based on CSA A23.3-04 Clause 11.3. This shear force 

reduction is applied when the shear strains are calculated in the case of a shear-strain-

based analysis and when the shear flow is calculated in the case of a shear-stress-based 

analysis. In other words, this reduction does not change the static member end-actions; 

rather, it is used to reduce the shear strains or the shear flows in the sectional calculations 

so that a premature shear failure can be prevented. The reduction factor of 0.5 was 

determined as a result of a parametric study where different reduction ratios were used to 

simulate the experimental behaviour of a set of structures. It was first observed that a 

reduction factor of 0.75 works reasonably well. However, in later analyses, premature 

shear failures of D-regions were experienced in some of the analyses which were 

contrary to the experimental behaviour. Therefore, the reduction ratio was changed to 0.5 

in response to the observation that it better simulates the experimental behaviour. 
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The same reduction is performed for members near supports and point loads. As an 

example, a simple frame structure is shown in Figure 3.35. In this structure, the shear 

protection algorithm automatically determines the members marked with an asterisk (*) 

as suitable for shear force reduction. 

 

 

For verification purposes, the automatically determined members for shear protection are 

printed out in the expanded structure data file of VecTor5. Even though the shear 

protection is a default feature of the program, it can be turned off if so desired by the 

user. When using the shear protection feature, the reduction factor of 0.5 cannot be 

modified by the user to be consistent in all analytical predictions. 

3.12 Shear Failure Check 

One of the most important aspects of the analysis procedure developed is the use of 

unbalanced forces in calculating nonlinear frame deformations. Based on this approach, 

Figure 3.35 A Reinforced Concrete Frame with Shear Force Reduced Members 
          (shown with an asterisk) 
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unbalanced forces are calculated and added to the compatibility restoring forces which 

are then applied to the structure as if they were static joint forces. Self-equilibrating 

restoring forces cause member deformations in frame analysis to match those in the 

nonlinear sectional analysis. This procedure is performed through global frame analysis 

iterations during which unbalanced forces are ideally reduced to zero while both restoring 

forces and frame deformations increase. 

For a flexure-critical structure, under monotonically increasing applied deformations, the 

unbalanced force approach works as expected until the failure of the structure. In other 

words, in the post-peak regime, under increasing deformations, the members which are 

reaching their moment capacity start experiencing difficulty in carrying the current acting 

moment. In this case, greater unbalanced forces are produced, causing the frame 

deformations to increase resulting in more bending moment for the members in difficulty. 

Increased deformations may eventually cause the longitudinal tension reinforcement to 

rupture or the concrete in the compression zone to crush. When this happens, the member 

drops its load, failing under flexure. 

In case of a shear-critical structure, a similar calculation procedure is employed, using 

unbalanced shear forces found through the global frame analysis to impose more shear 

deformations until no more unbalanced shear forces are produced for the current load 

stage. In some cases, however, it was noticed that after the shear capacity of one of the 

members was reached, significant unbalanced shear forces were present at the end of 

each load stage, instead of ideally being zero. This phenomenon is closely related to the 

maximum number of global frame analysis iterations permitted because the specified 

convergence is not usually achieved before the maximum number of iterations is reached 

in such a situation. 

For clarification purposes, the analysis of the shear-critical frame tested by Duong et al. 

(2007) was repeated specifying a different maximum number of iterations (i.e., 100, 200 

and 400). The details of this frame and loading were presented in Section 2.3.6. The load-

deflection responses obtained are shown in Figure 3.36.  
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Consider the response for the analysis with 100 maximum iterations, which is the value 

used for the maximum number of iterations throughout this thesis. After the peak load, 

the gradually decreasing branch suggests that shear-related mechanisms are playing a 

significant role. Inspection of the output files revealed that both the left and right end of 

the first storey beam were critical in shear. Consider the right end of the beam which was 

slightly more critical. In Figure 3.37, the unbalanced shear and bending moment values 

are shown with respect to the acting shear force and moment values. 
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Figure 3.36 Load-Deflection Responses for Duong Frame 
                             (Before the Implementation of Shear Failure Check) 

Figure 3.37 Forces for Member 62 for Duong Frame in Figure 4.25 for 100 Global  
        Frame Analysis Iterations: (a) Shear Force; (b) Bending Moment      
        (Note: Second Storey Disp. = 2 x Load Stage - 2   (mm)) 

   

(a) (b) 
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It is obvious that, around load stage 14, this member had reached its shear force capacity. 

In such a situation, the global frame analysis should have reduced the acting shear force 

on the frame making sure that no significant unbalanced shear force was returned for all 

members at the end of each load stage. However, due to the insufficient maximum 

number of iterations specified, the reduction in the shear force acting on the frame took 

place rather gradually with unbalanced shear forces reaching up to 75 percent of the total 

shear force for Member 62. Such behaviour is obviously unacceptable.  

Consider now the responses obtained for maximum number of iterations 200 and 400 in 

Figure 3.38. As the maximum number of iterations increases, the faster reduction in the 

shear force acting on the frame and the unbalanced shear force were realized.  
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Figure 3.38 Forces for Member 62 for Duong Frame, in Figure 4.25, for 200 and 400  
        Global Frame Analysis Iterations: (a) Shear Force; (b) Bending Moment     
        (Note: Second Storey Disp. = 2 x Load Stage - 2   (mm)) 
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However, the increase in the specified maximum number of iterations increases the 

computation time significantly (Figure 3.39). For the purpose of solely dealing with such 

a situation, the specification of a large number of maximum iterations may be 

unnecessary for general analyses. In addition, even when using the maximum number of 

iterations of 400, considerable unbalanced shear still exists around the load stage 20 as 

shown in Figure 3.38(a). It should be noted that the response investigated here was one of 

the most extreme cases in which the structure showed a shear-dominated behaviour with 

significant flexural effects encouraging the frame to carry loads flexurally into the post-

peak regime.  

0

2

4

6

8

10

12

100 200 300 400 500
Max No of Iterations Specified

C
om

pu
ta

tio
n 

Ti
m

e 
R

eq
ui

re
d 

(M
in

)

`

 

 

To deal with such situations, a shear failure check was introduced into the analytical 

procedure developed. Based on this calculation, if there is an unbalanced shear force on a 

member greater than a certain percentage of the acting shear force at the end of more than 

one load stage, that member is intentionally failed by reducing its moment of inertia to 

essentially zero. The frame, however, may still continue to carry load based on the 

conditions of the other members. This check was introduced to provide conservative 

estimates in the post-peak ductilities of shear-critical structures in the cases where the 

specified maximum number of iterations turns out to be insufficient for the structure 

being analyzed. 

Figure 3.39 Computation Time Required for Duong Frame for Different Maximum  
        Number of Iterations Specified   
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The specification of different percentages (i.e., percentage of unbalanced shear force 

relative to the total acting shear force) to initiate the failure was determined to produce 

similar responses with slightly different failure displacements as shown in Figure 3.40. In 

such a situation, as the unbalanced shear force is expected to increase, the use of larger 

percentages will typically cause the failure to occur at a later load stage. It was deemed 

appropriate to use the value of 25% to be conservative in the cases where the specified 

maximum number of iterations becomes insufficient for the problem at hand. 

As is clear from Figure 3.40, two sudden shear failures were experienced in this analysis 

with the use of shear failure check algorithm. The first one occurred at the right end of 

the first storey beam (Figure 3.41). After that failure, all members of the first storey beam 

dropped their internal forces to zero as expected. The analysis carried on as the second 

storey beam was still resisting the acting forces. A second shear failure was then 

observed at the right end of the second storey beam after which only one cantilever 

column remained in resisting the applied displacement at the top (Figure 3.42). 

Throughout the analysis, the stability of the computation was not lost and the analysis 

carried on with acceptable convergence and minimal unbalanced forces.   
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Figure 3.40 Load-Deflection Responses for Duong Frame 
                    (After the Implementation of Shear Failure Check) 
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(a) (b) 
 

 

 

 

 

 

In the following chapters which discuss the application of the analytical procedure 

developed, the shear failure check algorithm detected the shear failures of some 

specimens that would have gone unnoticed with large unbalanced forces and gradually 

diminishing responses otherwise. The beneficial effects of this algorithm were 

particularly realized when analyzing shear-critical structures with flexural influences 

(e.g., DB0.53M in Section 4.6, Duong Frame in Section 4.8, Vecchio and Balopoulou 

Frame in Section 4.9, and Clinker Preheat Tower in Section 4.10). 

Figure 3.41 Deflected Shape of Duong Frame during the First Shear Failure:  
        (a) Before the Failure; (b) After the Failure 

(a) (b) 
Figure 3.42 Deflected Shape of Duong Frame during the Second Shear  

        Failure: (a) Before the Failure; (b) After the Failure 
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3.13 Second-Order Mechanisms 

3.13.1 Geometric Nonlinearity 

Changes in the geometry of a structure may significantly affect structural response. The 

geometry changes are caused by the loads acting on the structure and may lead to 

secondary moment effects, especially for slender structures (Figure 3.43). Also known as 

P-Δ effects or second-order effects, geometric nonlinearities may significantly reduce the 

load capacity of the structure while significantly increasing the deformations. Therefore, 

they are considered in the frame analyses performed by VecTor5. 

Based on the calculated displacements of the nodes, the new coordinates of all nodes are 

determined and new member lengths and direction cosines are calculated during each 

global frame analysis iteration. In the iterations following, the updated geometry of the 

structure is used taking into account the geometric nonlinearities. 

 

 

3.13.2 Reinforcement Dowel Action 

Dowel action refers to the resistance provided by reinforcing bars crossing a crack as the 

crack slips transversely. This resistance can significantly increase the shear strength and 

Figure 3.43 A Frame Structure under Gravity and Lateral Loads 
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post-peak ductility of some members such as beams with little or no transverse 

reinforcement. 

Dowel action is taken into account for each member through the introduction of resisting 

fixed-end moments. Consider a member with a reinforcing bar crossed by one 

perpendicular crack (Figure 3.44). The resisting moment, dM  can be calculated as 

 d dM V L= ×                       (3.114) 

where Vd is the dowel force, and L is the length of the element in consideration. 

 

 

 

The dowel force is calculated by taking the stiffness portion of the dowel force-dowel 

displacement formulation proposed by He and Kwan (2001). As a result, the dowel force, 

Vd, is found to be 

 

( )d s z s duV E I Vλ3= × × × Δ    ≤              (3.115) 

4

64
b

z
dI π ×

=            (3.116) 

Figure 3.44 Dowel Resistance Mechanism: (a) Member Longitudinal View; (b) Member 
                    Cross Section 

(a) (b) 
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=  where 0.8c =                     (3.118) 

where Δs is the dowel displacement, sE is the stiffness of the reinforcing bar, bd  is the bar 

diameter, zI  is the moment of inertia of the reinforcing bar, λ  is a parameter comparing 

the stiffness of concrete to that of the reinforcing bar, ck  is the stiffness of the notional 

concrete foundation, and c  is an empirical parameter reflecting bar spacing. 

dV  is limited to the reserve capacity of the reinforcing bar defined by the following 

equation. 

21.27 '
remdu b c sV d f f= × × ×                     (3.119) 

rems y sf f f= −                       (3.120) 

where 
remsf  is the remaining stress capacity of reinforcing bar, yf  is the yield stress, and 

sf  is the current stress of the reinforcing bar. 

The dowel displacement is determined through the use of shear strains calculated by the 

sectional analysis algorithm. In this calculation, it is assumed that each reinforcing bar is 

affected by shear strains within its tributary area, i.e., 7.5 bd× . Therefore, the average 

values of the shear strains (
avgxyγ ) and crack spacing (

avgmxS ) in the longitudinal (x) 

direction are calculated in the tributary area for each of the reinforcing bars present. As a 

result, the dowel displacement is calculated to be 

avgs xy
π γ
λ

⎛ ⎞Δ = ×⎜ ⎟
⎝ ⎠

                    (3.121) 
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In a more general implementation that considers several reinforcing bars and several 

cracks perpendicularly crossing those bars, the equation for resisting dowel fixed-end 

moments becomes 

( )
1

avg
nsl

mx
d d

i

S
M V L

L=

= × ×∑                      (3.122) 

where nsl is the number of steel layers present in the cross section under consideration. 

In the equation above, the term 
avgmxS L  was used to account for the number of cracks 

crossing the reinforcing bars in each member. 

3.13.3 Concrete Dilatation (Poisson’s Effect) 

Under biaxial stress conditions, it is common to assume that Poisson’s effects are 

negligible for cracked concrete. However, if the concrete is uncracked or if the tensile 

straining in the cracked concrete is relatively small, the lateral expansion of concrete due 

to Poisson’s effects can account for a significant portion of the total strains. Therefore, 

these effects need to be taken into account. 

Poisson’s ratio, ijv , refers to expansion of concrete in the principal i-direction under 

compressive straining due to stress in the principal-j direction. Due to internal micro-

cracking, ijv  increases as the acting compressive stress increases, which causes concrete 

to expand. When confined by transverse or out-of plane reinforcement, the lateral 

expansion results in passive confining stresses that considerably improve the strength and 

ductility of the reinforced concrete under compression.  

In VecTor5, adjustable by the user, the default value for ijv  is taken as 0.15, while the 

default model for lateral expansion is adopted from Kupfer et al. (1969). As a result, the 

Poisson’s ratio under compression becomes as follows: 

0.5 0i j o p cjv v if ε ε=                                                             − × < <                 (3.123) 
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Figure 3.46 Variation of Poisson’s Ratio under Tensile Straining 

0.5cj
i j o cj p

p

v v if
ε

ε ε
ε

2⎡ ⎤⎛ ⎞−2×
⎢ ⎥= × 1+1.5× −1  ≤ 0.5         < − ×⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

               (3.124) 

In the calculation, an upper limit of 0.5 was assumed for numerical stability reasons 

(Figure 3.45). 

 
 

As shown in Figure 3.46, under tension, Poisson’s ratio, ijv  decreases linearly to zero 

from its initial value, νo, as follows: 

12 21 10 c crv v v if ε εο= =                                               < <                 (3.125) 

1
12 21 12

c
cr c

cr

v v v ifε ε ε
εο

⎛ ⎞
= = × 1−  ≥ 0                  <⎜ ⎟×⎝ ⎠

                 (3.126) 

 

 

 

 

 

Figure 3.45 Variation of Poisson’s Ratio under Compressive Straining 
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In the analysis procedure developed, concrete dilatation is treated in the sectional 

calculations as concrete elastic offset strains as proposed by Vecchio (1992). In the 

principal directions, these strains become 

 

 

1 12 2
o

c cvε ε= − ×       (3.127) 

2 21 1
o

c cvε ε= − ×         (3.128) 

 

 

Through the use of a Mohr’s circle of strain (Figure 3.47), the concrete elastic strains due 

to dilatation relative to the x- and y-axes can be found as   

( ) ( )1 2
1 1cos 2 cos 2
2 2

o
cx c cε ε θ ε θο ο= × × 1+ + × × 1−                  (3.129) 

( ) ( )1 2
1 1cos 2 cos 2
2 2

o
cy c cε ε θ ε θο ο= × × 1− + × × 1+                 (3.130) 

1 2sin 2 sin 2o
cxy c cγ ε θ ε θο ο= × − ×                    (3.131) 

These elastic strains due to lateral expansion are explicitly included in the sectional 

analyses and explained in detail in Section 3.7. 

3.13.4 Concrete Prestrains 

Concrete prestrains, such as shrinkage strains, are also considered as a load case and can 

be assigned to desired members. These prestrains are treated as elastic concrete offsets, 

i.e., o
cx shε ε=  and o

cy shε ε=  while 0o
cxyγ = , and are included in the sectional analyses 

explained in Section 3.7. 

Figure 3.47 Mohr’s Circle of Strain  
        for Determination of    

                    Elastic Strains 
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3.13.5 Out-of-Plane (Confinement) Reinforcement Calculations 

As mentioned above, lateral expansion causes passive confining pressures in the 

transverse and out-of-plane reinforcement which may considerably improve the strength 

and ductility of the concrete under compression.  

In the analytical procedure developed, the stress in the transverse reinforcement due to 

lateral expansion is inherently taken into account by the use of concrete elastic offset 

strains as explained above.  

However, as sectional calculations only consider in-plane reinforcement and loading 

conditions, stresses in the out-of-plane reinforcement must be calculated separately and 

supplied to the sectional analysis.  

In the most general form, the total strain in the out-of-plane direction is assumed to be 

generated by:  (1) concrete elastic offset strains (due to lateral expansion, thermal and 

shrinkage effects), and (2) out-of-plane reinforcement elastic offset strains (due to 

thermal effects). The resulting total strain in the out-of-plane direction becomes 

( )1 2
1 4 4o o

z c c sz z s csh c
c z s

E t TRS t TRC
E E

ε ε ε ρ α ε α
ρ

= × + + × × Δ × × + + Δ × ×
+ ×

   (3.132)  

The net out-of-plane reinforcement strain can then be found as   

4zs z st TRSε ε α= − Δ × ×                    (3.133) 

The stress corresponding to the net strain is calculated by a bilinear stress-strain relation 

as follows:    

sz z sz yzf E fε= × ≤              (3.134) 

3c sz zf f ρ= − ×                       (3.135) 
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where cE  is the initial tangent modulus of elasticity of concrete, 1
o

cε  and 2
o

cε  are 

defined by Eq. 3.127 and Eq. 3.128, zρ  is the ratio of out-of-plane reinforcement, szE  is 

the modulus of elasticity of the out-of-plane reinforcement, TRS4 is the modification 

factor for sα  as shown in Figure 3.16, yzf  is the yield strength of the out-of-plane 

reinforcement, and 3cf  is the resulting confining pressure.  

For simplicity of input, the modulus of elasticity of the out-of-plane reinforcement is 

assumed to be the same as that of transverse reinforcement. In addition, the strain 

hardening behaviour of the out-of-plane reinforcement is neglected. 

The resulting stress in the out-of-plane direction is taken into account in the sectional 

analyses when the concrete response is evaluated in compression depending on the 

confined strength criteria selected. The default criterion is based on the formulations of 

Kupfer et al. (1969) and Richart et al. (1928). Detailed information regarding this model 

can be found in Vecchio (1992). 
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CHAPTER 4 
MONOTONIC LOADING: VERIFICATION & APPLICATIONS 

4.1 Chapter Layout 

This chapter discusses the application of the proposed nonlinear static analysis procedure 

to previously tested structures, with the aim of verifying the newly implemented 

algorithms. The main focus in these applications is to verify the accuracy of the analytical 

procedures for shear-critical structures. Important considerations in nonlinear modelling 

are also discussed through the use of practical examples, with the aim of providing 

guidelines for general modelling applications. 

The structures considered include: two sets of twelve beams tested by Vecchio and Shim 

(2004) and Angelakos et al. (2001), three large-scale frame structures tested by Vecchio 

and Emara (1992), Duong et al. (2007) and Vecchio and Balopoulou (1990), and six 

large-scale shear walls tested by Lefas et al. (1990). Moreover, the clinker preheat tower, 

introduced in Section 1.1.3, is analyzed with the newly developed VecTor5, to ascertain 

any improvement over the old analysis procedure of TEMPEST. 

The chapter starts with a short discussion on the use of different material behaviour 

models and analysis options; the default options, used for all VecTor analyses programs, 

are listed. It is then followed by recommendations for the selection of an appropriate 

member length for use in the frame models and an appropriate displacement increment. 

The coverage of each experimental study considers the following steps. The test structure 

is first introduced, giving the structural details required for the modelling. This is then 

followed by the modelling and analyses of the structures. Afterwards, the resulting 

responses are compared to the experimental responses for load-deflection response, 

reinforcement strains, and crack widths. Discussions regarding the comparisons are 

finally presented. In addition, the difficulties encountered or expected with respect to the 

modelling and simulation of the behaviour of the structures are discussed. 
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4.2 Analysis Parameters and Material Behaviour Models Used 

When performing a nonlinear analysis with any software program, there are usually a 

number of parameters or models which must be selected by the user. These may include 

material models, such as the concrete tensile or compressive response models, or 

nonlinear analysis options, such as large displacements or hinge unloading methods. 

While these options are useful for researchers, for example, when investigating a 

particular material behaviour or an analysis option, there are a number of disadvantages 

inherent in the choosing of suitable analysis parameters or models.  

The first difficulty is that the selection of appropriate models for the problem at hand may 

require expert knowledge on the behaviour of reinforced concrete and on the application 

of nonlinear analyses. This presents a difficult challenge to the users who desire a 

reasonable estimate of the structural behaviour with a reasonable effort. In other words, 

repeated analyses with different analysis options and significant engineering effort to 

decide the appropriate models are not generally desired for practical applications of 

nonlinear analysis software. 

The other issue regarding a large number of different analysis options appears when the 

developed nonlinear analysis procedure is being verified with previously tested 

structures, as in the studies that follow in this chapter. As the selected analysis parameters 

may have a significant effect on the computed responses, they may be used to adjust the 

analytical predictions to obtain a better correlation with the experimental results. In other 

words, it becomes possible for the analyst to have more than one answer for each 

problem at hand. Such a situation is certainly not desired. 

For these reasons, the material behaviour models which will always provide reasonable 

solutions were defined as default models. These default models are common to all 

VecTor programs and were predefined prior to this work, as listed in Table 4.1. The other 

material behaviour models were also retained as available options; they are useful for 

advanced applications and for various special situations involving atypical structural 

details and loading conditions. Consequently, the use of these non-default models are not 
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recommended for general analyses unless a specific issue regarding the use of a default 

option arises.  

 

Concrete Behaviour Model Reinforcement Behaviour Model
Compression Base Curve Hognestad (Parabola)* Hysteresis Seckin with Bauschinger
Compression Post-Peak Modified Park-Kent Dowel Action Tassios (Crack Slip)
Compression Softening Vecchio 1992-A Strain Rate Effects Malvar and Crawford

Tension Stiffening Modified Bentz
Tension Softening Linear Analysis Options Model
Tension Splitting Not Considered Geometric Nonlineartity Considered

Confinement Strength Kupfer / Richart Shear Analysis Mode Parabolic Shear Strain
Dilatation Variable - Kupfer Shear Protection On

Cracking Criterion Mohr-Coulomb (Stress) Convergence Limit 1.00001
Crack W idth Check Crack Limit (Agg/5) Maximum No of Iterations 100

Hysteresis NL  (Vecchio) * See the text below.
Slip Distortion Vecchio-Lai  

Among them, only the concrete compression base curve is varied here, selected on the 

basis of the concrete strength  f’c used. Two options are available for normal strength 

concrete: Hognestad (Parabola) and Popovics (NSC). The implementation in VecTor5 

was done such that the Hognestad model requires only the concrete strain 0ε , 

corresponding to the peak stress, while the Popovics (NSC) model requires both 0ε  and 

the modulus of elasticity of concrete, Ec. Thus, if both 0ε  and Ec are known, the use of 

Popovics (NSC) is recommended rather than the default Hognestad model. Two options 

are available for high strength concrete: Popovics (HSC) and Hoshikuma (HSC). Note 

that it was found that the analytical responses do not change significantly if the default 

Hognestad model is used for all concrete strengths. More information on the formulations 

of these models is found in the User’s Manual of VecTor5 (see Appendix B).  

In addition, when performing the nonlinear dynamic analyses in Chapter 8, the elastic-

plastic-with-strain-hardening hysteresis model for the reinforcement was used. This was 

deemed necessary because of the unusual behaviour demonstrated by the default Seckin 

model under low strain reversals. This phenomenon is reported in Section 8.4. 

All analyses performed in this study were multi-layer analyses with shear effects 

considered, assuming a parabolic shear-strain distribution and using the shear protection 

and shear failure algorithms as described in Chapter 3. Moreover, throughout this study, 

Table 4.1 Default Material Behaviour Models for VecTor Programs 
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the tensile strength of concrete was taken as defined by Eq. 4.1, which is recommended 

by CSA A23.3-04 as a lower bound value. 

0.33t cf f′ ′= ×               (4.1) 

Experience with the MCFT and the DSFM has shown that the use of Eq. 4.1 provides 

better simulations than the use of experimentally determined tensile strength for the 

structure being analyzed due to the uncertainties in the experimental determination of the 

tensile strength of concrete. Further discussion of this issue is presented in Section 4.5.3. 

4.3 Selection of an Appropriate Member (Segment) Length for Frame Models 

When performing a nonlinear analysis with the finite element method, the general 

approach is to discritize the entire structure into smaller elements. The accuracy of the 

results is directly dependent on the element sizes used; in general, the smaller the 

members used, the more accurate the results barring localization effects.  

Similar to finite element analyses, the frame analysis procedure employed in VecTor5 

requires that frame members be divided into reasonably small segments. Average forces 

for each segment are calculated through the use of member end actions as described in 

Section 3.8. The use of smaller segments ensures that the average segment forces are 

calculated more precisely, as required for the nonlinear sectional analyses. Consequently, 

the nonlinear behaviour of the segments is simulated more accurately.  

However, it was found that the use of excessively small segments may cause 

deterioration in accuracy for shear-critical structures. This anomaly arises from the 

calculation of the shear compatibility restoring forces, as described in Section 3.6.7. The 

term used in Eq. 3.61, 212 ) /γ × ( × Ε × Ιltc c z xL , is dependent on the segment sizes used. 

Consequently, using excessively smaller segments increases the compatibility restoring 

forces and may cause less ductile responses especially for shear-dominated structures.  

To obtain a sense for the optimum segment lengths, a parametric study was carried out in 

which several previously tested shear- and flexure-critical structures were analyzed with 
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differing segment lengths. As an example of the shear-critical case, consider the 

computed responses of Beam VS-A1, introduced in Section 4.5, with varying segment 

lengths as a function of the cross section depth, h.  
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As seen from Figure 4.1, the selected segment lengths significantly affected the computed 

post-peak responses of this shear-critical beam. These responses should be regarded as an 

extreme case, in which the structure showed a shear-dominated behaviour with 

significant post-peak response, both analytically and experimentally. It is clear that 

neither the stiffness nor the strength of the beam is affected considerably.  

Consider now the computed responses of flexure-critical Beam SS3, introduced in 

Section 8.2, with varying segment lengths as a function of the cross section depth, h.  

 

 

 

 

 

Figure 4.1 Comparison of Responses for Four Different Segment Lengths (Beam VS-A1) 

Figure 4.2 Comparison of Responses for Four Different Segment Lengths (Beam SS3) 
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As seen from Figure 4.2, the selected segment lengths did not significantly affect the 

computed responses of this flexure-critical beam. The use of 4 segments provided slightly 

more ductile response. However, this occurrence is directly related to the smaller average 

member forces calculated as a result of the averaging of end actions of excessively long 

members, rather than as a result of amplified shear compatibility restoring forces. As 

explained before, to adequately account for the localized plasticity, relatively small 

members should be used. Longer members will typically yield lower average member 

forces and result in more ductile responses. The use of 6, 12 and 24 members essentially 

provided the same load deflection responses, failing at the same displacement in flexure. 

Therefore, contrary to the shear-critical case, the use of smaller segment lengths for the 

flexure-critical beam did not affect the computed response noticeably. 

As a result of the parametric study, it was concluded that the segment lengths in the range 

of 50% of the cross section depth should provide reasonable simulations of the post-peak 

behaviour of frame-related structures in both shear- and flexure-dominated cases. 

A total number of 12 flexure-critical large-scale shear walls, tested previously, are 

examined in this thesis (Sections 4.11 and 6.7). Half of the walls had a height-to-width 

ratio of 2.4; the remaining walls had a height-to-width ratio of 2.0. In order to determine 

the optimum segment lengths to be used in the analyses, a parametric study was 

conducted in which the walls were analyzed with differing segment lengths. As an 

example, consider the computed responses of PCA Wall B7 (Oesterle et al, 1976), 

introduced in Section 6.7, with varying segment lengths as a function of the cross section 

depth, h. In the first series of analyses, a variable segment length scheme was employed 

in which the segment lengths were reduced towards the base of the wall as shown in 

Figure 6.28(a).  
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PCA Wall - B7 (Variable Segment Lenths) 
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As seen from Figure 4.3, the selected segment lengths significantly affected the computed 

post-peak responses of this flexure-critical shear wall. This phenomenon, however, was 

directly caused by the smaller average member forces obtained from the averaging 

algorithm in the longer members, rather than as a result of a shear-related effect. In all 

four cases, the failure was caused by flexural mechanisms. Similar to the previous case, 

the use of differing segment lengths affected neither the stiffness nor the strength of the 

wall significantly.  

In the second series of analyses, constant segment lengths were used throughout the wall. 

PCA Wall - B7 (Constant Segment Lengths) 
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Figure 4.3 Comparison of Responses for Four Different Varying Segment Lengths  
      (PCA Wall B7) Note: Segment lengths specified were used towards the base. 

Figure 4.4 Comparison of Responses for Four Different Constant Segment Lengths  
      (PCA Wall B7) 
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As seen from Figure 4.4, the responses obtained using constant segment lengths 

throughout the wall were almost identical to the responses obtained using variable 

segment lengths. As the concentration of plastic deformations and the ensuing flexural 

failures occurred in the members adjacent to the bases, the use of more members with the 

constant segment lengths did not produce any benefits. In fact, it increased the 

computation time significantly. For example, the analysis with 61 members required 70% 

more computation time than the analysis with 34 members; they both provided almost 

identical responses. In conclusion, it is advisable to use varying segment lengths with the 

shortest segments located at the expected plastic deformation regions. 

As a result of this parametric study, segment lengths in the range of 10% of the cross 

section depth were deemed appropriate in terms of both post-peak behaviour and 

computational demand for the analysis of the 12 flexure-critical shear-wall structures 

examined in this thesis. This suggestion is also in agreement with the recommendations 

by Kurama and Jiang (2008) for the analytical modelling of flexure-critical shear walls 

with a sectional analysis procedure. It should be noted, however, that investigation of 

shear-critical shear walls are needed in order to reach a more conclusive 

recommendation. For this purpose, shear walls reported by Sittipunt and Wood (1995) or 

Wood (1990) may be used in future work. 

4.4 Selection of an Appropriate Displacement Increment 

At the beginning of a nonlinear monotonic displacement controlled-analysis, used 

extensively in this study, the selection of a displacement increment is required. Unlike 

tangent stiffness formulations, the secant stiffness formulation, implemented in Chapter 

3, does not require sufficiently small displacement increments for accurate simulations of 

the behaviour. In other words, the selected displacement increment does not have a direct 

impact on the accuracy of the calculations.  

However, in order to capture nuances in the nonlinear behaviour, such as the cracking of 

concrete and yielding of reinforcement, in a precise manner, an appropriate displacement 

increment is needed. This selection depends on the problem under consideration. For 



 153

example, for a structure that is expected to fail under an imposed displacement of 20 mm, 

0.5 mm displacement increment may be sufficient. But for a structure failing at a 200 mm 

displacement, the use of a 0.5 mm increment will probably be unnecessarily small, 

increasing the computation time significantly.  

To avoid such a situation, an initial analysis of the structure is recommended using a 

faster analysis procedure such as the single-layer analysis, which was specifically 

developed for this purpose in Section 3.7.3. At the end of this analysis, depending on the 

ultimate condition of the structure, an appropriate displacement increment can be selected 

and the analysis can be repeated using the rigorous multi-layer procedures such as the 

parabolic shear-strain-based calculation. 

4.5 Vecchio and Shim Beams 

The series of beams tested by Bresler and Scordelis (1963) is often used as a benchmark 

for verifying analytical procedures. The beams were designed and loaded such as to be 

critical in shear, with heavy amounts of flexural reinforcement and light amounts of shear 

reinforcement ranging from 0.0% to 0.2%. These tests represent a difficult challenge in 

modelling with many nonlinear analyses formulations failing to provide accurate 

simulations of the behaviour exhibited by these beams (Vecchio and Shim, 2004).  

A test program was undertaken by Vecchio and Shim (2004) at the University of Toronto 

to recreate the Bresler-Scordelis test beams, with an aim to determine the repeatability of 

the test results. In addition, the Toronto tests also aimed at providing information on the 

post-peak responses of the beams, which were not reported in the Bresler-Scordelis 

beams. The test program involved 12 beams subjected to point loads monotonically 

increasing until failure. 

Due to the challenges involved in the simulation of the behaviour of these beams, all 12 

beams were modelled with VecTor5 to verify the formulations implemented, especially 

with respect to shear-critical beams. 
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The tested 12 beams consisted of four sets (OA, A, B, and C) of three beam series (1, 2, 

and 3), all of which were supported by simple rollers in a symmetrical test setup. Three 

different span lengths, L, were used for the three beam series. Series 1 had a span length 

of 3.66 m; Series 2 had a span length of 4.57 m; and Series 3 had a span length of 6.4 m. 

A typical experimental setup is shown in Figure 4.5. 

 

The cross section of each set differed in the amount of longitudinal reinforcement and 

amount of shear reinforcement as shown in Figure 4.6. All 12 beams had a cross section 

depth of 552 mm with varying widths. The material properties were determined, in the 

experimental study, from concrete cylinder tests and steel coupon tests and are 

summarized in Table 4.2. The maximum aggregate size used was reported to be 20 mm 

for all beams. 

db fy fu Es Esh εsh εu
(mm) (MPa) (MPa) (MPa) (MPa) (x 10-3) (x 10-3)

D-5 6.4 600 649 200000 1530 3 35
D-4 5.7 600 651 200000 1460 3 38
10M 11.3 315 460 200000 730 7.7 207
30M 29.9 436 700 200000 1610 11.4 175

25M1,3 25.2 445 680 220000 1130 8.5 216
25M2 25.2 440 615 210000 910 7.5 200

1: Series 1

Reinforcement

 
All beams were subjected to monotonically increasing point loads applied at their 

midspans, in a displacement-controlled mode, until the final failure of the beams 

occurred. Additional details regarding these tests can be found in Shim (2002). 

Table 4.2 Material Properties of Vecchio and Shim Beams 

Figure 4.5 Experimental Setup for Vecchio and Shim Beams 

f'c ε0 Ec

(MPa) (x 10-3) (MPa)
Series 1 22.6 1.6 36500
Series 2 25.9 2.1 32900
Series 3 43.5 1.9 34300

Concrete
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4.5.1 Analytical Modelling 

Taking advantage of the symmetry of the beams and the test setup, only one-half of each 

beam was modelled (Figure 4.7). In the model, half of the main span of the beam was 

typically divided into 6 segments. As a result, 305 mm long members (segments) were 

used for the Series 1 beams; 380 mm long members were used for the Series 2 beams; 

and 533 mm long members were used for the Series 3 beams.  

The cross sections of the beams were divided into either 34 or 35 concrete layers and into 

a number of steel layers depending on the longitudinal reinforcement configuration of the 

particular beam under consideration.  

Figure 4.6 Cross Section Details of Vecchio and Shim Beams 



 156

 

 

 

 

4.5.2 Creation of the Sectional Model 

For general applications, 30 to 40 concrete layers are recommended for use in the 

sectional models. Because the longitudinal strain distribution reaches maximum values at 

the top and the bottom of the cross section (Figure 3.23), concrete layer thicknesses 

should be reduced in these regions, especially for the compression zone layers. If the 

compression side of the cross section is not known or may change during the analysis due 

to load reversals, a symmetrical layout for the concrete layer thicknesses can be used 

(e.g., Figure 4.9(b)). 

Determination of the concrete layer thicknesses requires particular attention to the clear 

cover thickness and the out-of-plane reinforcement configuration. As an example 

application, consider Beam VS-A1, which has a clear cover of 38 mm and a closed 

stirrup fabricated from a 6.4 mm diameter bar. The legs of the stirrups extending in the 

out-of-plane direction constitute the out-of-plane reinforcement, which enhances concrete 

strength and, more importantly, ductility for the layers in which they are assigned. 

Consideration of out-of-plane reinforcement is particularly important for the layers under 

compression. Therefore, an appropriate determination of the tributary area for the out-of-

plane reinforcement is needed.  

For reinforcing bars in the tension zone, the CEB-FIP model code (1990) suggests a 

tributary area of 7.5 times the bar diameter. As the definition of a tributary area in the 

compression zone is needed, approximately 5.5 times the bar diameter was assumed due 

to the fact that compression zone generally extends over a smaller portion of the cross 

section than does the tension zone (Figure 4.8(a)). Based on this assumption, for Beam 

VS-A1, a 6.4 mm 5.5 35 mm × =   tributary area is engaged. As the concrete thickness 

Figure 4.7 Analytical Model for Vecchio and Shim Beams 
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above the centerline of the out-of-plane reinforcement is 41 mm, it is more convenient to 

assume a tributary area of 41 mm for this particular beam (Figure 4.8(b)). As a result, the 

number and width of the concrete layers should be defined such as to cover a depth of 

at both the top and bottom of the cross section. After determining the 

distance in which the out-of-plane reinforcement is to be smeared, the out-of-plane 

reinforcement ratio can be calculated as follows: 

41 41 82 mm+ =  

 

 

  
2

             (4.2) 

where Ab is the cross-sectional area of the out-of-plane reinforcement, st is the spacing of 

the out-of-plane reinforcement in the longitudinal direction, and to is the distance, in the 

transverse direction, in which the out-of-plane reinforcement is to be assigned (Figure 

4.8(a)). 

Moreover, due to a clear-cover thickness of 38 mm, a number of layers adding up to 38 

mm should be created in which no smeared transverse reinforcement is assigned.  As a 

result, the concrete layers and the assigned smeared transverse ( ρt ) and out-of-plane (ρz) 

reinforcement ratios are determined as shown in Figure 4.9. Note that contrary to the 

compression zone, fine concrete layers towards the extreme tension fibre are not required 

although fine layers are used at the bottom of Figure 4.9(b) for ease of modelling with a 

symmetrical cross section. In addition, three layers of discrete longitudinal reinforcement 

Figure 4.8 Determination of the Out-of-Plane Reinforcement Tributary Area: (a) General  
      Case; 

( 6.4 ) / 4 0.18 %
210 820

×= = =
× ×

b
z

t

A
s t

πρ  

(b) for Beam VS-A1

(a) (b) 
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reinforcement layers does not affect the selection of the concrete layers. In other words, 

the reinforcement layers can be defined independently at any desired depth within the 

cross section. 

                  

 

 

 

 

Sectional models for the remaining beams were created in a similar manner with the 

smeared reinforcement ratios given in Table 4.3. 

ρt (%) ρz (%) ρt (%) ρz (%)
VS-OA1 0 0 VS-B1 0.15 0.20
VS-OA2 0 0 VS-B2 0.15 0.20
VS-OA3 0 0 VS-B3 0.15 0.30
VS-A1 0.10 0.19 VS-C1 0.20 0.19
VS-A2 0.10 0.19 VS-C2 0.20 0.19
VS-A3 0.10 0.27 VS-C3 0.20 0.27  

A simple roller was defined at Node 1, by restraining the vertical degree-of-freedom of 

Node 1. In addition, to satisfy the condition of symmetry, both the horizontal and 

rotational degrees of freedom were restrained at Node 7 (Figure 4.7). A monotonically 

increasing vertical displacement was imposed at Node 7 and the analyses were 

propagated until failure of the beams occurred. 

4.5.3 Comparison of the Analytical and Experimental Responses 

The analytically and experimentally obtained midspan load-deflection responses are 

compared in Figure 4.10. 

Table 4.3 Assigned Smeared Reinforcement Ratios for Vecchio and Shim Beams  

Figure 4.9 Sectional Model Details for Beam VS-A1: (a) Assigned Smeared Reinforcement  
      Ratios; (b) Concrete Layers 

(a) (b) 

Dc (mm) ρt (%) ρz (%) Nx
8 0 0.19 1
10 0 0.19 3
14 0.10 0.19 2
16 0.10 0.19 1

19.4 0.10 0 20
16 0.10 0.19 1
14 0.10 0.19 2
10 0 0.19 3
8 0 0.19 1
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Figure 4.10 Comparison of the Midspan Load-Displacement Responses for Vecchio and Shim Beams  
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Figure 4.10 Comparison of the Midspan Load-Displacement Responses for Vecchio and Shim Beams (continued)  
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The comparisons of the maximum loads and the corresponding midspan displacements, 

as well the midspan displacements attained prior to the beams dropping their load 

significantly, as obtained analytically and experimentally, are summarized in Table 4.4. 

 

VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
VS-OA1 331 331 1.00 7 9 0.74 7 9 0.74
VS-OA2 376 320 1.17 14 13 1.06 14 16 0.90
VS-OA3 420 385 1.09 31 32 0.96 31 32 0.96
VS-A1 487 459 1.06 17 19 0.90 28 25 1.12
VS-A2 481 439 1.10 25 29 0.84 43 39 1.09
VS-A3 430 420 1.02 36 51 0.71 81 78 1.05
VS-B1 459 434 1.06 15 22 0.68 25 44 0.56
VS-B2 371 365 1.02 24 32 0.76 49 54 0.91
VS-B3 351 342 1.03 39 60 0.65 81 81 1.00
VS-C1 272 282 0.96 15 21 0.71 30 45 0.67
VS-C2 331 290 1.14 24 26 0.93 34 30 1.13
VS-C3 268 265 1.01 39 44 0.88 72 74 0.98

Mean 1.05 Mean 0.82 Mean 0.93
COV (%) 6.1 COV (%) 12.8 COV (%) 18.3

Peak Load (kN) Corresponding Disp. (mm) Failure Disp. (mm)

 

The peak load capacities of the beams were calculated with good accuracy. The ratio of 

the predicted-to-observed ultimate load for all 12 beams had a mean of 1.05 with a 

coefficient of variation (COV) of 6.1%. Considering the shear-dominated behaviour of 

the beams, these ratios can be regarded as highly satisfactory. 

In terms of the peak load capacity predictions, the least accuracy with a predicted-to-

observed mean ratio of 1.17 was encountered in the specimen containing no stirrups; 

namely, VS-OA2.  It is known that the behaviour of reinforced concrete elements which 

do not contain any shear reinforcement is intrinsically associated with mechanisms 

heavily dependent on the concrete tensile strength (Vecchio, 2000). However, the tensile 

strength of concrete is not constant for a particular concrete but varies with a number of 

parameters such as the volume of concrete, gradient of longitudinal strain, and the 

presence of restrained shrinkage strains (Collins and Mitchell, 1991). As a result, due to 

the uncertainties in the determination of the tensile strength of concrete, a lower-bound 

value defined by Eq. 4.1 is recommended by CSA A23.3-04, which is used throughout 

this study as discussed in Section 4.2. Consequently, when analyzing a specimen with no 

shear reinforcement, more scattered predictions should typically be anticipated. 

Table 4.4 Comparison of Load and Displacement Results for Vecchio and Shim Beams 
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The midspan deflections at maximum loads were predicted with a reasonable mean ratio 

(δtheo/δtest) of 0.82 and a COV of 12.8%. The general tendency in the analytical 

predictions was to underestimate deflections, giving stiffer responses than the 

experimental responses. The analyses of these beams with a more rigorous finite element 

tool also provided similarly stiffer responses than the experimental responses (Vecchio 

and Shim, 2004). These softer experimental behaviours may be attributable to the 

flexibility of the loading machine or irregularities in the test set-up. 

The failure displacements, which are particularly important when determining the 

ductility of structures, of the beams were calculated with a mean of 0.93 and a COV of 

18.3%. These more scattered predictions should be expected in the prediction of the post-

peak ductility of beams containing no or as little as 0.1% of shear reinforcement due to 

the mechanisms heavily dependent on the concrete tensile strength. 

The comparisons of the maximum crack widths and the failure mechanisms, as obtained 

analytically and experimentally, are presented in Table 4.5. 

 

 

 

 

 

 

 

 

 

 

As seen from Table 4.5, the crack widths were predicted with excellent accuracy for the 

applied load of 200 kN, and with a mostly reasonable accuracy just prior to the failure.  

Table 4.5 Comparison of Crack Widths and Failure Modes for Vecchio and Shim Beams 

VecTor5 Test VecTor5 Test VecTor5 Test
Flexure 0.24 0.25 0.43 0.40
Shear - - 0.15 0.25

VS-OA2 Flexure 0.23 0.20 0.50 0.30 D-T D-T
VS-OA3 Shear 0.21 0.25 0.58 0.40 D-T D-T

Flexure 0.24 0.20 1.00 0.50
Shear - - 1.90 2.00

VS-A2 Flexure 0.22 0.20 1.16 1.40 S-C S-C
VS-A3 Shear 0.21 0.20 0.83 1.60 F-C F-C

Flexure 0.21 0.20 0.68 0.75
Shear - - 2.00 0.90

VS-B2 Flexure 0.28 0.30 1.10 1.60 S-C S-C
VS-B3 Shear 0.21 0.25 0.94 1.20 F-C F-C

Flexure 0.35 0.40 1.00 1.80
Shear - - 0.65 0.50

VS-C2 Flexure 0.25 0.20 0.60 0.35 S-C S-C
VS-C3 Shear 0.33 0.35 0.74 0.90 F-C F-C

* crack widths in mm.

S-C

S-CVS-B1

VS-C1

S-C

S-C

Wcr* for P=200 kN Wcr* prior to Failure Failure Mode

D-T D-T

S-C S-CVS-A1

VS-OA1
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Three different failure modes were reported in the experimental study. Diagonal tension 

failures (D-T) were observed for all three beams containing no shear reinforcement in 

which a sudden shear-failure mechanism occurred with little prior cracking (see the crack 

widths in Table 4.5 prior to failure). Shear-compression (S-C) failures were observed for 

the intermediate-length beams containing shear reinforcement, which can be 

characterized as shear-flexural in nature. These beams exhibited extensive diagonal-

tension cracking in the later load stages with a final failure occurring by crushing of the 

concrete in the compression zone. Flexure-compression (F-C) failures were observed for 

the long-span beams containing shear reinforcement. These beams exhibited extensive 

flexural cracking with a final failure occurring by crushing of the concrete in the 

compression zone. Diagonal tension cracking was minor, if present at all, in these beams. 

In all cases, the failure modes were predicted correctly in the analyses (Table 4.5). 

4.5.4. Determination of Damage or Failure Modes 

The developed analytical tool provides ample output including analysis results for nodes, 

members and concrete and steel layers. The output is especially useful when evaluating 

the dominant mechanism and the damage or failure mode of the structure. To illustrate 

the interpretation of the damage mode, consider the analysis result for Beam VS-A1 at a 

midspan displacement of 25 mm where the beam load capacity dropped significantly (see 

Figure 4.10). It is advisable to first inspect the member deformations to determine the 

critical members.  

 

M ECL GXY PHI ESL-MAX ESL-MIN EST-MAX WCR-MAX
(x10-3) (x10-3) (10-3/m) (x10-3) (x10-3) (x10-3) (mm)

1 -0.003 -0.07 0.212 0.042 -0.051 0.009
2 0.21 -1.028 1.612 0.551 -0.155 0.951 0.49
3 0.299 -1.297 2.697 0.87 -0.311 1.304 0.65
4 0.369 -1.429 3.882 1.192 -0.508 1.561 0.77
5 0.446 -2.366 5.529 1.619 -0.803 3.672 1.62
6 0.789 -1.288 35.628 8.342 -7.262 2.446 2.55  

In Table 4.6, M is the member number, ECL is the axial concrete strain at the mid-depth 

of the cross section, GXY is the shear strain of the concrete at the mid-depth, PHI is the 

curvature, ESL-MAX is the maximum longitudinal reinforcement strain, ESL-MIN is the 

Table 4.6 Output for Member Deformations at Load Stage 51 (Beam VS-A1)  
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minimum longitudinal reinforcement strain, EST-MAX is the maximum transverse 

reinforcement strain and WCR-MAX is the maximum average crack width for the related 

member. All reinforcement strains are average values. 

Inspection of Table 4.6 reveals that Member 5 is the most critical member in terms of 

shear deformations; Member 6 is the most critical member in terms of flexural 

deformations. To investigate the conditions of these members, the detailed member 

output should be utilized. First, consider some of the detailed member output calculated 

for Member 5 as presented in Table 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7 Detailed Output for Concrete Layers of Member 5 (Beam VS-A1)  

NC WCR SLIP FCX FCY VC FC1 FC2 FC2/FP BETA E1 E2 THETA1
(mm) (mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3) (Deg)

1 0 0.0 -15.05 0.00 -0.64 0.02 -15.07 0.7 1.0 0.001 -0.596 -87.6
2 0 0.0 -14.84 0.00 -2.09 0.29 -15.13 0.7 1.0 0.01 -0.586 -82.1
3 0.69 0.0 -12.29 0.00 -0.94 0.01 -12.36 0.7 0.8 1.484 -0.474 -85.6
4 1.48 -0.3 -9.41 0.00 -1.23 0.01 -9.57 0.7 0.6 3.599 -0.425 -82.6
5 0.4 0.0 -12.91 -0.22 -2.35 0.20 -13.34 0.7 0.8 1.099 -0.517 -79.8
6 0.6 0.0 -12.04 -0.32 -2.28 0.11 -12.47 0.7 0.8 1.624 -0.479 -79.4
7 1.09 0.0 -10.44 -0.24 -1.66 0.02 -10.70 0.7 0.7 2.693 -0.422 -81.0
8 1.16 0.0 -9.92 -0.27 -1.80 0.05 -10.25 0.7 0.6 2.842 -0.396 -79.8
9 1.19 0.0 -9.39 -0.31 -1.95 0.09 -9.79 0.7 0.6 2.91 -0.372 -78.4
10 1.51 0.0 -8.71 -0.25 -1.68 0.08 -9.04 0.7 0.5 3.536 -0.334 -79.2
11 1.57 0.0 -7.74 -0.48 -1.94 0.01 -8.23 0.7 0.5 3.456 -0.301 -75.9
12 1.62 0.0 -6.89 -0.48 -1.84 0.01 -7.38 0.7 0.5 3.596 -0.266 -75.1
13 1.62 0.0 -6.03 -0.49 -1.73 0.01 -6.52 0.7 0.4 3.636 -0.234 -74.0
14 1.58 0.0 -5.14 -0.49 -1.61 0.01 -5.65 0.6 0.4 3.584 -0.201 -72.6
15 1.5 0.0 -4.27 -0.50 -1.48 0.01 -4.79 0.6 0.4 3.452 -0.17 -70.9
16 1.25 -0.4 -2.24 -0.54 -1.48 0.31 -3.09 0.5 0.3 3.093 -0.11 -59.9
17 1.02 -0.3 -1.89 -0.47 -1.59 0.56 -2.92 0.4 0.3 2.822 -0.103 -57.1
18 0.9 -0.2 -1.44 -0.42 -1.44 0.60 -2.48 0.4 0.3 2.649 -0.087 -54.7
19 0.79 -0.2 -1.01 -0.37 -1.28 0.63 -2.02 0.4 0.3 2.488 -0.071 -52.1
20 0.68 -0.2 -0.64 -0.32 -1.12 0.65 -1.61 0.3 0.2 2.337 -0.057 -49.1
21 0.59 -0.1 -0.33 -0.27 -0.96 0.66 -1.27 0.3 0.2 2.202 -0.045 -45.9
22 0.49 -0.1 -0.08 -0.23 -0.81 0.66 -0.97 0.2 0.2 2.083 -0.035 -42.4
23 0.41 -0.1 0.12 -0.19 -0.68 0.66 -0.73 0.2 0.2 1.98 -0.026 -38.6
24 0.32 -0.1 0.27 -0.15 -0.56 0.65 -0.54 0.1 0.2 1.894 -0.019 -34.6
25 0.26 -0.1 0.38 -0.12 -0.45 0.64 -0.38 0.1 0.2 1.826 -0.014 -30.3
26 0.24 0.0 0.46 -0.09 -0.36 0.63 -0.27 0.1 0.2 1.779 -0.009 -26.1
27 0.28 0.0 0.51 -0.07 -0.28 0.62 -0.18 0.0 0.2 1.753 -0.006 -21.9
28 0.28 0.0 0.54 -0.05 -0.21 0.61 -0.11 0.0 0.2 1.745 -0.004 -17.9
29 0.27 0.0 0.54 -0.03 -0.15 0.58 -0.07 0.0 0.2 1.754 -0.002 -14.1
30 0.27 0.0 0.19 -0.02 -0.04 0.19 -0.03 0.0 0.2 1.782 -0.001 -11.5
31 0.31 0.0 0.01 0.00 0.00 0.01 -0.01 0.0 0.2 1.816 0.000 -9.5
32 0.36 0.0 0.01 0.00 0.00 0.01 -0.01 0.0 0.2 1.85 0.000 -6.9
33 0.41 0.0 0.01 0.00 0.00 0.01 -0.01 0.0 0.2 1.893 0.000 -4.1
34 0.47 0.0 0.01 0.00 0.00 0.01 -0.01 0.0 0.2 1.944 0.000 -1.3
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In Table 4.7, NC is the concrete layer number starting from the top of the cross section, 

WCR is the average crack width, SLIP is the crack slip displacement as defined by Eq. 

3.38, FCX is the axial stress of the concrete as defined by either Eq. 3.90 or Eq. 3.96, 

FCY is the transverse stress of the concrete as defined by Eq. 3.8, VC is the shear stress 

of the concrete as defined by Eq. 3.9, FC1 and FC2 are the concrete principal stresses as 

defined in Sections 3.2.4 and 3.3.3, FP is the concrete softened compressive strength as 

defined by Eq. 3.13, BETA is the coefficient for the concrete compression softening as 

defined by Eq. 3.12 when using the MCFT or Eq. 3.42 when using the DSFM, E1 and E2 

are the net concrete principal strains as defined by Eq. 3.3 and Eq. 3.4 when using the 

MCFT or Eq. 3.33 and Eq. 3.34 when using the DSFT, THETA1 is the inclination of 

principal tensile stress field as defined by Eq.3.5 when using the MCFT or Eq. 3.35 when 

using the DSFM. By default, the DSFM formulations were used. 

In Table 4.7, a crack width of 0.47 mm is calculated for the extreme tension layer (Layer 

34) with almost zero degree angle from the vertical plane indicating that this is a flexural 

crack. While extending towards the top of the cross section (i.e., compression zone), the 

crack widens significantly and takes a diagonal form reaching a maximum width of 

approximately 1.6 mm, indicating shear cracking. There is also an almost horizontal 

splitting crack occurring at layer 4. The FC2/FP values indicate that the concrete layers in 

the compression zone have reached 70% of their peak strengths, indicating that concrete 

compression crushing or failure has not yet occurred but may occur in the following load 

stages. Strain in the tension reinforcement is approximately 1.6 x 10-3 (not shown on 

Table 4.7) indicating that the member is far from reaching the reinforcement rupture 

strain of 175 x 10-3. As a result, a damage mode of significant diagonal cracking can be 

concluded for this member.  

Consider now some of the detailed member output calculated for Member 6 as shown in 

Table 4.8. 
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NC WCR SLIP STATE FCX FCY VC FC1 FC2 FC2/FP BETA E1 E2 THETA1

(mm) (mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (x10-3) (Deg)
1 0 0.0 0 -4.52 0.00 0.00 -0.04 -4.52 0.20 1.00 0.00 -1.77 -89.982
2 0 0.0 0 -4.52 0.00 -0.01 -0.05 -4.52 0.20 1.00 0.00 -1.77 -89.936
3 0 0.0 0 -4.52 0.00 -0.01 -0.07 -4.52 0.20 1.00 0.00 -1.77 -89.873
4 0 0.0 0 -4.52 0.00 -0.02 -0.07 -4.52 0.20 1.00 0.00 -1.76 -89.798
5 0 0.0 0 -7.95 -0.19 -0.05 -0.28 -7.95 0.34 1.00 -0.01 -1.88 -89.627
6 0 0.0 0 -10.15 -0.19 -0.10 -0.35 -10.15 0.42 1.00 -0.01 -1.90 -89.418
7 0 0.0 0 -11.61 -0.18 -0.17 -0.36 -11.61 0.49 1.00 -0.01 -1.89 -89.147
8 0.00 0.0 1 -7.71 -0.16 -0.16 -0.30 -7.71 0.34 1.00 -0.01 -1.62 -88.801
9 0.00 0.0 1 -9.74 -0.15 -0.34 -0.28 -9.75 0.43 1.00 -0.01 -1.58 -87.976

10 0.00 0.0 1 -11.82 -0.14 -0.67 -0.18 -11.86 0.52 1.00 0.00 -1.53 -86.719
11 0.00 0.0 1 -14.02 -0.14 -1.33 -0.02 -14.14 0.63 1.00 0.00 -1.48 -84.579
12 0.23 0.0 1 -17.20 -0.22 -2.00 0.01 -17.43 0.77 1.00 0.46 -1.45 -83.366
13 0.49 0.0 1 -19.48 -0.32 -2.58 0.03 -19.82 0.91 0.96 1.00 -1.34 -82.459
14 0.74 0.0 1 -19.54 -0.39 -2.96 0.06 -19.99 1.00 0.89 1.52 -1.14 -81.405
15 0.94 0.1 1 -16.92 -0.40 -3.07 0.15 -17.47 0.98 0.79 1.99 -0.84 -79.801
16 1.14 -0.1 3 -8.77 -0.49 -2.35 0.13 -9.39 0.73 0.57 2.52 -0.41 -75.183
17 0.47 -0.1 3 -0.54 -0.19 -0.78 0.43 -1.16 0.20 0.25 1.33 -0.04 -51.516
18 0.46 0.0 1 -0.02 -0.08 -0.06 0.02 -0.12 0.03 0.20 1.43 0.00 -30.77
19 0.6 0.0 1 0.01 -0.05 -0.02 0.02 -0.06 0.01 0.20 1.94 0.00 -19.86
20 0.73 0.0 1 0.01 -0.03 -0.01 0.01 -0.04 0.01 0.20 2.54 0.00 -14.20
21 0.83 0.0 1 0.01 -0.02 -0.01 0.01 -0.03 0.01 0.20 3.16 0.00 -10.78
22 0.88 0.0 1 0.01 -0.02 0.00 0.01 -0.02 0.00 0.20 3.80 0.00 -8.47
23 0.89 0.0 1 0.01 -0.01 0.00 0.01 -0.02 0.00 0.20 4.45 0.00 -6.79
24 0.85 0.0 1 0.01 -0.01 0.00 0.01 -0.01 0.00 0.20 5.10 0.00 -5.50
25 0.78 0.0 1 0.01 -0.01 0.00 0.01 -0.01 0.00 0.20 5.75 0.00 -4.46
26 0.87 0.0 1 0.01 -0.01 0.00 0.01 -0.01 0.00 0.20 6.41 0.00 -3.56
27 1.17 0.0 1 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 7.07 0.00 -2.71
28 1.25 0.0 1 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 7.68 0.00 -2.40
29 1.28 0.0 3 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 8.25 0.00 -1.91
30 1.37 0.0 3 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 8.81 0.00 -1.41
31 1.66 0.0 2 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 9.29 0.00 -1.01
32 1.94 0.0 2 0.01 0.00 0.00 0.01 -0.01 0.00 0.20 9.67 0.00 -0.71
33 2.23 0.0 2 0.01 0.00 0.00 0.01 0.00 0.00 0.20 10.05 0.00 -0.42
34 2.55 0.0 2 0.01 0.00 0.00 0.01 0.00 0.00 0.20 10.43 0.00 -0.14  

In Table 4.8, the maximum crack width of 2.55 mm is calculated for the extreme tension 

layer (Layer 34) with almost zero degree angle from the vertical plane indicating a 

flexural cracking. Diagonal shear cracking is calculated for Layer 16 with a crack width 

of 1.14 mm. Compared to the flexural cracking, the shear cracking is not significant.  

The FC2/FP values indicate that concrete layers in the compression zone sustain 20% of 

their peak strengths. BETA values of 1.00 indicate that the sustained stress values 

correspond to the maximum strength of the concrete, thereby indicating compression 

crushing for those layers. In the default concrete post-peak base curve of Modified Park-

Table 4.8 Detailed Output for Concrete Layers of Member 6 (Beam VS-A1)  
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Kent model (Park, Kent and Gill, 1982), there is 0.20 x f’c residual stress present as 

shown in Figure 4.11. Therefore, the stress values of 0.20 x f’c (0.20 x 22.6 = 4.52 MPa 

for Beam VS-A1) indicate concrete crushing if they are calculated in the post-peak 

regime. More details on this model can be found in Wong and Vecchio (2002). The strain 

in the tension reinforcement is approximately 8.3 x 10-3 indicating that the member is far 

from reaching the reinforcement rupture strain of 175 x 10-3. 

Note that FC2/FP and BETA values reported for the tension layers in Table 4.7 and Table 

4.8 do not have any significance in the interpretation of damage or failure modes.  

 

As a result, the damage mode of Beam VS-A1 can clearly be interpreted as shear-

compression. If there were no crushing of the concrete in Member 6, the damage mode 

would be diagonal-tension. If there were no significant diagonal shear cracking in 

Member 5, the damage mode would be flexure-compression.  

In addition, fracture of the transverse and longitudinal reinforcement is considered by the 

analytical procedure developed. If such a failure occurs, the load capacity of the structure 

suddenly drops noticeably in most of cases; the ruptured reinforcement and the member it 

belongs to are written clearly in the output file.  

εp 

fp 

0.20 x fp 

Post-Peak Response 

εc 

fc 

Figure 4.11 Concrete Post-Peak Response: Modified Park-Kent (Park, Kent and Gill, 1982) 
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When investigating the detailed output for the concrete layers, the STATE output may 

provide useful information on the state of the concrete (see Table 4.8). There are 

currently five states available as shown in Table 4.9, which are defined in Sections 3.2 

and 3.3.  

 

STATE
0
1
2
3
4
5

Reinf Reserve Capacity Limited FC1
Crack Width Check Limited FC2
VCImax Limited FC1 (MCFT)

MEANING
Layer Uncracked
Tension Stiffening Governs
Tension Softening Governs

 

4.6 Angelakos Beams 

A test program was conducted at the University of Toronto to investigate the influence of 

the concrete compressive strength and the minimum transverse reinforcement ratio on the 

shear response of large lightly reinforced concrete members (Angelakos et al., 2001). The 

test program involved twelve 1.0 m deep beams with concrete strengths ranging from 21 

to 80 MPa. All 12 beams were supported by simple rollers in a symmetrical test setup 

with a typical span length of 5.4 m as shown in Figure 4.12. 

 

All beams had a 1.0 m deep and 0.3 m wide cross section with varying amounts of 

longitudinal and shear reinforcement as shown in Figure 4.13. The material properties 

were experimentally determined through concrete cylinder tests and steel coupon tests 

Figure 4.12 Experimental Setup for Angelakos Beams 

Table 4.9 Available Concrete States Output for Concrete Layers 
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and are summarized in Table 4.10 and Figure 4.13. The maximum aggregate size used 

was reported as 10 mm for all beams.  

 

 

db fy fu Es Esh εsh εu

(mm) (MPa) (MPa) (MPa) (MPa) (x 10-3) (x 10-3)
#3 9.5 508 778 200000 2578 9.25 114

15M 16 435 640 174000 1095 8.75 196
30M 29.9 550 710 200000 573 17 291

Reinforcement

 

During the curing process, concrete shrinkage strains were measured by strain gauges 

placed on the longitudinal reinforcement and were reported to be -0.18 x 10-3 for DB140 

and DB140M, -0.19 x 10-3 for DB165 and DB165M, and -0.35 x 10-3 for DB180 and 

DB180M.  

All beams were subjected to monotonically increasing point loads applied at their 

midspan in a displacement-controlled mode until the final failure occurred.  

Additional details regarding these tests can be found in Angelakos (1999). 

 

 

Table 4.10 Material Properties of Angelakos Beams 

Figure 4.13 Cross Section Details and Concrete Strengths for Angelakos Beams  
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4.6.1 Analytical Modelling 

Taking advantage of the symmetry of the beams and the test setup, only one-half of each 

beam was modelled (Figure 4.14). In the model, half of the main span of the beam was 

typically divided into 6 segments, resulting in 450 mm long members. 

 

The sectional model was created by using 40 concrete layers (25 mm thick) for the beams 

containing no shear reinforcement, and using 52 concrete layers for the beams containing 

shear reinforcement. This difference was purely caused by the need to consider the clear 

cover present in the beams containing transverse reinforcement. In addition, the out-of-

plane reinforcement in the beam DB120M was considered in a similar way to that 

described in the Section 4.5.2. The resulting sectional models are presented in Figure 

4.15. 

 

 

Figure 4.14 Analytical Model for Angelakos Beams 

Figure 4.15 Sectional Models for Angelakos Beams (a) All Beams Containing no Transverse  
        Reinf.; (b) Beams Containing Transverse Reinforcement; (c) Beam DB120M 

(a) (b) (c) 
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Support Restraints 

A simple roller was defined at Node 1 by restraining the vertical degree-of-freedom of 

the node. In addition, to satisfy the condition of symmetry, both the horizontal and 

rotational degrees of freedom were restrained at Node 7 (Figure 4.14). 

Loading 

A monotonically increasing load involving a vertical displacement applied at Node 7 was 

assigned to all beams. A constant load case of uniform shrinkage strains assigned to all 

members was defined for the beams with reported shrinkage strains. The newly 

implemented consideration of shrinkage strains was used in these analyses. 

All default material behaviour models were used except for the concrete base curve. For 

concrete strengths up to 40 MPa, the default base curve of Hognestad was used. For 

concrete strengths of 65 and 80 MPa, the Popovics (HSC) model was selected as 

described in Section 4.2.  

In members made from high strength concrete, cracks pass through, rather than going 

around, the aggregate and, hence, the maximum aggregate size does not have the same 

effect on the crack roughness. It was recommended by Lubell et al. (2004) to take the 

maximum aggregate as zero for concrete strengths in excess of 70 MPa. Consequently, 

the maximum aggregate size was taken as zero for the concrete strengths of 65 and 80 

MPa (Beams DB165, DB165M, DB180 and DB180M). 

Difficulties Expected in the Analyses  

The simulation of the behaviour of these beams was expected to be particularly 

challenging due to the following reasons. 

The beams contained very small amounts of shear reinforcement with two ratios 

employed: 0.0% and 0.08%. In addition, the longitudinal reinforcement was mainly 

provided in one layer in the tension zone. Thus, for the beams containing no shear 

reinforcement, more than half of the concrete layers were unreinforced in both the x- and 
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y-directions. An example output file for beam DB120, listing the calculated 

reinforcement ratios and crack spacings, is presented in Table 4.11.  

For the beams containing transverse reinforcement, a large number of layers were 

unreinforced in the x-direction due to the lack of distributed reinforcement through the 

depth of the beams. 

As a result, the behaviour of these beams was expected to be significantly influenced by 

the tensile strength of concrete, estimated by Eq. 4.1, which intrinsically causes scattered 

predictions. In addition, the tension softening mechanism would most likely be dominant 

in the calculation of the concrete tensile principal stresses as defined in Section 3.3.3.3. 

 

Layer Dc ρt ρz ρL Smx Smv Layer Dc ρt ρz ρL Smx Smv

No (mm) (%) (%) (mm) (mm) (mm) No (mm) (%) (%) (mm) (mm) (mm)
1 to 28 25 0 0 0 1000 1000 35 25 0 0 3.111 201.2 1000

29 25 0 0 3.111 501.2 1000 36 25 0 0 3.111 151.2 1000
30 25 0 0 3.111 451.2 1000 37 25 0 0 3.111 106.1 1000
31 25 0 0 3.111 401.2 1000 38 25 0 0 3.111 106.1 1000
32 25 0 0 3.111 351.2 1000 39 25 0 0 3.111 151.2 1000
33 25 0 0 3.111 301.2 1000 40 25 0 0 3.111 201.2 1000
34 25 0 0 3.111 251.2 1000  

In Table 4.11,  Dc is the concrete layer thickness, ρt is the transverse reinforcement ratio, 

ρz is the out-of-plane reinforcement ratio, and smx and smv are the crack spacing in the x- 

and y-directions, respectively. 

4.6.2 Comparison of the Analytical and Experimental Responses 

The analytically and experimentally obtained midspan load-deflection responses are 

presented in Figure 4.16. 

 

 

Table 4.11 Output Values Showing the Smeared Reinforcement Ratios for Angelakos  
       Beams 
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Figure 4.16 Comparison of the Midspan Load-Displacement Responses for Angelakos Beams  
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Figure 4.16 Comparison of the Midspan Load-Displacement Responses for Angelakos Beams  
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The comparisons of several parameters, as obtained analytically and experimentally, are 

summarized in Table 4.12. 

 

VecTor5 Test VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
DB120 137 150 387 358 1.08 4.8 5.6 0.86 5.0 8.0 0.63
DB130 154 170 431 370 1.17 4.6 4.9 0.94 5.5 6.0 0.92
DB140 104 142 412 360 1.15 4.9 4.6 1.05 5.0 7.7 0.65
DB165 130 186 454 370 1.23 4.9 4.5 1.09 5.3 10.0 0.53
DB180 100 170 450 344 1.31 5.4 5.2 1.03 5.8 9.6 0.60
DB230 215 200 575 514 1.12 4.3 5.4 0.79 6.4 10.9 0.59
DB0.53 106 144 304 330 0.92 5.8 7.5 0.77 4.5 9.9 0.45

DB120M 139 148 628 564 1.11 17.0 14.8 1.15 20.5 30.0 0.68
DB140M 106 154 664 554 1.20 18.0 13.2 1.36 25.5 29.8 0.86
DB165M 118 182 660 904 0.73 15.0 22.2 0.68 23.5 27.5 0.85
DB180M 85 176 666 790 0.84 15.5 20.8 0.75 25.5 22.5 1.13
DB0.53M 108 140 539 526 1.02 35.5 20.2 1.76 42.5 41.4 1.03

Mean 1.07 Mean 1.02 Mean 0.74
COV (%) 16.7 COV (%) 30.6 COV (%) 21.0

Pcracking (kN) Peak Load, Pmax (kN) Disp. for Pmax (mm) Failure Disp. (mm)

 

In Table 4.12, the loads causing the first flexural cracking are compared, where it was 

assumed that the analytical first cracking takes place when the crack widths reach 0.05 

mm. The decrease in the analytical cracking loads as the concrete strength increased was 

caused by the consideration of shrinkage strains for the higher strength beams as defined 

in Section 4.6. 

The peak load capacities of the beams were calculated with reasonable accuracy. The 

coefficient of variation (COV) of the predicted-to-observed ratio was 16.7%, which is 

somewhat higher than the results normally expected with nonlinear analyses. The reason 

for the scattered response is that the majority of the concrete layers used for the beams 

with no transverse reinforcement consisted of unreinforced plain concrete as described in 

Section 4.6.1. In the case of beams with transverse reinforcement, approximately half of 

the layers were only reinforced in the transverse direction with a small amount of 

reinforcement (0.08%). The strength and ductility of beams containing little or no 

reinforcement is extremely sensitive to the tensile stresses permitted in the concrete, 

which were taken into account by the cracking, tension softening and tension stiffening 

mechanisms. These formulations depend heavily on the tensile strength of concrete, 

Table 4.12 Comparison of Loads and Displacements for Angelakos Beams 
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which is difficult to determine. Due to similar reasons, displacements corresponding to 

the peak loads and the failure conditions were estimated with somewhat large COVs.  

For the beams analyzed, the tension softening mechanism was found to be particularly 

important. As an example of the influence of the tension softening formulations, the 

analyses of beam DB120 and DB140M were repeated using a bilinear tension softening 

formulation (Yamamoto, 1999) rather than the default linear formulation (Yamamoto, 

1999). In the analyses, the tensile strengths used were 1.51 MPa and 2.03 MPa for DB102 

and DB140M, respectively. Comparisons of the responses are shown in Figure 4.17. 
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As seen from Figure 4.17, the use of two different tension softening formulations 

changed the predictions noticeably. The responses of beams with no shear reinforcement 

(e.g., DB120) were significantly more affected by this mechanism than the beams with 

minimum shear reinforcement (e.g., DB140M). The sensitivity of the responses to the 

two different tension softening formulations suggests the need for a more comprehensive 

tension softening model. More experimental and analytical study is required in this 

respect to better understand and address this issue. 

One of the main findings of this experimental study, as reported by Angelakos et al. 

(2001), is that changing the concrete strength by a factor of 4 had almost no influence on 

the experimental shear strengths of these large beams. Note the roughly similar 
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Figure 4.17 Comparison of the Analytical Responses for Two Different Tension  
                     Softening Formulations: (a) Beam DB120; (b) Beam DB140M 
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experimental peak loads of Beams DB120 (f’c=21 MPa) to DB180 (f’c=80 MPa), all of 

which were identically reinforced for flexure and contained no stirrups. The reason for 

this behaviour was not entirely understood, although it can be attributed to the crack 

spacing formulations. In the analytical predictions, the strengths of beams increased with 

the increasing concrete strength, thereby yielding the least accurate prediction for DB180, 

which had the highest concrete strength of 80 MPa. 

Comparisons of the average shear strain of concrete, γxy, average strain of the bottom 

longitudinal reinforcement, εlong, and average strain of the transverse reinforcement, εtrans 

are presented in Table 4.13. In most cases, a reasonable estimate was obtained.  

 

VecTor5 Test VecTor5 Test VecTor5 Test
DB120 0.31 0.38 0.96 0.94 n/a n/a
DB130 0.35 0.34 0.83 1.02 n/a n/a
DB140 0.36 0.50 0.95 1.00 n/a n/a
DB165 0.32 0.37 0.94 0.95 n/a n/a
DB180 0.34 0.54 0.90 1.14 n/a n/a
DB230 0.26 1.18 0.70 0.82 n/a n/a
DB0.53 0.40 0.55 1.30 1.53 n/a n/a

DB120M 4.20 2.72 1.60 1.49 6.3 6.2
DB140M 5.50 2.50 1.60 4.59 5.5 7.3
DB165M 3.30 3.85 1.60 3.40 3.8 8
DB180M 3.80 4.15 1.50 3.15 3.5 8.5
DB0.53M 4.90 3.70 11.90 2.45 6.2 10.8

γ xy (x10-3) for Pmax ε long (x10-3) for Pmax ε trans (x10-3)  for Pmax

 

In Table 4.13, the discrepancies in the analytical predictions DB0.53M were mainly 

caused by the near flat-top nature of the analytical response, which reached the peak load 

at a larger displacement than the experimental response, thereby providing larger 

analytical strain values at the peak load level (Figure 4.16). 

The failure modes of all the beams were accurately predicted as being diagonal-tension 

failures. For the specimens containing no shear reinforcement, the analytical failures 

occurred suddenly in the compression zone of Member 5. Typically, one load stage 

before the failure, Member 5 had a maximum flexural crack width of approximately 0.4 

mm and a practically uncracked compression zone. In the following load stage, the layers 

Table 4.13 Comparison of Analytical and Experimental Strains for Angelakos Beams 
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towards the top of the beam cracked suddenly with large strains resulting in the 

transverse direction. As there was no transverse reinforcement, extensive horizontal 

cracking occurred within layers in the top half of the beam. As a result, the member load 

capacity dropped, and the beam failed completely. A similar failure mechanism was 

observed in the experimental program.  

The analytically determined failure of the beams containing shear reinforcement typically 

involved the failure of Member 2. In the analytical model, these beams experienced more 

diagonal cracking compared to the beams containing no shear reinforcement, up to 4.0 

mm in width before the failure occurred. Under increasing cracking, Member 2 started to 

return unbalanced shear force at the end of load stages as the specified maximum number 

of iterations (100) started to be insufficient. The failure was detected by the newly 

implemented shear failure check due to excessive unbalanced shear force. A diagonal-

tension failure mode was also observed in the experiment with diagonal cracks extending 

between the point load at the midspan and the support. 

4.7 Vecchio and Emara Frame 

An experimental program was conducted at the University of Toronto to investigate the 

magnitude and influence of shear deformations in flexure-critical frame structures and to 

verify the accuracy of the analytical procedures developed (Vecchio and Emara, 1992). 

The experiment involved the testing of a one-bay, two-storey frame under increasing 

lateral load levels applied to the second storey beam. Two column axial forces of 700 kN 

were applied to simulate the effects of loads coming from the storeys above the second 

floor. The details of the frame, material properties and the loading conditions were 

described in Section 2.3.5, where this frame was analyzed using several other software 

programs and hand calculation procedures. Additional details regarding this experiment 

can be found in Emara (1990). 

4.7.1 Analytical Modelling 

The beams and columns were divided into a number of segments to create the frame 

model of the structure (Figure 4.18). Segment lengths were selected to be approximately 
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half the cross section depth of 400 mm. Three member types were used for the sectional 

models of the beams, columns and base: MT1, MT2 and MT3, respectively. 

As the frame model of the structure is based on the centreline dimensions, the stiffening 

effects of the overlapping portions of the beams and columns should be considered; this 

is achieved, in this study, by increasing the reinforcement amounts of those portions.  For 

this purpose, a study was carried out for two frame structures by increasing the 

reinforcement ratios for the members in the overlapping portions and repeating the 

nonlinear frame analyses. It was determined that the multiplication of the reinforcement 

amount by a factor of greater than approximately 2 essentially gives the same stiffness in 

the load-deflection response with insignificant curvature values calculated for those  

overlapping members. Therefore, the amounts of all reinforcement components (discrete 

longitudinal, smeared transverse and smeared out-of-plane) were doubled to create 

members within the beam-column joints of the frame. This approach is used throughout 

this study. Therefore, member types MT4, MT5, and MT6 were created by doubling the 

reinforcement amounts of MT1, MT2, and MT3, respectively (see Figure 4.20). The 

concrete layers and out-of-plane reinforcement ratios for the sectional models (member 

types) were determined in the manner explained in Section 4.5.2. The transverse 

reinforcement ratios were assigned to all layers except the clear-cover layers. The 

resulting sectional models are presented in Figure 4.19(a). 

The bolts used in the experiment to fix the base beam to the strong floor were represented 

by restraining both the x- and y-degrees of freedom of the nodes approximately 

corresponding to the bolt locations as shown in Figure 4.20. 

All default material behaviour models were used except the concrete compression base 

curve. As both the modulus of elasticity and peak strain corresponding to the peak stress 

were known, the Popovics (NSC) formulation was used as explained in Section 4.2. 

Two load cases were defined for this analysis: a monotonically increasing displacement 

applied to Node 39 in the x-direction, and two constant column axial forces applied to 

Nodes 39 and 55 in the y-direction. The frame was loaded to a lateral displacement of 

155 mm, and then unloaded to a net lateral load of zero as it was in the experiment. 
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Figure 4.18 Analytical Model Showing Segment Lengths and Loading for Vecchio and  

        Emara Frame 

Figure 4.19 (a) Sectional Models for Vecchio and Emara Frame; (b) Name Convention Adopted 

(b) (a) 
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In the following discussion, a name convention was adopted as shown in Figure 4.19(b). 

The ends of the beams and the column bases were denoted by their North or South 

orientation. As the shear protection algorithm was used by default, the VecTor5 output 

indicated that first storey beam Members 21, 22, 35 and 36 were protected members with 

their shear forces being reduced. As a result, possible shear damage will be diverted to 

the adjacent members. Therefore, 1N and 1S refer to Member 23 and Member 34, 

respectively, when discussing shear-related mechanisms such as shear crack widths. 

Similarly 2N and 2S refer to the Members 39 and 50, respectively. However, when 

flexure-related behaviour is discussed, 1N and 1S refer to Members 22 and 35, and 2N 

and 2N refer to Members 38 and 51. Similarly, BN and BS refer to Members 54 and 74 in 

flexure. 

Figure 4.20 Analytical Model Showing Member Types and Support Restraints for Vecchio  
        and Emara Frame 
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4.7.2 Comparison of the Analytical and Experimental Responses 

The analytically and experimentally obtained applied net lateral load-second storey beam 

lateral deflection responses are compared in Figure 4.21. 

0

50

100

150

200

250

300

350

400

0 25 50 75 100 125 150 175
Lateral Displacement (mm) - Second Storey Beam

N
et

 L
at

er
al

 L
oa

d 
(k

N
)

Experiment
Analysis

 

As apparent from Figure 4.21, the frame’s maximum load capacity was estimated with 

excellent accuracy, having a predicted-to-observed ratio of 0.98.  

The lateral stiffness of the frame was predicted with very good accuracy as well. A slight 

underestimation of the displacements was observed in the initial stages of the loading. 

After achieving the peak lateral load of 324 kN, in the analytical model, the net lateral 

load decreased gradually although the total lateral load applied was being increased. This 

decrease in the net lateral load was caused by the second-order effects considered in the 

analysis. As the columns deflected laterally, the axial forces deviated from the vertical 

axes creating countering lateral forces, which reduced the applied lateral load. This 

behaviour was also observed in the experiment to a lesser extend. 

Upon entirely unloading the frame, the residual displacement was predicted with a 14% 

overestimation. However, the total energy dissipated by the frame (i.e., the area under the 

Figure 4.21 Comparison of Load-Deflection Responses for Vecchio and Emara Frame 
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load-deflection curve) was predicted with excellent accuracy to be 44.6 kNm as 

compared to the experimental value of 44.4 kNm.  

For information purposes, the experimental effective lateral stiffness of the frame was 

calculated, using the secant stiffness of the load-deflection curve at the complete yielding 

point (approximately 319 kN lateral load), as approximately 6.1 kN/mm. As the linear-

elastic lateral stiffness of the frame was approximately 25.7 kN/m, an effective stiffness 

value of 0.25 times the uncracked gross stiffness value of the frame was determined. 

The first storey midspan displacements in the y-direction, as determined analytically and 

experimentally, are compared in Figure 4.22. The initial vertical displacement of the first 

storey beam was accurately calculated to be approximately 0.5 mm. The overall response 

showed a strong agreement with the experimental response. The residual displacement 

value, however, is overestimated significantly. 
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As shown in Table 4.14, the lateral loads causing the first yielding of the reinforcement 

were predicted accurately. A strong correlation in terms of crack widths was also 

obtained. 

 

Figure 4.22 Comparison of First Storey Midspan Displacement Responses for Vecchio        
                     and Emara Frame (Downward displacements are shown as negative.)  
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Analysis Test
Lateral Load (kN) causing
First Flexural Cracking

Crack Widths (mm)
Beam 1N 0.03 0.05
Beam 1S 0.03 0.05

Lateral Load (kN) causing
First Yielding of Reinf.
Beam 1N Longitudinal 267 264

Wcr (mm) 0.45 0.60
Beam 1S Longitudinal 267 287

Wcr (mm) 0.45 0.60

Column BN Longitudinal 318 323
Column BS Longitudinal 318 323
Beam 2S Longitudinal 318 329

Column BS Long. in Comp* 332 320
Column BN Long. in Comp* 332 310

*post-peak

50.0 52.5

 

The experimentally observed damage mode of the frame involved ductile plastic hinging 

of both beam ends (Beam 1N, 1S, 2N and 2S) and both column bases (BN and BS), 

including yielding of both the tension and compression reinforcement and some concrete 

crushing. The analytical damage mode was mainly caused by the plastic hinging of the 

column bases including yielding of both tension and compression reinforcement and 

crushing of concrete, especially in the BS area. The first and second storey beams ends 

were predicted to be extensively damaged with crack widths as high as 9.0 mm and 

tensile reinforcement strains reaching 47 x 10-3. The compression reinforcement at the 

beam ends, however, did not yield but typically reached 80% of their yield strain. As two 

typical examples, the reinforcement strain responses for Beam 1S and for the column 

bases are presented in Figure 4.23. 

Table 4.14 Comparison of Analytical and Experimental Results for Vecchio and Emara 
        Frame 

Analysis Test
Crack Widths (mm)
for Lateral Load (kN)

Beam 2N 0.06 0.05
Beam 2S 0.05 0.05

Column BN 0.06 0.05
Column BS 0.05 0.05

Beam 1 0.05-0.20 0.05-0.15

Column TS 0.03 hairline

Beam 1N 1.1 1.3
Column BN 0.30 0.45
Column BS 0.30 0.45

Beam 1N 2.3 2.2

90 kN 97 kN

150 kN 145 kN

200 kN 193 kN

304 kN

320 kN 329 kN
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Column BN Tension Reinf.
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Beam 1S Top Reinf.

0

50

100

150

200

250

300

350

400

0 2.5 5 7.5 10 12.5
Strain (x10-3)

N
et

 L
at

er
al

 L
oa

d 
(k

N
)

Experiment
Analysis

 

Column BS Tension Reinf.
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Of particular interest in the behaviour of this frame is the influence of the second-order 

effects (i.e., P-Δ effects), which accounted for 12% of the total overturning moment 

acting on this frame at ultimate. To investigate the second-order influences on the 

analytical behaviour, the same analysis was repeated without considering geometric 

nonlinearity. In other words, the initial frame geometry and loading was considered 

throughout this analysis based on small displacements assumption. As shown in Figure 

4.24, the net lateral load continued increasing with the increased lateral displacement, 

causing an overestimation of the frame’s strength. 
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Figure 4.23 Comparison of Reinforcement Strains for Vecchio and Emara Frame 
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4.8 Duong Frame 

An experimental program was carried out at the University of Toronto to investigate the 

behaviour of shear-critical reinforced concrete frames under seismic loading conditions 

and to corroborate analytical procedures (Duong et al., 2007). The experiment involved 

testing of a one-bay, two-storey frame under increasing lateral load levels applied at the 

second storey beam. Two 420 kN axial column forces were applied to simulate the effects 

of loads coming from the storeys above the second floor. 

The experiment consisted of two phases. In Phase A, the frame was laterally loaded until 

significant damage took place in the shear-critical beams and then was unloaded 

completely. The frame was then loaded in the reverse direction to the same displacement 

attained in the forward cycle. The frame was finally unloaded. In Phase B testing, the 

damaged frame was repaired and then tested under reversed cyclic loading conditions. 

Details of the frame, material properties and loading conditions were described in Section 

2.3.6, where this frame was analyzed by several other software programs and by hand 

calculation procedures. More details regarding this experiment can be found in Duong 

(2006). 

Figure 4.24 Influence of Geometric Nonlinearity on Load-Deflection Responses for  
        Vecchio and Emara Frame



 187

4.8.1 Analytical Modelling 

The beams and columns are divided into a number of segments to generate the frame 

model of the structure (see Figure 4.25(a)). The segment lengths were selected to be 

approximately half of the cross section depth of 400 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 (a) Analytical Model of Duong Frame; (b) Sectional Models for Member  
         Types MT1, MT2 and MT3 of Duong Frame 

Figure 4.26 Sectional Models for Member Types MT4, MT5 and MT6 of Duong Frame 

(a) (b) 
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Six member types were used for the sectional models of the beam, column and base; 

these were MT1, MT2, MT3, MT4, MT5 and MT6 as shown in Figures 4.25(b) and 4.26. 

To represent the members within the beam-column joints of the frame, six additional 

member types were created (MT 7 to MT 12) by multiplying the reinforcement amounts 

of MT1 to MT6 by a factor of 2 (see Figure 4.27(a)). The concrete layers and smeared 

reinforcement ratios for the sectional models (member types) were determined in the 

manner explained in Section 4.5.2. 

 

 

 

 

 

 

 

 

The bolts used in the experiment to fix the base beam to the strong floor were represented 

by restraining the x- and y-degrees of freedom of Nodes 1, 2, 7, 11, 15, and 16.  

Figure 4.27 (a) Analytical Model Showing Member Types and Support Restraints of Duong 
        Frame; (b) Name Convention Adopted 

(a) (b) 
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Default material models were used except for the concrete compression base curve for 

which the Popovics (NSC) formulation was selected as described in Section 4.2. 

Two load cases were defined for the analysis. The first was with monotonically 

increasing displacement applied to Node 35 in the x-direction; the second was with the 

two constant column axial forces applied at the Nodes 35 and 53 in the y-direction. In the 

experimental study, the frame was unloaded once significant shear damage took place to 

prevent the total failure of the frame because Phase B of the test program was to be 

performed. However, because the determination of the total failure condition of the frame 

was desired in this study, the frame was loaded with increasing lateral displacement to 

failure. A reversed cyclic analysis of this frame, similar to the experiment, is presented in 

Section 6.4. 

In the following discussion, similar to the convention adopted in Section 4.7.1, the 

naming convention shown in Figure 4.27(b) was used. Due to the shear protection 

algorithm used, some of the members were considered with a reduced shear force, 

thereby diverting the possible shear damage to adjacent members. As a result, the 

notations 1N and 1S refer to Member 55 and 62, respectively, when discussing the shear-

related behaviour. Similarly 2N and 2S refer to Members 67 and 74, respectively. 

However, when flexure-related behaviour is discussed, 1N and 1S refer to Members 54 

and 63; and 2N and 2N refer to Members 66 and 75, which will likely be critical in 

flexure. Similarly, BN and BS refer to Members 18 and 36 in flexure. 

4.8.2 Comparison of the Analytical and Experimental Responses 

The analytically and experimentally obtained applied net lateral load-second storey beam 

lateral deflection responses are compared in Figure 4.28. 
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The frame’s maximum load capacity was estimated with good accuracy, having a 

predicted-to-observed ratio of 1.06. In addition, the gradual decrease in the lateral 

stiffness was captured accurately. 

For information purposes, the experimental lateral effective stiffness of the frame was 

calculated to be approximately 12 kN/mm. Similar to the Vecchio and Emara Frame, an 

effective stiffness value of 0.25 times the uncracked gross stiffness value of the frame 

was determined. 

As shown in Table 4.15, the lateral load levels causing the first yielding of several 

reinforcement components were estimated reasonably. The predictions of the crack width 

also showed a strong correlation to the experimental crack widths. 

 

Figure 4.28 Comparison of Load-Deflection Responses for Duong Frame 
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Analysis Test
Column Shortening (mm)

(No Lateral Load)

Lateral Load (kN) causing
First Flexural Cracking

Lateral Load (kN) causing
First Yielding of Reinf.

1S Longitudinal 285 295
1N  Longitudinal 300 295
2S  Longitudinal 340 320
2N  Longitudinal never 320

(reached 85% of yield)
1S Transverse 285 320
2S Transverse 340 327

0.48 0.58

80 75

 

The damage mode of the frame was experimentally classified as flexure-shear with 

significant shear damage of beam 1N accompanied by flexural mechanisms involving 

flexural cracking and reinforcement yielding. A similar failure mechanism was 

determined analytically. The first drop in the load capacity of the frame, at 48 mm 

displacement, was caused by the shear failure of beam 1S. As the top storey beam was 

intact, the frame continued carrying increased deformations until the shear failure of 

beam 2S, at 68 mm displacement, caused the second drop in Figure 4.29. After this, the 

only remaining load resisting mechanism was a cantilever column. The frame also 

showed significant flexural behaviour with flexural cracking and reinforcement yielding. 

The deflected shapes of the frame before and after the shear failures of the beams were 

presented in Figure 3.41 and 3.42.   

 

Table 4.15 Comparison of Analytical and Experimental Results for Duong Frame 

Figure 4.29 Condition of the First Storey Beam at a Lateral Deflection of 44mm for  
        Duong et al. Frame (Duong, 2006) 

Analysis Test
Crack Widths (mm)
for Lateral Load (kN)

Column NB 0.05 0.05

Beam 1N 0.18 0.15
Beam 1S 0.18 0.15

Column SB 0.05 Hairline

1N Shear Crack Width (mm) 2.2 4.0
1S Shear Crack Width (mm) 2.8 1.6

115 kN 100 kN

150 kN

325 kN
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Additional comparisons of the analytical and experimental responses of this frame, in 

terms of reinforcement strains and column and beam axial deformations, are given in 

Section 6.4 where this frame was analyzed for the reverse half-cycle. 

4.9 Vecchio and Balopoulou Frame 

An experimental investigation was performed at the University of Toronto to study the 

factors contributing to the nonlinear behaviour of frame structures under short-term 

loading conditions (Vecchio and Balopoulou, 1990). The factors investigated included 

second-order mechanisms such as material nonlinearities, geometric nonlinearities, 

concrete shrinkage effects, and shear deformations. The experiment involved testing of a 

one-bay, two-storey frame under increasing load levels applied to the midspan of the first 

storey beam. Significant shrinkage strains were also reported for this frame. 

Details of Frame and Test Setup 

The test frame was constructed with a centre-to-centre span of 3500 mm, a storey height 

of 2000 mm and an overall height of 4600 mm (Figure 4.30). All beams and columns 

were 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400 mm 

deep. The first storey beam top reinforcement was cut back to two No.20 bars in the 

central 500 mm length of the first storey beam. The frame was built integral with a large, 

heavily reinforced concrete base, bolted to the laboratory strong-floor, to create an 

essentially fixed base. The material properties were determined through concrete cylinder 

and steel coupon tests and are summarized in Table 4.16. 

 

db fy fu Es Esh εsh εu f'c ε0 Ec

(mm) (MPa) (MPa) (MPa) (MPa) (x 10-3) (x 10-3) (MPa) (x 10-3) (MPa)
No.20 19.5 418 596 192600 3100 9.25 66 29 2.15 22400
No.10 11.3 454 640 200000* 4000* 5* 72*

* estimated

Reinforcement Concrete

 

Table 4.16 Material Properties of Vecchio and Balopoulou Frame 
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The testing of the frame involved a simple case of monotonically increasing point load 

applied to the midspan of the first storey beam in a displacement-controlled mode.  

Additional details regarding this experiment can be found in Balopoulou (1988). 

Figure 4.30 Structural Details of Vecchio and Balopoulou Frame  
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4.9.1 Analytical Modelling 

Taking advantage of the symmetry of the test setup, only one half of the frame was 

modelled. The beams and columns were divided into segments with lengths in the range 

of half of the cross section depth of 400 mm (Figure 4.31(a)). 

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Four member types were used for the sectional models of the beams, columns and base: 

MT1, MT2, MT3 and MT4 (see Figure 4.32(a)). To create the members within the beam-

column joints of the frame, three additional member types were defined (MT5, MT6 and 

MT7) by multiplying the reinforcement amounts of MT1, MT2 and MT3 by a factor of 2.  

Figure 4.31 (a) Analytical Model Showing Segment Lengths and Loading for Vecchio  
        and Balopoulou Frame; (b) Sectional Models for the Member Types 1, 2 and 3 

(a) (b) 



The concrete layers and  the sm eared reinforcement ratios for the sectional m odels were 

determined in a way sim ilar to that expl ained in Section 4.5.2 a nd shown in Figures 

4.31(b) and 4.32(b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a)  
 Figure 4.32 (a) Analytical Model Showing Member Types and Support Restraints for  

         Vecchio and Balopoulou Frame; (b) Sectional Model of the Base 

As for the s upport restraints, 6 pin supports were  defined to represent the bolts that were  

used in the experim ent to fix the base to the strong floor. Default m aterial models were 

used excep t for the co ncrete base curve b eing the Popo vics (NSC) for mulation, as  

described in Section 4.2. Two load cases were defined in the analysis. T he first was with 

monotonically increasing displacement applied to Node 46 in the y-direction; the second 

involved the concrete shrinkage strains. In the experimental study, it was estim ated that 
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the shrinkage strains were in the range of -0.5 x 10-3. Consequently, a uniform shrinkage 

strain of -0.5 x 10-3 was applied to all members as the second load case. 

4.9.2 Comparison of the Analytical and Experimental Responses 

The analytically and experimentally obtained first storey midspan load-deflection 

responses are compared in Figure 4.33. Because the load-deflection response reported by 

Vecchio and Balopoulou (1990) was terminated before the failure of the frame, the load-

stroke response for the complete test, as measured by the loading machine including the 

flexibility of the machine, was also compared to the analytical load-deflection response. 
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 Figure 4.33 Comparison of Responses for Vecchio and Balopoulou Frame 
 

The analytical load-deflection response showed excellent agreement with the 

experimental response. The frame’s strength, stiffness and failure deflection, which is 

particularly important when calculating the frame’s ductility, were calculated accurately. 

For information purposes, the experimental effective stiffness of the frame was 

calculated, using the secant stiffness of the load-deflection curve at the complete yielding 

point, to be approximately 6.5 kN/mm. Considering that the uncracked gross stiffness of 

the frame was approximately 25 kN/mm, an effective stiffness value of approximately 

0.25 times the uncracked gross stiffness was found to be appropriate for this frame. 

The maximum flexural crack widths were predicted with reasonable accuracy as 

indicated in Table 4.17. 
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The maximum flexural crack widths were predicted with reasonable accuracy as 

indicated in Table 4.17. 

Analysis Test Analysis Test
Base 0.16 - 0.20 Column 0.20 0.25

Column 0.10 - 0.11 Beam 0.51 0.75
Beams 0.10 - 0.18

0.20 - 0.25

Initial Shrinkage Crack Widths (mm) Crack Widths (mm) for P = 300 kN

 

The experimental failure mode of the frame involved a combination of a flexural collapse 

mechanism (i.e., a three-hinge mechanism formed at the ends and the midspan of the first 

storey beam) and a shear failure near the midspan of the first storey beam. A similar 

failure mechanism was calculated analytically with the plastic hinges forming under 

somewhat larger applied loads as shown in Table 4.18. 

 

  Applied Load (kN)  for   Applied Load (kN) for
Beam-End Plastic Hinging Midspan Plastic Hinging

Analysis 460 Analysis 510
Test 370 Test 430  

The final failure of the frame in the analysis involved the shear failure of Member 44. 

When this failure occurred, the strain of the midspan tensile reinforcement (50 x 10-3) was 

close to the rupture strain of 66 x 10-3. The reinforcement strain responses for the first 

storey beam are presented in Figure 4.34. 
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Table 4.17 Comparison of Crack Widths for Vecchio and Balopoulou Frame 

Table 4.18 Comparison of Hinging Loads for Vecchio and Balopoulou Frame 

Figure 4.34 Comparison of Reinforcement Responses for Vecchio and Balopoulou Frame 
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Of particular interest in the behaviour of this frame is the membrane action mechanism. 

As explained in Section 2.3.6.1, the first storey beam of the frame had a tendency to 

elongate due to the average tensile strains on the tension face being much larger than the 

compressive strains on the compression face. However, the columns acted as an axial 

restraint, thereby inducing axial force in the beam. The accurate determination of this 

axial force is essential for accurate simulation of the frame behaviour, as the axial force 

can significantly increase the shear and flexural strength of the beam.  

To show the significance of this effect, a plastic analysis of the frame was performed with 

a simple three-hinge mechanism assumed for the first storey beam (Figure 4.35). For Pu = 

380 kN, using a linear-elastic frame analysis, the axial force in the beam was determined 

as -12 kN, the shear force as 190 kN, and the bending moment at the midspan (Node 45) 

as 190 kNm. A nonlinear sectional analysis was then performed for the beam to calculate 

the shear and moment capacities for the midspan section as 220 kN and 186 kNm, 

respectively. Therefore, a flexural failure of the mid-span was predicted for Pu = 380 kN, 

which is 30% less than the actual failure load of the frame. This underestimation of the 

failure load occurred due to the linear-elastic frame analysis performed, which calculated 

the axial compression force in the beam to be much less than the value determined 

experimentally. In addition, the failure mechanism was determined incorrectly to be a 

flexural failure of the midspan section; in fact, a shear failure was observed near the 

midspan. 

 

 

As a result, nonlinear frame analysis procedures which incorporate the second-order 

effects such as membrane action are required for the accurate simulation of the frame 

behaviour. As experienced above, even if a nonlinear sectional analysis procedure is 

employed for the first storey beam of the frame, the use of linear-elastic frame analyses 

may lead to significant errors in the determination of the strength of a frame. 

Figure 4.35 A Simple Three-Hinge Mechanism for the First Storey Beam 
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4.10 Clinker Preheat Tower 

For the comparison of the developed analytical procedure to the previous procedure of 

TEMPEST, the clinker preheat tower introduced in Section 1.1.3 was reanalyzed using 

the newly developed program VecTor5. The details of the structure are given in Figure 

1.1 and 1.2. The loading on the frame included monotonically increasing static storey 

shear forces, calculated using the linear dynamic response spectrum method, and the 

constant dead load of the structure as shown in Figure 4.36(a). 

                          

 

  

 

 

 

 

 

 

 

 

 

 
Figure 4.36 Clinker Preheat Tower: (a) Loading; (b) Analytical Model 

(a) (b) 
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A part of the analytical model of the structure is shown in Figure 4.36(b), where the bold 

numbers refer to the members and the regular numbers to the nodes. 

4.10.1 Comparison of Analytical Responses 

The load deflection responses obtained are compared in Figure 4.37. 
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Both procedures predicted shear failures of some of the upper storey beams and identical 

displacements for the peak load capacity of the structure. The strength of the frame, 

however, was predicted differently. Performing 58 load stages before encountering a loss 

of stability of the structure, TEMPEST predicted 27% higher strength than did the new 

VecTor5 which achieved 46 load stages before stability loss. Detailed inspection of the 

output files revealed that towards the end of the analysis, large unbalanced forces were 

present in some of the members in the TEMPEST analysis. As an example, the 

comparisons of unbalanced forces are presented in Figure 4.38(a) for Member 34 and 

Figure 4.38(b) for Member 138, where the unacceptably large unbalanced forces are 

clearly visible especially for the last 8 load stages in the TEMPEST analysis. 

Figure 4.37 Comparison of Load-Deflection Responses for Clinker Preheat Tower 
                          (Note: LS = Load Stage)
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Figure 4.38 Comparison of Unbalanced Forces as Predicted by TEMPEST and      
         VecTor5 for Clinker Preheat Tower: (a) Member 34; (b) Member 138 

(a) (b) 
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Moreover, during the TEMPEST analysis, deteriorated convergence factors were noticed 

at some of the load stages (i.e., at the end of 100 global frame analysis iterations). As 

described in Section 3.9, a new load stage is started when the default convergence factor 

of 1.00001 is achieved or the default maximum number of iterations of 100 is reached in 

both procedures. A comparison of the convergence factors is presented in Figure 4.39. 
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Unacceptably high convergence factors reaching as high as 4.0 during the early stages of 

the TEMPEST analysis are clearly visible in Figure 4.39. 

In the new VecTor5 analysis, the failure of the frame was initiated by a shear failure in 

the fifth storey beam (Member 182 in Figure 4.36(b)), followed by a shear failure of the 

sixth storey beam (Member 197) as shown in Figure 4.40. Finally, the shear failure of the 

seventh storey beam resulted in the complete loss of stability of the structure, thereby 

indicating a total failure condition (i.e., the collapse of the structure). Because the tower 

is an existing structure built in El Salvador, Central America, in the late 1990s, the 

experimental failure mechanism is not available for comparison purposes. 

Figure 4.39 Comparison of Convergence Factors at the End of Load Stages for Clinker 
          Preheat Tower  
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Sudden shear failures were initiated by the newly implemented shear failure check 

algorithm, which detected large unbalanced shear forces present at the end of some of the 

load stages (100th global frame analysis iteration). As an example, the comparison of the 

unbalanced forces and acting forces for Member 182, which was the first member to fail, 

are presented in Figure 4.41, where it is clear that the shear capacity of Member 182 is 

exceeded around load stage 40. 

Figure 4.40 Failure Stages of the Clinker Preheat Tower as Predicted by VecTor5:    
        (a) Load Stage 44; (b) Load Stage 45; (c) Load Stage 47 

(a) (b) (c) 
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In conclusion, the newly developed analytical procedure provided a more conservative 

estimate of the strength of the frame as compared to the previous procedure of 

TEMPEST. Throughout the analyses using the new VecTor5, excellent convergence 

factors and negligible unbalanced forces were realized, which supported the validity of 

the calculated load-deflection response. 

4.11 Lefas Shear Walls 

Two sets of large-scale shear walls were tested to failure by Lefas et al. (1990), under the 

combined action of constant axial loads and monotonically increasing horizontal loads, to 

investigate the effects of a number of parameters on wall behaviour. These parameters 

included the height-to-width ratio, the axial load, the concrete strength and the amount of 

Figure 4.41 Forces for Member 182 of the Clinker Preheat Tower as Predicted by VecTor5: 
        (a) Shear Force; (b) Axial Force; (c) Bending Moment  

(a) (b) 

(c) 
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wall horizontal reinforcement. Two height-to-width ratios were used for the walls: 1.0 for 

Type I walls and 2.0 for Type II walls.   

As discussed in Section 4.11.2, elements with shear span-to-depth ratios greater than 2.0 

are suitable for analysis with sectional procedures because direct strut mechanisms 

become significant at ratios less than 2.0 to 2.5 (Collins and Mitchell, 1991). For this 

reason, the Type II walls were considered in the following analytical study. 

All six Type II walls consisted of a 650 mm wide and 65 mm thick cross section 

extending vertically 1300 mm between the two beams which were monotonically 

connected to the walls (Figure 4.42(a)). The wall sections typically included concealed 

columns at each side. The reinforcement ratios reported are summarized in Figure 

4.42(b), where the transverse reinforcement ratios ρt were calculated considering the 

gross sectional area of the wall, and the out-of-plane reinforcement ratios ρz were 

determined considering the gross sectional area of the concealed columns. The vertical 

and horizontal reinforcement consisted of high-tensile deformed steel of 8 and 6.25 mm 

diameters with the properties summarized in Table 4.19. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42 (a) Structural Details of the Lefas Type II Walls; (b) Reinforcement Ratios 
(a) 

(b) 

ρt (%) ρz (%) N (kN)
SW21 0.8 0.9 0
SW22 0.8 0.9 182
SW23 0.8 0.9 343
SW24 0.8 0.9 0
SW25 0.8 0.9 325
SW26 0.4 0.9 0



                          
Table 4.19 Material Properties of Lefas Type II Walls 

 

 

 

fcc f'c    * ε0   * Ec  *

(MPa) (MPa) ( x 10-3) (MPa)
SW21 42.8 35.7 2.61 26710
SW22 50.6 42.2 2.13 28250
SW23 47.8 39.8 2.10 27850
SW24 48.3 40.3 2.10 28000
SW25 45.0 37.5 2.06 27230
SW26 30.1 25.1 1.90 23500

Concrete

db fy fu Es Esh εsh

(mm) (MPa) (MPa) (MPa) (MPa) ( x 10-3)

ø8 8 470 565 200000* 2000* 2.5*
ø6.25 6.25 520 610 200000* 2000* 2.7*

* es timated

Reinforcement

The testing of the walls involved the applic ation of a monotonically increasing latera l 

load and a constant axial load applied thr ough the top beam (Figure 4.42(a)). Axial load 

values were varied from 0 to 325 kN as shown in Figure 4.42(b).  

4.11.1 Analytical Modelling 

The walls were m odelled with varying le ngths of segm ents. A segm ent length of 58.5 

mm (approxim ately 10% of the wall width) wa s used towards the b ase of  the walls, 

where a con centration o f plastic d eformation was expected.  The segm ent leng ths were 

gradually increased towards the top  of the wall s. The beam at the base of the walls was 

not modelled; rather, the walls were assumed to be fixed at the base (Figure 4.43(a)). 

                 

 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 4.43 (a) Frame Model for Lefas Walls; (b) Sectional Model 
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One member type was used for the sectional model of the walls: MT1. To simulate the 

top loading beam, an artificial member type, MT2, was created by multiplying the 

reinforcement ratios of MT1 by a factor of 2. As the local conditions of the region 

through which the load is introduced was not particularly important in the sectional 

calculations, the top loading beam was modelled superficially.   

The sectional model for MT1 is presented in Figure 4.43(b); 96 concrete layers were 

typically used (5.0 mm x 28 layers, 9.25 mm x 40 layers and, 5.0 mm x 28 layers). Out-of-

plane reinforcement was assigned to the layers constituting the concealed columns, and 

transverse reinforcement was assigned to all layers except the 10 mm thick clear-cover 

layers as defined in Figure 4.43(b).  

Default material models were used except for the concrete base curve for which the 

Popovics (NSC) formulation was adopted as described in Section 4.2. Because the only 

the cube strengths of the concrete, fcc, were reported, the cylinder strengths were 

determined approximately as follows: 

/1.20c ccf f′ =                (4.3) 

In addition, the modulus of elasticity of concrete Ec, and the strain εo corresponding to the 

peak stress f’c were estimated based on Eq. 4.4 and 4.5 (Collins and Mitchell, 1991). 

3320 6900 ( )c cE f MPa′= × +                (4.4) 

1
c

o
c

f n
E n

ε = ×
−

    where     0.8
17

cfn
′

= +             (4.5) 

The resulting values for all six different concrete types used are listed in Table 4.19 

4.11.2 Comparison of the Analytical and Experimental Responses 

The analytical and experimental lateral load- deflection responses are compared in Figure 

4.44. It should be noted that as the tests were performed in a force-controlled mode, the 

following graphs and discussion consider the behaviour up to the peak load levels only. 

In other words, the post-peak responses of the walls are not considered. 
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Figure 4.44 Comparison of the Lateral Load-Displacement Responses for Lefas Walls 
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The analytical results, as shown in Figure 4.44, predicted the lateral stiffnesses of the 

walls reasonably well. The general tendency was to slightly underestimate the 

experimental deflections, thereby giving slightly stiffer responses. It should be noted that, 

in the experiment, strain penetration into the wall bases may have noticeably affected the 

lateral stiffnesses of the walls. In the analyses, the base beams were not included in the 

model; a fixed base assumption was made. Note that for the walls with constant axial 

forces (i.e., SW22, SW23 and SW25), the analytical underestimations of the deflections 

are minimal. This can be attributed to less strain penetration into the bases in these 

experiments, providing a base condition more similar to the analytical base condition. 

The comparisons of several parameters, as obtained analytically and experimentally, are 

summarized in Table 4.20. 

 

VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
SW21 8.7 10 0.87 70 80 0.88 120.4 128 0.94
SW22 23.3 14 1.66 95 110 0.86 139 150 0.93
SW23 36.7 20 1.84 114 120 0.95 150.6 180 0.84
SW24 9.0 10 0.90 74 80 0.93 119 120 0.99
SW25 35.9 25 1.44 111.5 130 0.86 147.4 150 0.98
SW26 7.8 10 0.78 72 68 1.06 114.5 123 0.93

Mean 1.25 Mean 0.92 Mean 0.93
COV (%) 45.5 COV (%) 7.7 COV (%) 5.5

Initiation of Cracking First Long. Reinf. Yielding Peak Load

 

The strengths of the walls were predicted reasonably well with a mean of 0.93 and a 

coefficient of variation (COV) of 5.5% for the predicted-to-observed strength ratio. The 

slight underestimation of the strengths is likely associated with direct strut action in the 

walls being developed because the shear-span-to depth ratios were 2.0. 

Beams with shear-span-to depth ratios less than about 2.5 carry load largely by direct 

strut action, as classified by D-regions in Section 3.11. The analyses of such members 

with sectional analysis procedures typically produce conservative results depending on 

the depth of the member. The smaller the shear span-to-depth ratio from the limiting 

value 2.5, the more conservative the sectional analysis predictions become. A detailed 

discussion of this behaviour can be found in Collins and Mitchell (1991). Consequently, 

Table 4.20 Comparison of Analytical and Experimental Results for Lefas Walls 
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the strength predictions of the walls, analyzed here, with a shear-span-to depth ratio of 

2.0, was understandably underestimated but surprisingly not by a significant degree. 

The lateral loads causing the first yielding of the longitudinal reinforcement were 

predicted with a reasonable mean of 0.92 and a COV of 7.7%. The typical calculation of 

the first yielding at lower lateral load levels in the analytical study was most likely caused 

by the modelling of the base as perfectly fixed. In the experiment, a lower beam was 

utilized to create an essentially fixed base (see Figure 4.42(a)) and the longitudinal 

reinforcement of the walls extended into the base beams. Consequently, due to cracking 

of the wall bases and perhaps some bond slip, the longitudinal reinforcement could 

rationally yield at a greater lateral load level than the analyses estimated. 

The lateral loads causing the first flexural cracking of the walls are also compared in 

Table 4.20 for information purposes only, as the methodology used in determining the 

experimental first cracking loads is not known. In the analytical predictions, first cracking 

was assumed to take place when the crack widths reached 0.05 mm, as it would be 

difficult to observe crack widths smaller than 0.05 mm in an experimental study. In 

addition, the experimentally determined crack widths are usually measured at discrete 

load stages; therefore, first cracking occurring between two load stages may not be noted 

during the experiments. 

The experimental behaviour of the walls typically involved the following stages. In the 

earlier stages of the experiments, the bottom one-third of the walls, in the vertical plane, 

experienced horizontal flexural cracking. Under increasing lateral load levels, the cracks 

started to incline towards the compression toe of the walls. The final failures were caused 

by crushing of concrete in the compression toe of the walls, which was initiated by near 

vertical cracks reaching the base of the compression toe. 

A similar flexure-dominated behaviour was obtained for all of the walls in the analytical 

study. The final failure modes of the walls were predicted to be caused by rupturing of 

the longitudinal reinforcement in the tension zone, rather than the crushing of the 

concrete in the compression zone. This can be associated with the assumed value of the 
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rupture strain of the longitudinal reinforcement. As the experimental rupture strains of the 

high-tensile reinforcement were not reported, a value of 50 x 10-3 was assumed in the 

analytical study. The use of larger rupture strains would increase the deformation levels, 

causing the crushing of concrete in the compression zone. However, in order to 

demonstrate the applicability of the procedure in practical situations involving several 

unknowns in the concrete and steel properties, these walls were analyzed with 

conservatively assumed material properties (i.e., weaker than actual) and default analysis 

options.  

Of particular interest in the behaviour of these walls is the influence of shear-related 

mechanisms. In the analyses above, the shear protection algorithm was used, which 

reduced the shear forces and strains in the first 7 members, as indicated by the program 

output (i.e., within a distance 0.7 x h from the base). It was decided to investigate the 

influence of this reduction as well as the total contribution of the shear deformations to 

the behaviour of the walls. For this purpose, two additional analyses were performed: 

considering full shear effects without the use of the shear protection, and neglecting shear 

effects all together. As two typical examples, the load-deflection curves obtained for 

SW24 and SW25 are shown below. 
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Table 4.45 Comparison of the Analytical Responses for Different Shear Considerations:  
       (a) Wall SW24; (b) Wall SW25
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As seen in Figure 4.45, shear-related influences did not play a significant role in the 

overall responses of these walls. The inclusion of full shear (i.e., deactivating the shear 

protection feature) increased the deflections slightly without changing the peak loads 

considerably. However, it should be noted that, in these comparisons, the behaviour only 

up to the peak load was considered due to the force-controlled nature of the loading. 

Significantly different responses may be obtained in the post-peak response of the walls. 

Such a comparison involving the post-peak responses of another wall series tested under 

reversed cyclic loads is presented in Section 6.7.2 (see Figure 6.37). 

4.12 Summary, Conclusions and Recommendations 

In this chapter, the analytical procedure developed in Chapter 3 for monotonic loading 

condition was verified with two sets of beams, three large-scale frames and six large-

scale shear walls, all of which were previously tested. The experimental behaviours of the 

structures were carefully compared to the analytical behaviours in terms of load-

deflection responses, reinforcement strain responses and crack widths. The failure 

conditions of the structures, as obtained experimentally and analytically, were compared 

in terms of failure modes and failure displacements. Important in the seismic assessment 

of the structures, the analytical post-peak responses were compared to the experimental 

responses and the energy dissipation characteristics were discussed. 

As the main focus of the analytical procedure developed was to accurately simulate the 

shear behaviour of reinforced concrete, most of the structures examined in this chapter 

were selected from the available literature to exhibit shear-critical behaviour. In addition, 

several flexure-critical structures were also examined, comprising one-thirds of the 

structures considered in this chapter.  

Considering all 33 structures, a mean of 1.03 and a coefficient of variation (COV) of 

11.9% were achieved for the predicted-to-observed strength ratio. As for the complete 

failure displacements, a mean of 0.85 with a COV of 20.7% was realized. Considering 

the challenges involved in modelling shear-critical structures, these ratios can be regarded 

as satisfactory. The failure modes of the structures were predicted accurately. In addition, 
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computed parameters such as reinforcement strain responses, member elongation 

responses and crack widths showed strong correlations with the experimental results. 

In conclusion, the nonlinear sectional analysis procedure implemented for the monotonic 

loading condition provided reasonable simulations of the responses of the previously 

tested structures. Shear-related mechanisms were captured well. 

Also notable is that all analyses were performed with the use of default material 

behaviour models and analysis options. No decisions regarding the expected behaviour, 

failure mode or selection of appropriate parameters were made prior to the analyses. No 

additional calculations, such as interaction responses or moment-curvature responses of 

the cross sections, were performed in the modelling process. In addition, the analyses 

required little computation time. For the beams analyzed, approximately 1 minute was 

required; the longest analysis time of approximately 6 minutes was required for the 

Duong frame*. Therefore, the aim of reasonable simulations with reasonable engineering 

effort was achieved. 

The newly implemented shear protection algorithm, which approximately takes into 

account the increased strengths of D-regions, performed well. Premature shear failures of 

sections adjacent to beam-column panel zones, point load application areas and support 

areas were prevented. 

The newly implemented shear failure check algorithm performed well also. Sudden shear 

failures of several structures were detected that would otherwise have gone unnoticed 

with significant unbalanced shear forces and gradually diminishing responses. 

The need for improvements in some of the material behaviour models used was pointed 

out. The use of two different tension softening formulations was found to significantly 

affect the computed responses of beams containing very little amounts of shear 

reinforcement. Consequently, the need for a more comprehensive tension softening 

formulation was emphasized. 

*On a Laptop computer with an Intel ® Dual Core 2 Due® T7500 (2.2 GHz) Processor®, a 2 GB DDR2,    
  677MHz RAM and a 7200 RPM hard disk drive. 
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Two recommendations were made for the selection of optimum segment lengths for use 

in the frame models. A segment length in the range of 50% of the cross section depth was 

suggested for frame-related structures (i.e., beams, columns and frames); a segment 

length in the range of 10% of the cross section depth was suggested for shear walls. It 

should be noted that a limited number of flexure-critical shear walls were considered to 

determine the optimum segment lengths for shear walls; more analytical study should be 

conducted on shear-critical shear walls to reach a more definitive conclusion. 

Considering the experimental load-deflection behaviour of the three frames examined, 

effective stiffness values were typically found to be approximately 0.25 times the 

uncracked gross stiffness values.  
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CHAPTER 5 

GENERAL LOADING: THEORY AND IMPLEMENTATION 

5.1 Chapter Layout 

This chapter describes the theoretical principles needed for nonlinear analysis of 

reinforced concrete frames subjected to general loading conditions and their 

implementation into the analytical procedure developed for monotonic loading 

conditions.  

The chapter starts with a discussion of the need for the nonlinear analysis capability 

under general loading conditions and a short overview of the analysis procedures for 

reinforced concrete under general loading conditions. It is then followed by the 

methodology adopted to consider the general loading conditions in the context of the 

smeared rotating crack approach. The chapter concludes with the formulations for the 

concrete and reinforcement hysteresis models implemented. Each implementation is 

supported by a verification example including a simple axial element. In addition, the 

appropriate selection of the implemented models is discussed.  

5.2 Need for Nonlinear Analysis Procedures for General Loading 

As formulated in Chapter 3, nonlinear static analysis of reinforced concrete frame 

structures under primarily static loads serves various purposes; it can be used for: (1) the 

determination of the failure mode of the structure (this may reveal undesirable 

mechanisms such as shear-critical behaviour which may cause premature failure of the 

structure), (2) the estimation of the strength of the structure (this may be useful when 

determining whether the structure meets code required strength levels), and (3) the 

determination of any deficient parts or members (this may be useful when deciding on an 

appropriate retrofitting scheme). 

In the case of an evaluation of a structure in a seismically active area, nonlinear static 

analysis procedures may provide some useful information for: the estimation of the  

maximum deformation capacity of the structure (this may help, for example, when 
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checking if the structure meets the FEMA 356 (2000) stipulated target displacement 

criteria), and for the estimation of the ductility ratio of the structure (this may help, for 

example, to verify if the selected force reduction factor, according to NBCC (2005), is 

appropriate). However, structural failures sustained during major earthquakes such as the 

1994 Northridge, California and the 1995 Kobe, Japan events demonstrated that load 

reversals play a major role in the structural behaviour. Many of the collapses involved 

structural elements subjected to reversed lateral shears, placing high strength and ductility 

demands on cracked reinforced concrete (Vecchio, 1999). In such a situation, a static 

analysis procedure which is based on the strength envelope of the structure does not 

capture the cyclic behaviour that is expected under seismic loading (Christopoulos and 

Filiatrault, 2006). Therefore, the capability for analysis of reinforced concrete structures 

under general loading conditions including cyclic and reversed-cyclic loads is needed. 

For the reasons described above, in this chapter, the formulations established for 

monotonic loading conditions in Chapter 3 are expanded to include analysis capabilities 

under general loading conditions.  

5.3 Overview of Nonlinear Analysis of Reinforced Concrete under General 

Loading Conditions 

Analysis of reinforced concrete structures subjected to general loading conditions 

requires realistic constitutive models and analytical procedures in order to achieve 

reasonably accurate simulations of the behaviour (Palermo and Vecchio, 2003). However, 

successful models available in the literature for the general loading are limited in number 

as compared to those available for monotonic loading. Usually based on the smeared 

crack approach, fixed crack models have demonstrated good correlation to experimental 

results under general loading conditions as documented by Okamura and Maekawa 

(1991), Sittipunt and Wood (1995) and others. However, in some fixed crack approaches, 

separate formulations have been used to model the hysteretic behaviour of normal and 

shear stresses which is at odds with test observations (Vecchio, 1999). An alternative 

method of analysis was developed by Vecchio (1999) for general loading which assumed 

smeared rotating cracks consistent with a compression field approach. Characterized by 
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the excellent convergence and numerical stability afforded by the secant stiffness 

approach, this alternative formulation eliminated the need to model the shear and normal 

stresses separately. This formulation was implemented into a finite element software 

program, VecTor2, to successfully model the response of structures under cyclic and 

reversed-cyclic loading, addressing the criticism that the secant stiffness formulation 

could not effectively be used to model general loading conditions (Vecchio, 1999).  This 

procedure was based on an iterative, secant stiffness formulation treating concrete as an 

orthotropic material modelled according to the MCFT (Vecchio and Collins, 1986) or the 

DSFM (Vecchio, 2000). It included simple unloading and reloading rules for concrete 

based on a plastic offset formulation.  

In a later study, built on the preliminary constitutive formulations of Vecchio, Palermo 

and Vecchio (2003) developed a more comprehensive constitutive model for concrete, 

which additionally included a degradation in strength in the reloading curves, calculation 

of plastic offsets in both the tension and compression domains, and consideration of 

partial unloading and reloading in both the tension and compression domains.  

5.4 Implementations in the Analytical Procedure Developed 

Both formulations proposed by Vecchio (1999) and Palermo and Vecchio (2003) were 

implemented into the sectional and global frame analysis algorithms of the analytical 

procedure developed, giving it the capability to consider general loading conditions. The 

vast majority of the implementations were performed in the sectional analysis algorithm, 

where stress and strain calculations were carried out for each concrete, reinforcing and 

prestressing steel layers as explained in the Section 3.7. The only addition to the global 

frame analysis subroutine was in the updating process for the concrete and steel strain 

and stress histories at the end of each load stage as shown in the flowchart of Figure 3.19. 

5.4.1 Consideration of Concrete Plastic Offset Strains 

In the formulation of the sectional calculations in Chapter 3, concrete plastic offset strains 

were incorporated into the total strains experienced by a concrete layer as defined by Eq. 

3.71, and both the shear-stress and shear-strain-based sectional calculation procedures 
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were developed accordingly. The remaining task was to implement a plastic offset 

formulation for concrete.   

In the implementation, plastic offset strains for concrete are defined and retained based 

on the formulations proposed by Vecchio.  As a rotating crack approach is used, the 

principal strain directions are free to rotate; therefore, plastic offset strains should be 

defined with respect to the elemental axes (x and y in VecTor5) so that the previous 

damage does not rotate with the rotation of the principal strain directions. This requires 

an incremental formulation for plastic offset strains. Based on this approach, in each 

sectional analysis iteration performed for each concrete layer, previously stored concrete 

plastic offset strains , ,p p p
cx cy cxyε ε ε   are transformed into principal concrete plastic offset 

strains 1 2,p p
c cε ε  based on the current inclination angle through the use of a Mohr’s circle 

of strain as follows: 

 1 cos sin 2
2 2 2

p p p p p
cx cy cx cy cxyp

c

ε ε ε ε γ
ε θ

+ −
= + × 2θ + ×           (5.1) 

2 cos sin 2
2 2 2

p p p p p
cx cy cx cy cxyp

c

ε ε ε ε γ
ε θ

+ −
= − × 2θ − ×           (5.2) 

It should be noted that the current inclination, θ , corresponds to the inclination of the 

strain field (same as stress field) when using the MCFT, and to the inclination of stress 

field when using the DSFM. 

During each sectional iteration performed for the concrete layer under consideration, the 

instantaneous concrete plastic offset strains are then calculated based on the selected 

concrete hysteresis model. 

The Vecchio model considers the instantaneous concrete plastic offsets in the 

compression domain as defined by Eq. 5.3 and Eq. 5.4. 
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2

0.29 0.87 1.5p c c
c c p c p

p p

ifε εε ε ε ε ε
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + × × − ×        > ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

        (5.3) 

0.001305 1.5
0.002

pp
c c c pif

ε
ε ε ε ε⎛ ⎞

= − ×                            < ×⎜ ⎟
⎝ ⎠

         (5.4) 

where cε is the principal compressive strain, and pε  is the strain corresponding to peak 

stress in the base curve. 

As shown in Figure 5.1, in the tension domain, the Vecchio model does not fully consider 

positive plastic offset strains. The unloading branch (arrows 2 and 7) of the compression 

response passes through a negative plastic offset strain when going into the tensile 

domain (arrows 3 and 8), eventually reaching the tensile base response. The unloading 

branch of the tensile responses (arrows 4 and 9) follows a linear path towards a positive 

plastic offset strain until it essentially reaches the positive offset. The branch then 

progresses linearly towards the origin virtually parallel to the horizontal axis. It 

eventually passes through the origin before becoming the reloading branch (arrows 5 and 

10) in compression.   

 

-35

-30

-25

-20

-15

-10

-5

0

5

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Total Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

f’c=30 MPa 
f’t=5 MPa 
εp=0.002 

Figure 5.1 Vecchio Model: Response for an Element under Uniaxial Strain Reversals 

1
2 

3
4

5

6 

7 

8 9 

10 

11 



 220

The Palermo model formulates the concrete plastic offset strains in the compression 

domain as defined by Eq. 5.5.  

2

2 20.166 0.132p c c
c p

p p

ε εε ε
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= × × + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

           (5.5) 

As for the tension domain, the Palermo model uses the Eq. 5.6 to calculate the tensile 

plastic offset strains. 

2
1146 0.523p

c c cε ε1= × ε + ×              (5.6) 

where p
cε  is the instantaneous plastic offset strain, and 1 2c candε ε   are the principal 

unloading strain from the backbone curve. 

It should be noted that the current implementation of the Palermo model into the VecTor 

analysis programs does not fully consider the positive plastic offsets due to numerical 

difficulties encountered. As shown in Figure 5.2, the unloading branch (arrows 4, 8 and 

12) of the tensile responses follows a nonlinear path until they reach a positive plastic 

offset strain. The responses then progress along the horizontal axis, passing through the 

origin before becoming the reloading branch (arrows 5 and 9) in compression.   
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After the calculation of the instantaneous plastic offset strains, a check is made to 

determine whether the instantaneous plastic offset strains exceed the stored plastic offset 

strains. If that is the case, incremental plastic offset strains are generated in the principal 

directions as follows: 

1 1 1
p p

c cε ε εΔ = −               (5.7) 

2 2 2
p p

c cε ε εΔ = −              (5.8) 

As shown in the flowchart of Figure 3.19, at the end of each load stage of the global 

frame analysis, previously stored concrete plastic offset strains are updated for all 

concrete layers as follows: 

' 1 2(1 cos2 (1 cos 2
2 2

p p
p p c c

cx cx
ε εε ε θ θΔ Δ

= + × + ) + × − )          (5.9) 

' 1 2(1 cos 2 (1 cos 2
2 2

p p
p p c c

cy cy
ε εε ε θ θΔ Δ

= + × − ) + × + )         (5.10) 

'
1 2sin 2 sin 2p p p p

cxy cxy c cγ γ ε θ ε θ= + Δ × + Δ ×          (5.11) 

5.4.2 Consideration of Maximum Concrete Strains 

Both hysteresis models developed by Vecchio and Palermo require the knowledge of 

previously attained maximum and minimum concrete strains. This is to due to the fact 

that, in both hysteresis models, concrete stresses are calculated from a set of rules linked 

to the backbone curve which corresponds to the monotonic response of the concrete. 

Analogous to the plastic offset formulation, as cracks are free to rotate, an incremental 

formulation should be adopted for the calculation of maximum and minimum concrete 

strains attained. Consider first the maximum concrete strains in the concrete. In each 

sectional analysis iteration performed for each concrete layer, previously stored 

maximum total concrete strains , ,cmx cmy cmxyε ε ε   are transformed into principal directions 
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as 1 2cm cmandε ε   based on the current inclination angle through the use of a Mohr’s circle 

of strain as defined by Eq. 5.12 and Eq. 5.13. 

1 cos sin 2
2 2 2

cmx cmy cmx cmy cmxy
cm

ε ε ε ε γ
ε θ

+ −
= + × 2θ + ×       (5.12) 

2 cos sin 2
2 2 2

cmx cmy cmx cmy cmxy
cm

ε ε ε ε γ
ε θ

− −
= − × 2θ − ×        (5.13) 

It should be noted that the current inclination, θ , correspond to the inclination of the 

strain field when using the MCFT, and to the inclination of the stress field when using the 

DSFM. 

During the sectional iterations for the concrete layer under consideration, if the current 

concrete total compressive strain exceeds the stored maximum compressive strain, 2cmε , 

incremental concrete total strains are generated as follows: 

2 2 2cm cmε ε εΔ = −             (5.14) 

As shown in the flowchart of Figure 3.19, at the end of each load stage of the global 

frame analysis, previously stored concrete maximum compressive strains are updated for 

all concrete layers as follows: 

1 2(1 cos 2 (1 cos 2
2 2

cm cm
cmx cmx

ε εε ε θ θΔ Δ′ = + × + ) + × − )        (5.15) 

1 2(1 cos 2 (1 cos 2
2 2

cm cm
cmy cmy

ε εε ε θ θΔ Δ′ = + × − ) + × + )        (5.16) 

1 2sin 2 sin 2cmy cmxy cm cmγ γ ε θ ε θ′ = + Δ × + Δ ×         (5.17) 

The maximum tensile strains ( ,tmx tmy tmxyandε ε ε   ) are calculated and stored in computer 

memory in a similar manner. 
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5.4.3 Stress-Strain Models for Concrete 

Three stress-strain models for concrete were implemented into the analytical procedure 

developed. The implementations were made through the use of the model subroutines, 

which are common to all VecTor programs and which were created prior to this work. 

The detailed formulations of the models considered are presented below. 

5.4.3.1 Vecchio Model with Linear Unloading 

Compressive Response 

Unloading to a compressive strain of cε  results in the concrete stress cf  as follows: 

( )p
c cm c cf E ε ε= × −             (5.18) 

where Ecm is the unloading modulus as defined by  

( )
cm

cm p
cm c

fE
ε ε

=
−

            (5.19) 

where cmf  is the stress corresponding to maximum concrete strain previously stored as 

cmε , and p
cε  is the concrete plastic offset strain as defined in Section 5.4.2 and 5.4.1. 

Reloading to a compressive strain of cε  produces the concrete stress cf  as follows: 

0 0p
c c c cf if orε ε ε=                                  >       >         (5.20) 

( )p
pc c cm

c c c cmp
cm c

ff ifε ε ε ε ε
ε ε
− ×

=              > >
−

         (5.21) 

c bc c cmf f if ε ε=                                 <          (5.22) 

where bcf  is the stress calculated from the base curve corresponding to concrete strain 

cε , and p
cε  is the concrete plastic offset strain. 
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Tensile Response 

Unloading to a tensile strain of cε  returns the concrete stress cf  as follows: 

( )c tm c cpf E ε ε= × −            (5.23) 

where unloading modulus tmE  is defined by 

tm
tm

tm cp

fE
ε ε

=
−

            (5.24) 

Reloading to a tensile strain of cε  returns the concrete stress cf  as follows: 

( )p
pc c tm

c c c tmp
tm c

ff ifε ε ε ε ε
ε ε
− ×

=              < <
−

         (5.25) 

c bt c tmf f if ε ε=                                 >           (5.26) 

where btf  is the stress calculated from the base curve corresponding to concrete strain 

cε , and p
cε  is the concrete plastic offset strain. 

5.4.3.2 Vecchio Model with Nonlinear Unloading 

This model is similar to the previous model except that the unloading branch follows a 

nonlinear path defined by a Ramberg-Osgood function. 

Compressive Response 

Unloading to a compressive strain of cε  results in the concrete stress cf  as follows: 

( ) ( )
( ) c1       for  1 N 20

c

c

N
c c cm

c cm c c cm Np
c c cm

E
f f E

N

ε ε
ε ε

ε ε
−

−
= + − +  ≤ ≤

−
      (5.27) 
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where Ec is the initial tangent stiffness of concrete, and Nc is the power term that defines 

the deviation from the linear unloading branch as follows: 

( )
( )
p

c c cm
c p

cm c c cm

E
N

f E
ε ε

ε ε

× −
=

+ × −
           (5.28) 

If Nc is less than 1 or greater than 20, a linear unloading branch is used as defined by  

( )     1  20p
c c c c c cf E for N or Nε ε= × −  ≤ ≤         (5.29) 

The reloading response in compression is the same as that defined for the preceding 

model. 

Tensile Response 

Unloading to a tensile strain of cε  returns the concrete stress cf  as follows: 

( ) ( )
( ) t1       for  1 N 20

t

t

N
c tm c

c tm c tm c Np
t tm c

E
f f E

N

ε ε
ε ε

ε ε
−

−
= − − +  ≤ ≤

−
      (5.30) 

where Nt is the power term that introduces the nonlinearity in the unloading branch as 

follows: 

( )
( )

p
c tm c

t p
c tm c tm

E
N

E f
ε ε

ε ε

× −
=

× − −
           (5.31) 

If Nt is less than 1 or greater than 20, a linear unloading branch is used as defined below: 

( )     1  20p
c c c c t tf E for N or Nε ε= × −     ≤ ≤         (5.32) 

The reloading response in tension is the same as that defined for the preceding model. 
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5.4.3.3 Palermo Model 

Proposed by Palermo and Vecchio (2002), this model is similar to the preceding models, 

but includes more comprehensive stress-strain relationships which consider modelling of 

the degradation in the reloading stiffness based on the amount of strain recovered during 

the unloading phase, calculation of plastic offsets for both the tension and compression 

regimes, and consideration of partial unloading and reloading. Note that the plastic 

offsets in the tension domain are not fully considered in the formulation of the VecTor 

analysis programs as explained in Section 5.4.1 (Figure 5.2). 

Compressive Response 

Unloading to a compressive strain of cε  results in the concrete stress cf  as follows: 

( ) ( )
( ) 1

0.929
     −

× × −
= + × − −

× −

c

c

N
c c cm

c cm c c cm Np
c c cm

E
f f E

N

ε ε
ε ε

ε ε
     (5.33) 

where cmf  is the stress corresponding to maximum concrete strain previously stored as 

cmε , Ec is the tangent modulus of` concrete, and Nc is a Ramberg-Osgood formulation to 

describe the nonlinear unloading branch of concrete similar to that used by Seckin (1981) 

as follows: 

( )
( )

0.929 × × −
=

+ × −

p
c c cm

c p
cm c c cm

E
N

f E
ε ε

ε ε
          (5.34) 

Nc is defined in a way that the unloading modulus equals to the initial tangent modulus Ec 

at the beginning of the unloading branch and to 0.071 x Ec at the end of the unloading 

branch as shown in Figure 5.3(a). 

Reloading to a compressive strain of cε  yields the concrete stress cf  as follows: 

( )c ro cm c rof f E ε ε+= + × −           (5.35) 
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where rof  is the stress corresponding to the strain roε  at the load reversal in the current 

loop, and cmE +  is the reloading modulus as defined by Eq. 5.36 (Figure 5.3(b))  

c cm ro
cm

cm ro

f fE β
ε ε

+ × −
=

−
            (5.36) 

where cβ  is a damage indicator which degrades cmE +  so that additional straining is 

required to reach the monotonic backbone curve. 

0.5
1       

1 0.10
c c p

rec

p

forβ ε ε
ε
ε

=    <
⎛ ⎞

+ ×⎜ ⎟⎜ ⎟
⎝ ⎠

         (5.37) 

0.6
1        

1 0.175
c c p

rec

p

forβ ε ε
ε
ε

= >
⎛ ⎞

+ ×⎜ ⎟⎜ ⎟
⎝ ⎠

         (5.38) 

where rocmrec ε−ε=ε            (5.39) 

 

(b) (a) 

   Figure 5.3 Palermo Model, Compression Domain: (a) Unloading; (b) Reloading  
                     (Palermo and Vecchio, 2003) 
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Tensile Response 

Unloading to a tensile strain of cε  yields the concrete stress cf  as follows: 

( ) ( ) ( )
( ) 1

t

t

Nf
c c tm c

c tm c tm c Np
t tm c

E E
f f E

N

ε ε
ε ε

ε ε
−

− × −
= − × − +

× −
      (5.40) 

where tmf  is the stress corresponding to the maximum concrete tensile strain previously 

stored as tmε , Ec
f is the unloading modulus of` elasticity of the concrete, and Nt is a power 

term that describes the degree of nonlinearity as follows: 

( ) ( )
( )

f p
c c tm c

t p
c tm c tm

E E
N

E f
ε ε

ε ε

− × −
=

× − −
          (5.41) 

where 

0.0010.071     for 0.001f
c c tm

tm

E E ε
ε

⎛ ⎞
= × × ≤⎜ ⎟

⎝ ⎠
        (5.42) 

0.0010.053     for 0.001f
c c tm

tm

E E ε
ε

⎛ ⎞
= × × >⎜ ⎟

⎝ ⎠
        (5.43) 

Nt  is defined in a way that the unloading modulus equals the initial tangent modulus Ec at 

the beginning of the unloading branch and to Ec
f at the end of the unloading branch as 

shown in Figure 5.4(a). 

Reloading to a tensile strain of cε  produces the concrete stress cf  as follows: 

( )c t tm tm tm cf f Eβ ε ε+= × − × −           (5.44) 

where Etm
+ is the reloading stiffness as defined by Eq. 5.45 (Figure 5.4(b)). 
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t tm ro
tm

tm ro

f fE β
ε ε

+ × −
=

−
            (5.45) 

where tβ  is a tensile damage indicator which degrades tmE +  so that additional straining is 

required to intersect the base curve as defined below. 

( )0.25
1   

1 1.15t
rec

β
ε

=
+ ×

          (5.46) 

where  

rotmrec ε−ε=ε             (5.47) 

 

Partial Unloading and Reloading in Compression 

In Figure 5.5, Curves 1 and 2 represent full unloading and reloading as defined above. 

Curve 3 is the case of a partial unloading from a reloading curve at a strain less than the 

previously attained unloading strain cmε . In this case, full unloading rules are applied 

except that the unloading stress and strain, max1 max1c cf and ε  , are substituted for the 

maximum unloading stress and strain m mc cf and ε  . Curve 4 represents a partial reloading 

from a partial unloading. In this case, the unloading stiffness becomes 

(a) (b) 

Figure 5.4 Palermo Model, Tension Domain: (a) Unloading; (b) Reloading
        (Palermo and Vecchio, 2003)
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Figure 5.5 Palermo Model, Compression Domain: Partial Unloading and Reloading  
                  (Palermo and Vecchio, 2003) 

max1
1

max1

c ro
c

c ro

f fE
ε ε

−
=

−
            (5.48) 

and the corresponding stress is calculated as 

1 ( )c ro c c rof f E ε ε= + × −           (5.49) 

Following the partial reloading of Curve 4, Curve 5 connects the response to the back-

bone curve including the cβ  damage indicator which accounts for the strength 

degradation in compression. In this case, the reloading stiffness becomes 

m max1
2

max1

c c c
c

cm c

f fE β
ε ε
× −

=
−

           (5.50) 

and the corresponding stress is found to be 

max1 2 max1( )c c c c cf f E ε ε= + × −           (5.51) 
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Partial Unloading and Reloading in Tension 

In Figure 5.6, Curves 1 and 2 represent full unloading and reloading as explained before. 

Curve 3 is the case of a partial unloading from a reloading curve at a strain less than the 

previously attained unloading strain tmε . In this case, full unloading rules are applied 

except that the unloading stress and strain, max1 max1t tf and ε  , are substituted for maximum 

unloading stress and strain m mt tf and ε  . Curve 4 represents a partial reloading from a 

partial unloading. In this case, the unloading stiffness becomes 

max1
3

max1

t ro
c

t ro

f fE
ε ε

−
=

−
            (5.52) 

and the corresponding stress is calculated by Eq. 5.53. 

3 ( )c ro c c rof f E ε ε= + × −            (5.53) 

Following the partial reloading of Curve 4, Curve 5 connects the response to the back-

bone curve including the tβ  damage indicator which accounts for the strength 

degradation in tension. In this case, the reloading stiffness becomes 

m max1
4

max1

t c t
c

cm t

f fE β
ε ε
× −

=
−

          (5.54) 

and the corresponding stress is found to be 

max1 4 max1( )c t c c tf f E ε ε= + × −           (5.55) 
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(a) 

(b) 

 

5.4.3.4 Verification Example 

To illustrate the concrete responses produced by the three hysteresis models 

implemented, an example analysis was carried out. The structure analyzed consisted of a 

one-member cantilevered reinforced concrete column with the geometric details given in 

Figure 5.7. Axial loading was applied at the top node of the column in a displacement-

controlled mode. The purpose of the analyses was to obtain the stress-total strain and the 

stress-net strain responses of the concrete under cyclic and reversed-cyclic loading 

conditions as shown in Figure 5.8. 
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Figure 5.6 Palermo Model, Tension Domain: Partial Unloading and Reloading  
      (Palermo and Vecchio, 2003) 

Figure 5.7 A Cantilever Column: (a) Model; 
(b) Material Properties 
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(b) 
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The responses produced by the Vecchio model are presented in Figure 5.9 to Figure 5.12 

for the cyclic and reversed-cyclic loading conditions. The only difference between the 

responses is the unloading branches; in Figure 5.9 and 5.10, the unloading responses are 

linear while, in Figure 5.11 and 5.12, the unloading responses are nonlinear. 

-35

-30

-25

-20

-15

-10

-5

0

5

-2 -1 0 1 2

Total Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

-35

-30

-25

-20

-15

-10

-5

0

5

-1.5 -0.5 0.5 1.5 2.5

Net Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

 
 
 

-35

-30

-25

-20

-15

-10

-5

0

5

-2.5 -2 -1.5 -1 -0.5 0

Total Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

 

Figure 5.9 Concrete Response of the Cantilever Column using Vecchio Model 
with Linear Unloading under Reversed-Cyclic Loading 

Figure 5.10 Concrete Response of the Cantilever Column using Vecchio Model 
                     with Linear Unloading under Cyclic Loading 

Figure 5.8 Applied Loading for the Cantilever Column: (a) Reversed-Cyclic; (b) Cyclic 
(a) 
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The responses produced by the Palermo model are presented in Figure 5.13 and 5.14 for 

the cyclic and reversed-cyclic loading conditions. Not included in the preceding model, 

strength degradation in the reloading stiffnesses is clearly visible in both the tension and 

compression domains; that is, more straining is necessary to reach the backbone curve 

when reloading from a strain less than the previously attained maximum strain. Also 

visible from the figures below, this model includes more nonlinearity in the unloading 

branches than do the preceding models.  

Figure 5.11 Concrete Response of the Cantilever Column using Vecchio Model  
         with Nonlinear Unloading under Reversed-Cyclic Loading 

Figure 5.12 Concrete Response of the Cantilever Column using Vecchio Model  
         with Nonlinear Unloading under Cyclic Loading 
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5.4.4 Stress-Strain Models for Reinforcement 

Under monotonic loading conditions, a tri-linear response is implemented for both the 

longitudinal and transverse reinforcement as described in Chapter 3. These responses are 

expanded in this section to allow for general loading conditions as explained below. 

5.4.4.1 Stress-Strain Models for Longitudinal Reinforcement 

In the formulation of the sectional calculations in Chapter 3, the plastic offset strains p
sε  

were incorporated into the total strains experienced by each reinforcing or prestressing 

bar layers as defined by Eq. 3.99. The remaining task is to introduce a formulation which 

calculates reinforcement stresses based on the net reinforcement strain, siε . 

Figure 5.13 Concrete Response of the Cantilever Column using Palermo Model 
          under Reversed-Cyclic Loading 

Figure 5.14 Concrete Response of the Cantilever Column using Palermo Model  
         under Cyclic Loading 
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For this purpose, three models were implemented for the hysteretic response calculations 

of longitudinal reinforcement: the Seckin model with Bauschinger effect, the elastic-

plastic model with strain hardening, and the elastic-plastic model (bilinear). The 

implementations were made through the use of the model subroutines, which are common 

to all VecTor programs and which were created prior to this work. The detailed 

formulations of the models considered are presented below. 

Seckin Model with Bauschinger Effect 

The default and the most comprehensive hysteretic response model for the longitudinal 

reinforcement is based on the formulation of Seckin (1981) with some minor 

simplifications by Vecchio (1999). The Bauschinger effect, which lowers the yield stress 

under stress reversals, was represented by a Ramberg-Osgood formulation as illustrated 

in Figure 5.15. The detailed formulations of this model are given below. 

 

Unloading to a strain of iε  results in the reinforcement stress sif  as follows: 

1 1( )si si r i if f E ε ε− −= + × −           (5.56) 

where Er is the linear unloading modulus as defined below: 

( )r s m o yE E if ε ε ε=          − <           (5.57) 

Es
1 

 fs 

εs 

Esh1 
 fy

Er

1 εm
-

εm
+εo

- εo
+ 

 fm 

Figure 5.15 Seckin Model with Bauschinger Effect (Vecchio, 1999) 
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( ) 4m o
r s y m o y

y

E E ifε ε ε ε ε ε
ε

⎛ ⎞−
= × 1.05 − 0.05×          < − < ×⎜ ⎟⎜ ⎟

⎝ ⎠
     (5.58) 

( )0.85 4r s m o yE E if ε ε ε= ×         − > ×          (5.59) 

1sif −  and 1iε −  are the stress and strain in the bar at the previous load step, mε  is the 

maximum strain attained during previous cycles, and p
sε  is the plastic offset strain. 

Following a nonlinear path, reloading to a strain of iε  results in reinforcement stress sif  

as follows:  

( )
( )1( ) m r

si r i o i oN
m o

E Ef E
N

ε ε ε ε
ε ε −

−
= × − + × −

× −
       (5.60) 

where N is a power term which defines the degree of nonlinearity as follows: 

( ) ( )
( )

p
m r m s

p
m r m s

E E
N

f E
ε ε

ε ε

− × −
=

− × −
           (5.61) 

where mf  is the maximum stress corresponding to mε , and mE  is the tangent stiffness at 

mε . For the first reversed cycle, mε  is taken as zero. Afterwards the formulations are 

given below are used. 

0m m yE if f f=           =            (5.62) 

m s m yE E if f f=         <           (5.63) 

m sh m yE E if f f=       >            (5.64) 

In a negative cycle, the same formulations apply except that mε  is the maximum negative 

strain previously attained. The stress mf  and the stiffness mE  are calculated accordingly. 
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In the implementation of this model into VecTor5, five parameters were required to be 

stored in computer memory for each longitudinal reinforcing and prestressing layer 

present. These were the maximum positive and negative strains attained mε +  and mε − , the 

reinforcement stress and strain in the previous load or time step 
1 1i is sf and ε

− −
  , and the 

plastic offset strain corresponding to zero stress p
sε  which is redefined whenever the 

stress passes through zero. 

In Chapter 8, a number of previously tested reinforced concrete beams were analyzed 

under the free-falling drop-weights to verify the developed analytical tool for the 

dynamic loading conditions. It was noted, during these analyses, that the bottom 

reinforcement plastic offset strains, at the midspan, recovered under low strain reversals 

when the Seckin model with Bauschinger effect was used. This caused the residual 

midspan displacement of the beams to recover slightly, which was not observed during 

the experimental study of Saatci (2007). Details of this occurrence are presented in 

Section 8.4. 

Elastic-Plastic Hysteresis Models 

Neglecting the Bauschinger effect, two elastic-plastic reinforcement hysteresis models 

are implemented into the sectional calculation algorithm as alternative options. The first 

one includes strain hardening effects while the second one considers a bilinear response 

only. These options are not generally recommended for cyclic and reversed-cyclic 

analysis purposes as neglecting the Bauschinger effect may lead to the overestimation of 

the stress in the reinforcement. However, for special investigative purposes, those options 

may be useful.   

5.4.4.2 Stress-Strain Model for Transverse Reinforcement 

In the sectional calculations formulated in Chapter 3, the plastic offset strains p
yiε  were 

incorporated into the total strains experienced by each smeared transverse reinforcement 

component present in each concrete layer as defined by Eq. 3.100. 
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As explained in Chapter 3, in the both shear-stress and shear-strain-based calculation 

procedures, the strain yε  in the transverse direction is the unknown which is determined 

iteratively during the sectional calculations performed for each layer in each global frame 

analysis iteration. In these iterations, the transverse reinforcement stresses are also 

needed. Therefore, implementation of the Seckin Model with Bauschinger effects would 

increase computational intensity, thereby increasing the analysis time. The Bauschinger 

effect in the transverse direction is usually not a significant mechanism as the strain 

reversals for members primarily occur along their longitudinal axis. Therefore, the 

elastic-plastic hysteresis model with strain hardening effect is implemented for the stress 

calculation of the smeared transverse reinforcement, i.e. stirrups or ties. 

5.4.4.3 Verification Example 

To illustrate the reinforcement responses produced by the three models implemented, an 

example analysis was carried out. The structure analyzed consisted of a one-member 

cantilever reinforced concrete column with the geometric details given in Figure 5.16. 

Inducing axial effects only, loading was applied at the top node of the column in a 

displacement-controlled mode as shown in Figure 5.8. The purpose of the analysis was to 

obtain the stress-total strain response of the longitudinal reinforcement under cyclic and 

reversed-cyclic loading conditions. 
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Figure 5.16 A Cantilever Column: (a) Model;   

   (b) Material Properties 
(a) 

(b) 



 240

The responses produced by the Seckin model with Bauschinger effect are presented in 

Figure 5.17 for the cyclic and reversed-cyclic loading conditions. The significance of the 

Bauschinger effect is clearly visible especially in the cyclic loading response of Figure 

5.17(b). At each strain reversal, the yield stress of the bar decreases significantly. This 

decrease becomes more pronounced as the maximum total strain previously attained by 

the reinforcement increases. Therefore, the Bauschinger effect should be expected to be a 

significant mechanism for flexure-dominated structures subjected to large strain 

excursions within a cyclic loading condition.  

-600

-400

-200

0

200

400

600

-40 -20 0 20 40

Total Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

-600

-400

-200

0

200

400

600

0 20 40 60

Total Axial Strain (x10-3)

St
re

ss
 (M

Pa
)

 

The responses produced by the elastic-plastic model with strain hardening are presented 

in Figure 5.18 for the cyclic and reversed-cyclic loading conditions. As compared to the 

responses of Figure 5.17, it is clear that larger reinforcement stresses are returned upon 

unloading from the tensile backbone or compressive backbone. Therefore, overestimation 

of reinforcement stresses should be anticipated when using this model. 
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Figure 5.17 Reinforcement Response of the Cantilever Column using Seckin Model    
           with Bauschinger under (a) Reversed-Cyclic; (b) Cyclic Loading 

Figure 5.18 Reinforcement Response of the Cantilever Column using Elastic-Plastic  
         Model with Strain Hardening under (a) Reversed-Cyclic; (b) Cyclic Loading 

(a) (b) 

(a) (b) 
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The responses produced by the elastic-plastic model are presented in Figure 5.19 for  the 

cyclic and reversed-cyclic loading conditions. As expected, after the yielding strain, the 

same yield stress is returned until the rupture strain of the reinforcement is reached.  
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Figure 5.19 Reinforcement Response of the Cantilever Column using Elastic-      
              Plastic Model under (a) Reversed-Cyclic; (b) Cyclic Loading 

(a) (b) 
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CHAPTER 6 
GENERAL LOADING: VERIFICATION & APPLICATIONS 

6.1 Chapter Layout 

This chapter discusses the application of the nonlinear analysis procedure developed for 

general loading conditions to previously tested structures with the aim of verifying the 

newly implemented algorithms. Important considerations in the nonlinear modelling are 

also discussed through the use of practical examples, with the aim of providing guidelines 

for general modelling applications. 

The structures considered include one large-scale frame structure tested by Duong et al. 

(2007), two full-scale exterior beam-column subassemblies tested by Seckin (1981), two 

1/2-scale interior beam-column subassemblies tested by Shiohara and Kusuhara (2006), 

and six 1/3-scale shear walls tested by Oesterle at al. (1976). All of the tests were 

performed under a prescribed reversed-cyclic loading regime. 

The chapter starts with a short discussion on the limitations of the analytical procedure, 

especially regarding the detailed local analyses of beam-column subassemblies. It is then 

followed by a description of the modelling of the test specimens. 

The coverage of each experimental study considers the following steps. The test structure 

is first introduced, giving the structural details required for the modelling. This is then 

followed by the modelling and analysis details of the structures. Afterwards, the resulting 

responses are compared to the experimental responses for load-deflection response, axial 

deformation response, reinforcement strains, crack widths, displacement ductility and 

total energy dissipation. Discussions regarding the comparisons are finally presented. 
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6.2 Limitations of the Analytical Procedure  

As discussed in detail in Chapter 3, the nonlinear analysis procedure developed depends 

on two interrelated analyses: global frame analyses and sectional analyses. The main 

framework of the calculation is performed through the global frame analysis, which 

assumes 1D frame members. As is established for frame analyses of this type, the 

structural model is created using the centreline dimensions of the structure. However, in a 

typical beam-column connection of a reinforced concrete frame structure, a significant 

2D overlapping of the beam and column members occurs (see shaded area in Figure 

6.1(a)). This overlapping region is generally called the beam-column joint panel zone, 

which in general exhibits stiffer behaviour as compared to the connecting beams and 

columns. 

 

 

Because it is not possible to simulate such a 2D zone with 1D frame members, the 

assumption of stiffened joint members is usually made to account for the stiffening 

effects of the joint panel zone (Figure 6.1(b)). Through such an assumption, the 

deformations are diverted to the adjacent beam and column ends with the stiffened 

members behaving rigidly. Consequently, when performing nonlinear analyses based on 

this approach, the cracking and damage, whether shear or flexural in nature, occurs at the 

faces of the beams and columns rather than in the joint panel zone. This approach is 

generally in agreement with the behaviour of well-designed structures which have joints 

with sufficient confinement and proper reinforcement detailing stipulated by modern 

Figure 6.1 (a) A Beam-Column Connection; (b) Frame Model of a Structure Consisting  
       of 1D Frame Members 

(a) (b)
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design codes. However, for structures with improper reinforcement detailing or 

insufficient confinement in the joint panel zone, significant joint deformations and 

resulting damage may occur. The analysis of such a structure with the analytical 

procedure developed will most likely predict damage occurring at the face of the joint 

panel zone with stiffer and less pinched behaviour compared to the real behaviour. 

In this sense, the analytical tool developed is more suitable for the global analyses of 

large frame structures, rather than detailed local analyses of beam-column joints. It is 

advisable to inspect the reinforcement detailing in the joint panel zone to make sure that 

the detailing practice used is appropriate. In the case of unusual or improper detailing, or 

in cases where analysis results indicate possible joint distress, a detailed nonlinear finite 

element analysis (NLFEA) of the joint should be undertaken. The sectional forces 

determined by VecTor5 are an important asset for such analyses. A detailed discussion of 

such analyses can be found in Sagbas (2007). 

In this chapter, detailed local analyses of four previously tested beam-column 

subassemblies are undertaken using VecTor5, even though such analyses are not the 

intended use of the analytical procedure developed. The motivation of those analyses is to 

thoroughly verify the cyclic analysis formulations implemented into the program because 

the behaviour of subassemblies under reversed cyclic conditions represents a challenge to 

nonlinear analyses. For this purpose, four specimens were selected from the literature, all 

of which experimentally sustained damage occurring predominantly at the face of the 

joint panel zone. In some of the specimens, however, there was considerable joint 

cracking present. A discussion of the effect of this cracking in the specimen behaviour is 

presented in Section 6.5.2 and 6.6.2. 

Another limitation of the analytical procedure developed is the assumption of perfect 

bond between the reinforcement and the concrete. However, in beam-column joints under 

load reversals, there is the possibility of bond slip occurring depending on the 

reinforcement detailing of the joint panel zone. This phenomenon is reported to be 

common for exterior connections having inadequately confined joint panel zones (Seckin, 

1981). This behaviour is also linked to the cracking of the joint panel zone, which usually 
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allows for the loss of bond between the reinforcement and the concrete. Analysis of a 

beam-column subassembly exhibiting bond-slip mechanisms with the analytical 

procedure developed will most likely overestimate the reinforcement strains of the 

slipped bars, with a stiffer and less pinched load-deformation response, compared to the 

experimental response. 

Another limitation of the analytical procedure developed is the assumption that the 

longitudinal reinforcement continues to carry compressive stress until the failure of the 

member occurs due to the crushing of concrete. However, for members under large 

compressive strains, there is the possibility of longitudinal reinforcement buckling 

depending primarily on the confining reinforcement details. A detailed discussion of this 

mechanism can be found in Bayrak (1998). Analysis of a compression member exhibiting 

longitudinal reinforcement buckling mechanisms with the analytical procedure developed 

will most likely overestimate the ductility of the structure compared to the experimental 

response. Significant overestimation of the strength is not expected as the buckling 

usually takes place under compressive strains larger than the yield strain. 

6.3 Analysis Parameters and Material Behaviour Models Used 

The default material models and analysis options, which were defined prior to this study 

and common to all VecTor programs as discussed in Section 4.2, were used throughout 

this chapter except for the concrete compression base curve. Based on the concrete 

strength of the tested structure, the concrete compression base curve was selected to be 

either the default Hognestad formulation or the Popovics formulation. However, if all the 

analyses were performed with the default Hognestad (Parabola) model, the results would 

not change noticeably. Such a comparison is given in Section 8.4 (Figure 8.9). 

Particularly important for simulations under reversed-cyclic loading conditions is the 

concrete hysteresis model used. Herein the default option, the Vecchio model with 

nonlinear unloading is used, even though the Palermo model was reported to be superior 

in some respects such as energy dissipation (Sagbas, 2007). As the focus of this chapter is 

to provide reasonable simulations with the use of default material behaviour models and 
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analysis options, the use of Palermo model was not undertaken. The reason for Palermo 

model not being the default concrete hysteresis rule is that it usually requires longer 

computation times owing to its relatively complex calculations. In addition, in some 

instances, some numerical instability was observed which may reflect on the calculated 

load-deflection responses. Note the slight numerical instabilities in Figure 5.14 for 

Palermo model as compared to Figure 5.10 for the default Vecchio model with linear 

unloading. 

6.4 Duong Frame 

An experimental program was carried out on a large-scale, one-bay and two-storey frame 

at the University of Toronto to investigate the behaviour of shear-critical reinforced 

concrete frames under seismic loading conditions and to corroborate analytical 

procedures (Duong et al., 2007). The experiment consisted of two phases. In Phase A, the 

frame was laterally loaded until significant damage took place in the shear-critical beams 

and was then unloaded completely. The frame was then loaded in the reverse direction to 

the same lateral displacement (44 mm) attained in the forward half-cycle. The frame was 

finally unloaded. In Phase B, the damaged frame was repaired and then tested under 

reversed cyclic loading conditions. 

In Section 4.8, this frame was analyzed under monotonically increasing lateral 

displacement applied at the second storey beam until the failure of the frame took place. 

In this section, the same frame model was analyzed under a reversed cyclic loading in a 

displacement-controlled mode to simulate the loading protocol used in the experiment. 

6.4.1 Comparison of the Analytical and Experimental Responses 

The analytical and experimental net lateral load-deflection responses for the second 

storey beam are compared in Figure 6.2. 
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As seen in Figure 6.2, the overall response of the frame under cyclic loading was 

predicted with excellent accuracy. The strength of the frame in the reverse cycle was 

estimated well at approximately 311 kN. Upon unloading, the residual displacement was 

calculated with a reasonable 8% underestimation. The total energy dissipated by the 

frame (i.e., the area under the load-deflection curve) was predicted with excellent 

accuracy to be 20.9 kNm as compared to the experimental value of 21.0 kNm. 

 

 

 

 

 

 

 

 

Figure 6.2 Comparison of Load-Deflection Responses for Duong Frame 

Table 6.1 Comparison of Analytical and Experimental Results for Duong Frame:  
    (a) Sequence of Events; (b) Crack Widths at Ultimate Condition 

(b)(a) 
VecTor5 Test

Peak Load (kN) -311.4 -304
Shear Crack Widths (mm) at the Peak Load

Beam 1 Centre 0.9 7.0
Beam 2 Centre 1.0 5.0

Beam 1N 4.7 1.8
Beam 1S 4.8 3.0
Beam 2N 1.4 0.3
Beam 2S 1.1 0.5

Analysis Test
Residual Disp. (mm) 10.5 11.3

Lateral Load (kN) causing
First Flexural Cracking

Lateral Load (kN) causing
Zero Displacement -83 -111

Lateral Load (kN) causing
First Yielding of Reinf.
Beam 1N Longitudinal 300 304

(96% of yield)
Beam 1N Longitudinal 300 304

(96% of yield)
Beam 1S Transverse -230 -260
Beam 1N Transverse -250 -260

-32-30
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As shown in Table 6.1(a), the lateral load levels causing the first yielding of several 

reinforcement components were estimated reasonably well.  

The axial deformations of both columns, as determined experimentally and analytically at 

the top of the columns (second storey level), are compared in Figure 6.3. The first and 

second storey beam axial deformation responses are presented in Figure 6.4.  
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As seen from the graphs above, the predicted column and beam axial deformation 

responses showed reasonably good agreement with the experimental responses. It should 

be noted, however, that the accurate predictions of such secondary responses are 

extremely difficult. 
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Figure 6.3 Comparison of Axial Deformation Responses for Duong Frame 

Figure 6.4 Comparison of Beam Elongation Responses for Duong Frame 
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As two typical examples, the reinforcement strain responses for Beam 1N and Beam 2S 

are presented in Figure 6.5 and 6.6.  
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In the experiment, the damage mode of the frame in the reverse half-cycle was shear-

dominated, with significant damage to the central portion of the first storey beam as 

shown in Figure 6.7. 

 

 

Figure 6.7 View of the First Storey Beam at a Lateral Deflection of -40 mm (Duong, 2006) 
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Figure 6.5 Comparison of First Storey Reinforcement Strain Responses for Duong Frame 

Figure 6.6 Comparison of Second Storey Reinforcement Strain Responses for Duong Frame 
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In the analytical study, shear failures at both ends of the first storey beam (beam 1N and 

beam 1S in Figure 4.27(b)) occurred at a lateral displacement of -40 mm. In Figure 6.2, 

the drop in the load capacity from 311 kN to 165 kN occurred due to these failures. Shear 

cracking in the central portion of the first storey beam was insignificant in the analytical 

study as compared to the cracking of the beam ends (Table 6.1(b)). In this regard, the 

crack widths corresponding to the failure condition of the frame showed discrepancies as 

compared to the experimental crack widths. 

6.5 Seckin Exterior Beam-Column Subassemblies 

A test program was carried out at the University of Toronto, involving full-scale exterior 

beam-column subassemblies, to investigate the influence of a number of parameters on 

the subassembly behaviour. These parameters included the amount and placement of the 

confining reinforcement inside and outside the joint panel region, load protocol, physical 

properties of the materials, and geometric proportions of the connecting beams and 

columns. The subassemblies were dimensioned to represent exterior beam-column joints 

of a moment resisting frame having spans of 6.10 m (20 ft) with a storey height of 3.05 m 

(10 ft). Specimens SP6 and SP7, with damage modes occurring outside the joint panel 

regions, were selected for analysis with the developed analytical procedure.  

Details of Specimens and Test Setup 

Specimen SP6 and SP7 had identical details, as shown in Figure 6.8, with two exceptions: 

the amount of tie reinforcement inside the joint panel region, and the material properties. 

The tie spacing in the joint panel region was 44.5 mm (1.75 in) for Specimen SP6 and 

76.3 mm (3 in) for Specimen SP7. The material properties are listed in Table 6.2. 



 251

 

 

db fy fu Es Esh εsh εu

(mm) (MPa) (MPa) (MPa) (MPa) (x 10-3) (x 10-3)
#3 9.5 427 759 170000 7814 2.51 45
#4 12.7 362 552 170000 1199 12.5 171
#8 25.4 335 552 170000 3191 6 74
#9 28.7 350 621 170000 3031 11 100

Reinforcement

 

In Table 6.2, the reinforcement properties shown were estimated from the steel coupon 

test results reported by Seckin (1981). As only the concrete strengths f’c were reported, 

the elastic modulus of the concrete Ec was calculated using Eq. 4.4, and the strain εo was 

determined based on the Hognestad (Parabola) using Eq. 6.1. 

0
2ε

′×
= c

c

f
E

                 (6.1) 

f'c ε0   * Ec *
(MPa) (x 10-3) (MPa)

SP6 Beam
&Joint

SP6 Column 37.7 2.76 27285
SP7 30.8 2.43 25325

* estimated

Concrete

36.2 2.69 26875

Figure 6.8 Structural Details of Subassemblies SP6 and SP7 

Table 6.2 Material Properties of Subassemblies SP6 and SP7 
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The testing of the subassemblies involved the application of a vertical force at the tip of 

the beams in a displacement-controlled mode, and a constant axial force of 2313 kN at 

the top of the columns. No attempts were reportedly made to follow a prescribed loading 

program in terms of the applied beam tip force. Decisions about the loading were made 

on the basis of the specimen behaviour and appearance. The resulting beam tip deflection 

histories are presented in Figure 6.9. 

 

 

6.5.1 Analytical Modelling 

The specimens were modelled with varying lengths of segments in the range of one half 

of the cross section depths, as shown in Figure 6.10(a). Three member types were used to 

represent the beam sections: MT1, MT2 and MT3. Two member types were defined for 

the column sections: MT4 and MT5. To create members within the beam-column joint 

zone, MT6 and MT7 were defined by doubling the reinforcement ratios of MT5 and 

MT1, respectively (Figure 6.12). As mentioned before, due to the use of one-dimensional 

frame members, the accurate modelling of joint panel zones is not possible; therefore, 

Figure 6.9 Loading Program Applied to Subassemblies SP6 and SP7 (Seckin, 1981) 
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joint-panel zone members were created with stiffer sections to represent the relatively 

stiff behaviour of the joint. 

 

 

 

 

 

 

 

 

 
                
 

 

 

 

 

 

Figure 6.10 (a) Analytical Model Showing Segment Lengths, Loading and Support  
         Restraints for Subassemblies SP6 and SP7; (b) Smeared Reinforcement  
         Ratios for the Member Types Used 

ρ t (%) ρz (%)
MT1 0.61 1.04
MT2 0.21 0.35
MT3 0.23 0.39
MT4 0.13 0.27
MT5 0.89 1.54
MT6 1.78 3.08

Figure 6.11 Sectional Models for Member Types of Subassemblies SP6 and SP7 
 

(a) (b) 
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As presented in Figure 6.11, 38 concrete layers (9.25 mm x 4, 10.6 mm x 5, 16.4 mm x 

20, 10.6 mm x 5, and 9.25 mm x 4) were used for MT1, MT2 and MT 3 with the 

reinforcement ratios listed in Figure 6.10(b). Similarly, 36 concrete layers (10 mm x 11, 

11.5 mm x 14, and 10 mm x 11) were used for MT4, MT5 and MT6. 

All default material behaviour models were used in the analysis including the default 

concrete compression base curve (Hognestad) as described in Section 6.3. The support 

conditions were represented by restraining both the x- and y-degrees of freedom of Node 

17 and by restraining only the x-degree-of-freedom of Node 35. Two load cases were 

defined: a constant axial load applied at Node 35, and a beam tip displacement applied at 

Node 16. The highly irregular beam tip displacement history was handled through the use 

of seed files, in which the analyses had to be stopped several times to redefine the beam 

tip displacement required for the next cycle.  

Figure 6.12 Analytical Model Showing Member Types for Subassemblies SP6 and SP7 



 255

6.5.2 Comparison of the Analytical and Experimental Responses 

The analytical and experimental beam tip load-beam tip deflection responses are 

compared in Figure 6.13. 
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As seen from Figure 6.13, the overall behaviour of the subassembly was predicted well. 

The degradation of the strength under large displacement reversals was captured 

reasonably well. Note the degradation of the analytical response after a deflection of 126 

mm; this degradation occurred even though the default concrete hysteresis rule (Vecchio 

model with nonlinear unloading), which does not consider strength degradation, was 

used. The strength degradation was caused by excessive flexural crack widths being 

reached. It is known that the compressive strength of concrete is adversely affected by 

transverse cracking. To take this behaviour into account, a material behaviour model, 

termed the crack width limit, is embodied into the VecTor programs as a default 

behaviour model (Vecchio, 2000). This algorithm reduces the strength of concrete based 

on the cracks widths. In this analysis, with the crack widths of Member 2 reaching 

approximately 5.0 mm, the strength was reduced, causing a noticeable degradation in the 

overall response of the subassembly.  

Figure 6.13 Comparison of Load-Deflection Responses for Subassembly SP6 
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The pinching characteristics of the experimental response were also captured reasonably 

well with a slight underestimation.  The reduction in the reloading stiffness of the 

subassembly under increasing strain reversals is apparent from Figure 6.13. A more 

detailed comparison of the predicted and observed parameters is listed in Table 6.3. 

SP6 Positive Loading Disp (mm) Shear (kN) Disp (mm) Shear (kN) Ratio
Beam Reinf. First Yielding 24.4 101.0 25.7 84.0
Max Story Shear 126.0 121.4 188.6 116.5 1.04
Displacement Ductility 1.05
Energy Dissipation (kNm) 1.27

SP6 Negative Loading
Beam Reinf. First Yielding 28.2 -61.0 33.3 -60.0
Max Story Shear -96.0 -75.0 -54.0 -82.6 0.91
Displacement Ductility 1.18
Energy Dissipation (kNm) 1.04

3.4 2.9
81.7 78.3

119.6 93.8

Analysis Test

7.7 7.3

 

As is apparent from Table 6.3, the loads causing the first yielding of the beam 

reinforcement, the strengths, and the ductilities in both the positive and negative loading 

directions are all predicted reasonably well. The displacements at the maximum storey 

shears were predicted with some discrepancies. This was mainly caused by the near flat-

top of the load deflection response, thus making it prone to large errors in estimating the 

displacements at the peak load. The total energy dissipated, analytically and 

experimentally, was calculated as the area under the load-deflection curves. A relatively 

large predicted-to-observed ratio of 1.27 was obtained for the positive loading direction. 

This is mainly caused by the overestimation of strength in the first two positive cycles by 

approximately 18% (16 kN), which translated into large areas in the energy dissipation 

calculation. Note that the self-weight of the subassembly was neglected in the analysis. 

Consideration of the approximately 11 kN self-weight of the beam would reduce this 

overestimation significantly. The total energy dissipated in the negative loading direction, 

on the other hand, was calculated accurately.  

In the experiment, the primary damage mode involved flexural plastic hinging in the 

beam section close to the joint panel region. A similar damage mode involving Member 2 

was predicted analytically. At the last load stage (+125 mm), the member suffered 

flexural cracks of widths as great as 10 mm, with tensile straining in the longitudinal 

Table 6.3 Comparison of Analytical and Experimental Results for Subassembly SP6 



reinforcement reaching +35.5 x 10-3. Due to high compression forces, the members 

forming the column were essentially uncracked.  

Displacement ductilities were calculated as the ratio of the maximum displacement 

attained by the structure to the yield displacement, δy. The yield displacements were 

consistently estimated through the use of the effective yield point approach of 

Christopoulos and Filiatrault (2006). An example showing the determination of the 

re 6.14. 

 

 

effective yield displacements under positive and negative loading is given in Figu

 
 
 
 
 
 
 
 
 
 

he comparison of the load-deflection responses for SP7 is presented in Figure 6.15. 
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Figure 6.15 Comparison of Load-Deflection Responses for Subassembly SP7 

 257



 258

The overall behaviour of this subassembly was predicted less accurately as compared to 

Specimen SP6. The same discussion applies to this specimen regarding the strength 

degradation which was mainly caused by the excessive flexural crack widths sustained. 

The pinching behaviour observed in the experiment was predicted only marginally well. 

The reasons for this relate to the joint damage and, more importantly, to bond slip of the 

top longitudinal beam reinforcement as reported by Seckin (1981). In the analytical 

model, perfect bond is assumed, resulting in stiffer responses under load reveals 

compared to the experimental response. Joint cracking in the experiment also contributed 

to this underestimation (Figure 6.16). A more detailed comparison of the several 

parameters is listed in Table 6.4. 

 

SP7 Positive Loading
Disp (mm) Shear (kN) Disp (mm) Shear (kN) Ratio

Beam Reinf. First Yielding 26.1 102.0 32.6 87.7
Max Story Shear 135.0 121.6 135.0 110.5 1.10
Displacement Ductility 1.25
Energy Dissipation (kNm) 1.34

SP7 Negative Loading
Beam Reinf. First Yielding 53.2 -61 61.1 -60
Max Story Shear -123.0 -77.4 -114.4 -86.0 0.90
Displacement Ductility 1.15
Energy Dissipation (kNm) 1.32

79.7 59.4
7.3 5.9

52.6 39.8
2.3 2.0

Analysis Test

 
 

The peak load capacity of the subassembly was predicted with reasonable accuracy in 

both loading directions. The beam reinforcement in the modelled structure typically 

yielded at a lower displacement than it did in the experiment. This was again caused by 

the bond slip, which seemingly reduced the deformation of the reinforcement. The total 

energy dissipation estimates showed some discrepancies stemming from the 

overestimation of strength in the first two positive cycles by approximately 14% (13 kN) 

and the less pinched behaviour of the analytical model. Note that the self-weight of the 

subassembly was neglected in the analysis. Consideration of the approximately 11 kN 

self-weight of the beam would reduce the overestimation in the first two positive cycles 

significantly. 

Table 6.4 Comparison of Analytical and Experimental Results for Subassembly SP7 
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Similar to Specimen SP6, a damage mode involving flexural plastic hinging of the beam 

close to the beam-column panel zone was obtained both in the analysis and in the 

experiment. 

 

 

6.6 Shiohara and Kusuhara Interior Beam-Column Subassemblies 

A test program was conducted at the University of Tokyo, involving six half-scale beam-

column joint subassemblies, as a benchmark test series intended to provide researchers 

and engineers with reliable test data for validating models and design tools. Specimens 

A2 and A3, with damage modes occurring outside the joint panel regions, were selected 

for analysis with the developed analytical procedure. 

Details of Specimens and Test Setup 

Specimen A2 and A3 had identical details except for the application points of the loading 

as described below (Figures 6.17 and 6.18). It should be noted that half of the beam 

longitudinal reinforcement was grooved to 75% of its original cross-sectional area for the 

installation of state-of-the-art measurement devices. The grooved reinforcement was used 

inside the joint panel zone as well as in the beam at locations within 450 mm from the 

face of the column. The material properties are listed in Table 6.5, where the 

reinforcement properties were estimated from the steel coupon test results reported by 

Shiohara and Kusuhara (2006).   

Figure 6.16 Condition of Specimen SP7 at the End of the Experiment (Seckin, 1981) 
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db fy fu Es Esh εsh εu

(mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3)
D13 Beam 12.7 456 582 176000 962 29 160

D13 Column 12.7 357 485 176300 962 27 160
D6 6.4 326 383 151300 3775 2.2 17.3  

 

The testing of the subassemblies involved the application of a force in a displacement 

controlled mode and a constant axial force of 216 kN at the top of the columns. The 

Figure 6.17 Structural Details of Subassemblies A2 and A3 

Figure 6.18 Cross Section Details of Subassemblies A2 and A3 

Table 6.5 Material Properties of Subassemblies A2 and A3 

f'c ε0   * Ec

(MPa) (x10-3) (MPa)

A2

A3
*est imated

Concrete

28.3 2.20 25700
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horizontal reversed cyclic load was applied at the top of the column for Specimen A2, 

and at the end of left beam for Specimen A3, as shown in Figure 6.20. The loading 

history used for both specimens is shown in Figure 6.19. 

 

The storey drift ratio corresponds to δapplied / 1470 (in mm) for Specimen A2 and δapplied / 

735 (in mm) for Specimen A3, where δapplied is the applied displacement shown in Figure 

6.20. 

6.6.1 Analytical Modelling 

The specimens were modelled with varying lengths of segments in the range of one half 

of the cross section depths as shown in Figure 6.20. Two member types, MT1 and MT2, 

were used to represent the beam and column sections, respectively (Figure 6.22). MT3 

and MT4 were created by doubling the reinforcement ratios of MT1 and MT2, 

respectively, to simulate the relatively stiffer behaviour of members within the beam-

column panel region (Figure 6.21). 

Figure 6.19 Loading Program Applied to the Subassemblies A2 and A3  
         (Shiohara and Kusuhara, 2006)    
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Figure 6.20 Analytical Model Showing Segment Lengths, Loading and Support Restraints   
        for Subassemblies A2 and A3 

Figure 6.21 Analytical Model Showing Member Types for Subassemblies A2 and A3 
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As presented in Figure 6.22, 31 concrete layers (7.00 mm x 2, 8 mm x 1, 10.24 mm x 25, 

8 mm x 1, and 7 mm x 2) were used for all four member types. All default material 

behaviour models were used in the analysis including the default concrete compression 

base curve (Hognestad) as described in Section 6.3. The support conditions were 

represented by restraining both the x- and y-degrees of freedom of Node 24 and by 

restraining only the y-degree-of-freedom of Node 1. Two load cases were defined: a 

constant axial load applied at Node 35, and a lateral displacement applied at Node 35 for 

Specimen A2 and at Node 1 for Specimen A3.  

6.6.2 Comparison of the Analytical and Experimental Responses 

The analytical and experimental beam tip load-deflection responses obtained are 

compared in Figure 6.23. 

 

 

 

 

 

 

 

 

Figure 6.22 Sectional Models for the Member Types of Subassemblies A2 and A3 
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As seen from Figure 6.23, the overall behaviour of the subassembly was predicted 

reasonably well. The strength degradation of the specimen under repeated cycles at the 

same displacement amplitude was predicted to be slightly more than the experimental 

degradation. Note the reduction in the load capacity in the second cycle at each 

displacement amplitude. This degradation was primarily caused by the excessive shear 

straining that occurred, particularly in Member 9. Notice too the decrease in strength and 

stiffness at a displacement of 58 mm. 

The pinching behaviour of the experimental load-deflection response was simulated only 

marginally well with considerable underestimation.  This is likely related to the cracking 

in the joint panel zone that was observed in the experimental behaviour (Figure 6.24) and 

a possible bond slip of the longitudinal reinforcement.  

Detailed comparisons of other response parameters are given in Table 6.6.   

 

 

Figure 6.23 Comparison of Load-Deflection Responses for Subassembly A2 
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A2 Positive Loading Disp (mm) Shear (kN) Disp (mm) Shear (kN) Ratio
Beam Reinf. First Layer Yielding 12.2 66.4 12.6 63.6
Beam Reinf. Second Layer Yielding 12.7 69.7 17.3 74.1
Column Reinf. Yielding
Max Story Shear 29.4 73.6 29.3 77.9 1.01
Displacement Ductility 1.04
Energy Dissipation (kNm) 1.14

A2 Negative Loading
Beam Reinf. First Layer Yielding -10.0 62.0 -14.3 -60.9
Beam Reinf. Second Layer Yielding -11.0 65.0 -14.3 -60.9
Column Reinf. Yielding
Max Story Shear -44.0 -73.5 -58.5 -77.1 0.95
Displacement Ductility 1.43
Energy Dissipation (kNm) 1.19

25.3 22.2

VecTor5 Test

No Yielding No Yielding

4.8 4.7

No Yielding No Yielding

18.922.4
-5.9 -4.1

 

As apparent from Table 6.6, the strength and energy dissipation characteristics of the 

subassembly were captured reasonably well.  The displacement ductility in the negative 

loading direction was the least accurately predicted value due to the yielding of the beam 

longitudinal reinforcement at lower displacements than observed in the experiment. This 

is probably associated with cracking of the joint panel zone and a possible bond slip of 

the reinforcement in the experiment, which may have softened the response and caused 

less straining in the longitudinal beam reinforcement. 

The damage mode of the specimen was accurately predicted to be flexure-shear. 

Significant flexural damage was predicted for Member 10 with the tensile beam 

reinforcement strains reaching 45 x 10-3 with 6 mm crack widths. More importantly, 

Member 9 suffered intensive diagonal shear cracking with widths up to 9 mm. An attempt 

to perform the third cycle of 58.8 mm displacement caused the failure of Member 9 in 

shear (not shown in Figure 6.23). The experimental crack pattern of the specimen at the 

end of the second cycle (+58.8 mm) is shown in Figure 6.24.  

Table 6.6 Comparison of Analytical Experimental Results for Subassembly A2 
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The comparison of the load-deflection responses for Specimen A3 is shown in Figure 

6.25. 
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The overall behaviour of the specimen was predicted successfully. Most notably, the 

strength degradation characteristics were simulated accurately. Note the decrease in 

strength in the second cycle of each displacement excursion.  Almost identical behaviour 

Figure 6.24 Crack Pattern of Subassembly A2 at the End of the Test            
         (Shiohara and Kusuhara, 2006)  

Figure 6.25 Comparison of Load-Deflection Responses for Subassembly A3 
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was present in the experimental response. Pinching of the response was predicted with a 

considerable underestimation possibly due to the joint cracking observed in the 

experiment (Figure 6.26) and a possible bond slip of the reinforcement. 

 

A3 Positive Loading Disp (mm) Shear (kN) Disp (mm) Shear (kN) Ratio
Beam Reinf. First Layer Yielding 12.5 153.0 19.7 158.3
Beam Reinf. Second Layer Yielding 14.0 161.8 23.8 176.4
Column Reinf. Yielding 26.9 156.1
Max Story Shear 29.5 173.0 28.5 176.4 1.03
Displacement Ductility 1.58
Energy Dissipation (kNm) 1.30

A3 Negative Loading
Beam Reinf First Layer Yielding -10.9 -111.6 -12.5 -93.4
Beam Reinf Second Layer Yielding -12.2 -117.0 -14.3 -100.9
Column Yielding -44.5 -123.0
Max Story Shear -44.0 -120.0 -58.5 -122.5 0.98
Displacement Ductility 1.15
Energy Dissipation (kNm) 1.21

VecTor5 Test

No Yielding

No Yielding

4.7 3.0
52.1 39.9

5.4 4.7
40.3 33.4  

As presented in Table 6.7, the strength of the specimen was calculated with excellent 

accuracy in both the positive and negative loading directions. The total energy dissipated 

by the specimen was predicted with a slight overestimation caused by the 

underestimation of the pinching in the load deflection response. The least accurately 

predicted value was the displacement ductility in the positive cycle. This occurred due to 

earlier yielding of the beam longitudinal reinforcement in the analytical study. 

Similar to Specimen A2, a flexure-shear damage mode was predicted for Specimen A3. 

As compared to the damage mode obtained for Specimen A2, less shear damage of 

Member 9, with shear crack widths of 6 mm, and more flexural damage of Member 10, 

with 7 mm flexural crack widths, was found. The experimental crack pattern of the 

specimen at the end of the second cycle (+58.8 mm) is shown in Figure 6.26. 

Table 6.7 Comparison of Analytical and Experimental Results for Subassembly A3 
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6.7 PCA Shear Walls 

An experimental program was carried out by Portland Cement Association (PCA) 

(Oesterle et al., 1976) involving several barbell-, flange- and rectangular-shaped shear 

walls to investigate the influence of a number of parameters on wall behaviour. The walls 

were dimensioned to represent a 1/3-scale model of a five storey shear wall. Six 

specimens (B1, B2, B7, B8, R1, and F1) were selected for analysis with the developed 

analytical procedure. This selection was made on the basis of the availability of the 

experimental results. Some shear walls were omitted due to deficiencies in the 

experiment. For example, for Wall R2, out-of-plane displacements were reported, which 

may invalidate the experimental results.  

Details of Specimens and Test Setup 

All walls extended 4.57 m (15 ft) between the top loading beam and the base beam. A 

typical view of the walls is shown in Figure 6.27. Cross section details of the walls are 

presented in the following section. Reinforcement properties were estimated from the 

reported steel coupon test results. For some reinforcing bars, when the experimental 

results were unavailable, conservative estimates (i.e., small values) were made for the 

reinforcement properties. Concrete strength and modulus of elasticity were taken as 

Figure 6.26 Crack Pattern of the Specimen A3 at the End of the Test  
(Shiohara and Kusuhara, 2006)
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reported; the strain εo corresponding to peak stress f’c was estimated with Eq. 4.5.  The 

resulting values are listed Table 6.8. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

db fy fu Es Esh εsh εu f'c ε0 Ec

(mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3) (MPa) (x10-3) (MPa)

#4 12.7 450 708 195130 2371 8.2 117
#2 6.3 521 695 224087 2000 20 107
#6 19 410 695 208229 2258 6.8 133
#2 6.3 532 701 221330 2061 20 102
#6 19 457 650 200000* 2000* 2.5* 99*
#2 6.3 489 750 200000* 2000* 3* 133*
#6 19 447 650 200000* 2000* 2.5* 104*
#2 6.3 454 750 200000* 2000* 3* 151*
#3 9.5 512 765 191681 2875 10 98
#2 6.3 522 700 216503 1745 20 122
#4 12.7 445 707 193750 2451 8.1 115
#2 6.3 525 705 215814 2143 20 104

* estimated

44.7 2.27* 27787

38.4 2.24* 25443

49.3 2.25* 30100

42 2.36* 25600

2813053 2.53*

53.6 2.48* 28960

R1

F1

B1

B2

B7

B8
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Figure 6.27 Typical View of the PCA Walls (Kurama and Jiang, 2008) 

Table 6.8 Material Properties of the PCA Walls 
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The testing of the walls included the application of a lateral load to the top beam in a 

displacement-controlled mode to create reversed-cyclic loading conditions with 

displacement amplitude increments of 25.4 mm. In some of the walls (namely, Walls B7 

and B8), a constant axial load of 1200 kN was applied to the top loading beam.  

6.7.1 Analytical Modelling 

The walls were modelled with member segments of varying lengths. A segment length of 

175 mm (approximately 10% of the sectional-height) was used towards the base of the 

walls where a concentration of plastic deformation was expected. The segment lengths 

were gradually increased towards the top of the walls. The beam at the base of the walls 

was not modelled; rather, the walls were assumed to be fixed at the base (Figure 6.28(a)). 

 

 

ρt (%) ρ l, fl (%) ρl, web (%) ρz (%) N (kN)
B1     0.31      1.11              0.29               0              0
B2 0.63 3.67 0.29 0 0
B7 0.63 3.67 0.29 1.35 1200
B8 1.38 3.67 0.29 1.35 1200
R1 0.31 1.47 0.25 0           0
F1 0.71 3.89 0.3 0 0

Figure 6.28 Modelling of PCA Walls: (a) Frame Model; (b) Reinforcement Ratios 
        

(a) 

(b) 
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The smeared reinforcement reported for the walls is summarized in Figure 6.28(b), where 

ρt is the transverse reinforcement ratio, ρz is the out-of-plane reinforcement ratio, ρl,fl is 

the longitudinal (along the y-axis) reinforcement ratio in the flanges, and ρl,web is the 

longitudinal reinforcement ratio in the webs of the walls. Note that ρl,fl and ρl,web  are not 

required for the analytical model; rather, the reinforcement areas and the distances from 

the top of the cross sections must be defined. The details of the longitudinal 

reinforcement configurations for each wall can be found in Oesterle et al. (1976). 

One member type was used for the sectional models of the walls: MT1. To simulate the 

top loading beam, an artificial member type, MT2, was created by multiplying the 

reinforcement ratios of MT1 by a factor of 2.  

Typical sectional models for MT1 for three different wall shapes is presented in Figure 

6.29, 96 concrete layers were typically used for barbell-shaped walls (8.0 mm x 3 layers, 

10 mm x 5 layers, 12.0 mm x 5 layers, 14.0 mm x 5 layers, 16.0 mm x 5 layers, 18.5 mm x 

2 layers, 21 mm x 5 layers, 25 mm x 5 layers, 30 mm x 14 layers). A similar layer 

configuration was used for the flanged and rectangular walls. Transverse reinforcement 

was assigned to all layers except for the clear-cover (CC) layers, as defined in Figure 

6.28(b).  

Default material models were used except for the concrete base curve for which the 

Popovics (NSC) formulation was adopted as described in Section 6.3. Three load cases 

Figure 6.29 Typical Sectional Models Used in the Analysis of PCA Walls  
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were applied to the walls: a reversed-cyclic lateral displacement applied at Node 21, a 

constant axial load applied at Node 21, and an automatically calculated self-weight load 

case, which is a newly implemented algorithm.  

6.7.2 Comparison of the Analytical and Experimental Responses 

The analytical and experimental applied lateral load-deflection responses are compared in 

Figure 6.30 to Figure 6.36.  
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Figure 6.30 Comparison of Load-Deflection Responses for PCA Wall B1 
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Figure 6.31 Comparison of Load-Deflection Responses for PCA Wall B2 

Figure 6.32 Comparison of Load-Deflection Responses for PCA Wall B7 
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Figure 6.34 Comparison of Load-Deflection Responses for PCA Wall R1 

Figure 6.33 Comparison of Load-Deflection Responses for PCA Wall B8 
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As seen from the graphs above, the overall behaviours of the walls were predicted with 

reasonable accuracy. In particular, the strength degradation under repeated cycles at the 

same displacement amplitude was estimated well. Note the decrease in the load capacity 

in the second cycle at each displacement amplitude. As explained previously, this 

decrease was primarily caused by excessive cracking and shear straining of, in particular, 

Member 1. Similar decreases in the reloading stiffnesses were observed experimentally. 

The pinching behaviour of the experimental responses was underestimated in the 

analyses for four walls (i.e., B1, B2, R1 and F1), but estimated accurately for two walls 

(i.e., B7 and B8). The underestimation was particularly significant for Wall B2, which 

was not subjected to a constant axial load.  

Similar underestimations of pinching behaviour were previously encountered in the 

analyses of the beam-column subassemblies in Sections 6.5 and 6.6, where it was 

attributed to the shear cracking of the joint panel zones and to possible bond-slip of the 

longitudinal reinforcement. A similar reasoning can be made in the analyses of these 

walls. As the main flexural reinforcement typically extended through the base beams, 

which were not incorporated into the analytical model, cracking of the base beams and 

Figure 6.35 Comparison of Load-Deflection Responses for PCA Wall F1 
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strain penetration in the base beams could have resulted in a more pinched response in 

the experiment. This reasoning is supported by the analytical responses of Walls B7 and 

B8, where the experimental pinching was simulated successfully. Walls B7 and B8 were 

the only walls tested under a constant axial force of 1200 kN. Due to the compression, 

less cracking in the base and less, if any, strain penetration is expected. Therefore, the 

analytical assumption of a perfectly fixed base and of perfect bond between the 

reinforcement and the concrete becomes more realistic, providing a better simulation of 

the pinching behaviour observed in the experiments. 

Detailed comparisons of several parameters are compared in Table 6.9. 

 

Ratio Ratio
Disp (mm) Shear (kN) Disp Shear Disp Shear Disp Shear 

B1 + 7.8 242 9.8 274 0.88 100 261 100 282 0.93
B1 - -14.3 -226 -16.7 -256 0.88 -100 -247 -75 -289 0.85
B2 + 11.9 668 21.6 628 1.06 125 672 100 685 0.98
B2 - -8.5 -581 -15.0 -593 0.98 -100 -627 -100 -713 0.88
B7 + 9.2 907 8.7 922 0.98 125 998 125 1010 0.99
B7 - -12.1 -880 -16.0 -886 0.99 -125 -988 -125 -1010 0.98
B8 + 25.0 865 28.2 936 0.92 125 975 100 971 1.00
B8 - -14.7 -860 -17.9 -841 1.02 -125 -971 -120 -1070 0.91
R1 + 6.0 1100 7.3 1190 0.92 100 1140 75 1190 0.96
R1 - -5.8 -9750 -5.8 -11100 0.88 -100 -1110 -100 -1190 0.93
F1 + 13.5 760 21.0 750 1.01 150 831 100 852 0.98
F1 - -15.0 -720 -17.0 -680 1.06 -100 765 -80 818 0.94

        + : Positive Loading Direction Mean 0.97 Mean 0.94
COV (%) 6.4 COV (%) 5.0

First Reinforcement Yielding Max Story Shear
VecTor5 Test VecTor5 Test

 
 

As is apparent from Table 6.9, the strengths of the walls were predicted very well. The 

slight underestimation of strength can be attributed to the stockiness of the walls which, 

with a height-to-width ratio of 2.4, are at the transition point where direct strut action 

begins to play a prominent role. 

 

 

 

Table 6.9 Comparison of Load and Deflection Results for PCA Walls 
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VecTor5 Test Ratio VecTor5 Test Ratio
B1 + 12.9 10.2 1.26 113.7 102.8 1.11
B1 - 7.0 6.0 1.17 122.3 110.9 1.10
B2 + 10.5 5.8 1.82 349.6 287.7 1.22
B2 - 11.8 6.7 1.76 378.5 287.2 1.32
B7 + 13.6 14.3 0.95 576.6 501.3 1.15
B7 - 10.3 7.8 1.32 588.9 521.8 1.13
B8 + 5.0 4.4 1.13 677.1 573.8 1.18
B8 - 8.5 7.0 1.22 594.8 578.6 1.03
R1 + 16.7 13.7 1.22 81.6 74.5 1.10
R1 - 17.3 17.3 1.00 74.0 69.2 1.07
F1 + 7.4 4.8 1.55 202.3997 169.3 1.20
F1 - 8.3 4.7 1.77 202.3997 188.4 1.07

Mean 1.35 Mean 1.14
COV (%) 29.0 COV (%) 7.9

Energy Dissipation (kNm)Displacement Ductility

 

As presented in Table 6.10, the total energy dissipated by the walls was estimated with 

reasonable accuracy. Some discrepancies exist in the displacement ductility ratios of the 

walls. This is primarily caused by earlier yielding of the longitudinal reinforcement in the 

analyses. Base cracking and possible bond slip are most likely contributing to this 

phenomenon. It should be noted, however, that displacement ductilities were 

approximated from the load deflection curves, as described in Figure 6.14, due the lack of 

experimental information regarding the first yielding of reinforcement. Based on the 

assumed effective yielding approach, a small overestimation of the initial stiffness of the 

structure shifts the effective yielding point significantly, thereby affecting the estimated 

displacement ductilities greatly. Therefore, the displacement ductility comparisons should 

be used for information purposes, rather than for a detailed comparison.   

All walls exhibited a flexure-dominated behaviour in both the analyses and the 

experiments, clear from the flat top of the load-deflection curves, except for Wall F1 

which suffered a sudden web-crushing failure before reaching its flexural strength.  

The experimentally observed damage mode of Walls B1 and B2 included significant 

main longitudinal reinforcement yielding, web concrete crushing and reinforcement 

buckling. The analysis results of Wall B1, at the end of the loading (second cycle -100 

mm), indicated 9.2 mm flexural crack widths with 51.5 x 10-3 longitudinal reinforcement 

Table 6.10 Comparison of Ductility and Energy Dissipation Results for PCA Walls 
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straining for Member 1. Some concrete crushing at the compression toe was predicted but 

to a lesser extent than experimentally observed. As for Wall B2, which included 

significantly more longitudinal reinforcement than Wall B1, a 5.1 mm maximum crack 

width with 48.2 x 10-3 longitudinal reinforcement strain was predicted for Member 1. 

Contrary to the experimental observations, no web crushing was predicted at the same 

experimental displacement level (i.e., -80 mm) for this wall.  

In the experiments on Walls B1 and B2, web crushing and reinforcement buckling 

occurred almost simultaneously, contributing to each other. However, in the analytical 

procedure employed, such a mechanism is not taken into account. For concrete to crush 

in the analysis, a strain limit dependent on the concrete compression base curve and the 

confinement reinforcement present must be reached. Reinforcement buckling, on the 

other hand, is not currently considered in the analytical tool developed. 

The damage modes of the walls B7 and B8 were reported by Palermo and Vecchio 

(2004) to include flexural mechanisms with significant web crushing. For Wall B7, very 

similar results were obtained analytically. The analysis results indicated a flexural crack 

width of 8.9 mm with 76.5 x 10-3 longitudinal reinforcement straining with crushing of 

the web concrete for Member 1. For Wall B8, which included more transverse 

reinforcement than Wall B7, a similar behaviour was obtained but no crushing of the web 

concrete was predicted at the same experimental displacement level (i.e., +150 mm). 

The experimental failure mechanism of Wall R1 was initiated by two bars buckling at 

approximately +75 mm lateral displacement. Both buckled bars then fractured in the 

following negative cycle. The two drops in the load capacity in Figure 6.34, occurring at 

approximately -63 mm and -83 mm, correspond to these bar fractures. Such a mechanism 

is not accounted for in the analytical procedure. As a result, the damage mode is 

predicted to involve the plastic hinging of Member 1 with significant cracking and 

longitudinal straining as much as 55.0 x 10-3 at a lateral displacement of 100 mm.  

The experimentally observed failure mechanism of Wall F1 included a sudden crushing 

of the web concrete at approximately -90 mm displacement, clear from Figure 6.35. The 
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analysis results corresponding to this displacement did not indicate such a failure. To 

determine the analytical failure mechanism of the wall, the analysis was continued to 

encounter the web crushing occurring at about -125 mm as shown in Figure 6.36. 
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Of particular interest in the behaviour of these walls is the influence of the shear 

protection algorithm, which reduced the shear forces and strains in the first 6 members 

(i.e., within a height of 0.70 x d from the base). It is informative to investigate the 

influence of this reduction on the behaviour of the walls. For this purpose, the walls were 

analyzed twice under monotonically increasing load to failure: once using the shear 

protection algorithm and once considering the full shear effects without shear protection. 

Comparisons of the computed responses to the experimental backbone response for Wall 

B7 are presented in Figure 6.37. 

 

 

 

Figure 6.36 Comparison of Load-Deflection Responses for PCA Wall F1 
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In the analysis considering the full shear effects, a premature shear failure of Member 1 

was predicted, which did not occur experimentally. However, when the shear protection 

algorithm was invoked, a flexure-dominated response was obtained which is in strong 

agreement with the experimental response. In this case, the drop in the load capacity was 

caused by the fracture of reinforcement in tension in the analytical model. 

Also of interest in the behaviour of these walls is the influence of the out-of-plane 

confinement effects in the concrete. As formulated in Section 3.13.5, out-of-plane 

reinforcement stresses were introduced into the sectional analyses to simulate 

confinement effects. In order to illustrate the influence of this effect, consider the 

response of concrete layer 4 of Wall B8 as shown in Figure 6.38; this layer was well 

confined with 1.35% out-of-plane reinforcement ratio. 

 

 

 

 

Figure 6.37 Comparison of Responses for Two Different Shear Considerations  (PCA Wall B7) 
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Figure 6.38 Response of Concrete Layer 4  (PCA Wall B8) 
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As compared to the base curve, a strength enhancement of 43% was realized in this 

analysis. More importantly, the strain corresponding to the peak stress was enhanced by a 

factor of 2.8. It is significant that such important three-dimensional stress effects were 

successfully taken into account with a two dimensional analysis procedure. 

6.8 Summary, Conclusions and Recommendations 

In this chapter, the analytical procedure developed in Chapter 5 for general loading 

conditions was verified with one large-scale frame, four large-scale beam-column 

subassemblies and six 1/3-scale shear walls, all of which were previously tested. The 

experimental behaviours of the structures were compared to the analytical behaviours in 

terms of load-deflection responses, reinforcement strain responses and crack widths. The 

failure conditions of the structures, as obtained experimentally and analytically, were 

compared in terms of failure modes and failure displacements. Important in the seismic 

assessment of structures, the total energy dissipations and the displacement ductility 

ratios were also compared to the experimental results.  

Considering all 11 structures examined in both the positive and negative loading 

directions, giving 22 values, a mean of 0.97 and a coefficient of variation (COV) of 6.0% 

were achieved for the predicted-to-observed strength ratio. For the displacements 

corresponding to the peak load capacities, a mean of 1.07 and a COV of 23.4% were 

realized. It should be noted that most of the load-deflection responses had a flat top, thus 

making them prone to large errors in estimating the displacements at the peak load. For 

the total energy dissipation, a mean of 1.18 with a COV of 14.6% was attained. The 

displacement ductilities were determined rather approximately using the load-deflection 

curves, based on the effective yielding approach, due to the lack of experimental data. As 

a result, a mean of 1.27 with a COV of 26.6% was obtained for the predicted-to-observed 

ductility ratio considering all 22 values. Considering the challenges involved in the 

simulation of behaviour of reinforced concrete structures under reversed-cyclic loading 

conditions, these ratios can be regarded as satisfactory. The failure modes of the 

structures were predicted accurately for the majority of the specimens. In addition, other 
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computed responses such as reinforcement strains, member elongations and crack widths 

showed strong correlations with the experimental results. 

In conclusion, the nonlinear sectional analysis procedure implemented for the general 

loading condition provided reasonably accurate simulations of the responses of a variety 

of previously tested structures. Both shear- and flexure-related mechanisms were 

captured well. 

Also notable is that all analyses were performed using the default material behaviour 

models and analysis options. In addition, all analyses concluded without any numerical 

stability problems and in a short period of time. A typical analysis of the PCA shear walls 

required a computation time of approximately 20 minutes*. This is significant 

considering the several hours required for such analyses using finite element procedures. 

Moreover, the highly irregular loading protocol of Specimen SP6 (Seckin, 1981) was 

successfully simulated through the use of seed files (i.e., binary input files). 

The limitations of the analytical procedure were pointed out regarding the modelling of 

beam-column joints and the inability to consider longitudinal reinforcement bond-slip 

and buckling. It was emphasized that the analysis procedure should not be used for the 

detailed analysis and assessment of beam-column joints; rather, it is more suitable for 

global analyses of large frame structures. The need to include the reinforcement bond-slip 

and buckling mechanisms into the current computational algorithm for better simulations 

under large strain reversals was, however, borne out.  

The newly implemented shear protection algorithm, which approximately takes into 

account the increased strengths of D-regions, performed well. Premature shear failures of 

the sections adjacent to the shear wall bases were effectively prevented. 

*On a Laptop computer with an Intel ® Dual Core 2 Due® T7500 (2.2 GHz) Processor®, a 2 GB DDR2,    
  677MHz RAM and a 7200 RPM hard disk drive. 
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CHAPTER 7 
DYNAMIC LOADING: THEORY AND IMPLEMENTATION 

7.1 Chapter Layout 

This chapter describes the theoretical principles needed for the nonlinear analysis of 

reinforced concrete frames subjected to dynamic loading conditions and their 

implementation into the analytical procedure developed for general loading conditions.   

The chapter starts with a discussion of the need for nonlinear analysis capability under 

dynamic loading. Next, a discussion is presented on how a dynamic problem differs from 

a static problem and what is required to convert a nonlinear static analysis procedure into 

a nonlinear dynamic analysis procedure which also retains its nonlinear static analysis 

capabilities. 

This is then followed by the theories and new algorithms implemented into the nonlinear 

analysis procedure, developed in Chapter 5, in order to consider dynamic loading 

conditions including time-varying  base accelerations,  time-varying impulse, impact and 

blast forces, initial mass velocities, and constant mass accelerations. 

The chapter continues with a discussion on the selection of an appropriate time step 

length, the use of additional viscous damping for stability reasons in Newmark’s average 

and linear acceleration methods, and the numerical damping present in Wilson’s Theta 

method. 

Finally, the chapter concludes with three verification examples analyzed under ground 

acceleration-time history loading, impulsive loading and initial velocity loading for 

corroboration purposes.  

In addition, when necessary, the appropriate use of the different formulations and options 

implemented are discussed. 
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7.2 Need for Nonlinear Analysis Procedures for Dynamic Loading 

For analyzing a structure subjected to seismic loading, two nonlinear procedures have 

generally gained acceptance in modern seismic design provisions such as IBC (2006). 

These are the nonlinear static analysis procedure, and the nonlinear dynamic analysis 

procedure.  

The nonlinear static analysis procedure (NSP) can be performed through the use of static 

analysis techniques as developed for monotonic loads in Chapter 3. This analysis 

approach can provide some useful information on the nonlinear behaviour of frame 

structures under seismic excitations, as discussed in Section 5.2. The established 

procedure for such an analysis usually consists of the following steps. A nonlinear model 

of the frame structure is created, usually accounting for material and geometric 

nonlinearities such as P-Δ effects. The model is then analyzed under monotonically 

increasing lateral loads representing the inertia forces in an earthquake. The analysis is 

continued until a target displacement is met. The target displacement is intended to 

represent the maximum displacement likely to be experienced during the design 

earthquake. In this procedure, a control node, which usually corresponds to the mass 

centre of the building roof, must be selected to monitor the lateral displacement attained 

in order to check with the target displacement (Figure 7.1). The conditions of the 

members at the target displacement are then evaluated. If the members are capable of 

sustaining their loads at the target displacement, the structure is deemed to be adequate 

for the design earthquake considered. Otherwise, inadequate members are re-designed in 

the case of a structure not yet built or retrofitted in the case of an existing structure. 

 

 

 

 

Figure 7.1 Nonlinear Static Analysis Procedure for a Frame Structure 
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However, there are two difficulties involved in this approach that limits the use of 

nonlinear static analysis procedure. The first one is related to the use of a monotonically 

increasing lateral load distribution for the structure under consideration. In reality, due to 

material nonlinearities such as cracking of concrete and yielding of reinforcement, the 

stiffness characteristics of the structure can change drastically during a seismic event. 

This results in significant redistribution of the lateral loads induced by the ground motion. 

Therefore, the selection of a lateral load which increases monotonically with the same 

initial ratio is not appropriate for structures with highly nonlinear behaviour including 

significant yielding and force redistribution. The second difficulty is related to the effects 

of higher modes. The vibrational behaviour of a structure may change dramatically 

during a ground shaking if higher modes are contributing significantly to the structural 

response. Such behaviour is typical in tall and irregular buildings whose behaviour 

incorporates considerable torsional effects. However, the determination of both the 

monotonically increasing lateral load distribution and the target displacement is generally 

based on the first mode behaviour of the structure. As a result, the applicability of this 

procedure is limited. For example, the FEMA 356 (2000) prestandard, Clause 2.4.2.1 

stipulates that “nonlinear static analysis procedure shall be permitted in structures in 

which higher mode effects are not significant” and requires a linear-elastic response 

spectrum analysis for determination of the effects of higher modes.  

The second procedure is called the nonlinear dynamic analysis procedure (NDP), more 

commonly known as nonlinear time-history analysis. In this procedure, the establishment 

of neither a lateral load pattern nor a target displacement is required. Instead, the 

nonlinear analysis is carried out for a ground motion time-history which can be either a 

recorded or a synthetic motion. Because the numerical model accounts directly for 

material and geometric nonlinearities, the calculated response and internal forces are a 

reasonable approximation of those expected during the design earthquake (FEMA 356, 

2000). However, the tools available for such an analysis require considerable judgement 

and experience, as indicated in Chapter 2. Acknowledging the difficulty involved, for 

example, FEMA 356 (2000) stipulates in Clause 2.4.2.2 that “an analysis performed 

using the NDP shall be reviewed and approved by an independent third-party engineer 

with experience in seismic design and nonlinear procedures”. In addition, the intensive 
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time step calculations involved require significant computational power, which further 

constrains the use of this method.  

Therefore, a nonlinear analysis tool for time-history analyses is much needed; one which 

is suitable for everyday office use by providing reasonably accurate responses with the 

use of default options, thereby not requiring previous knowledge of, for example, hinge 

behaviour, governing failure mechanism, and so on. This tool should also be executable 

by current computing power in a reasonable time.. For the reasons described above, in 

this chapter, several new dynamic analysis algorithms are developed and implemented 

into the calculation procedure, developed in Chapter 5, providing nonlinear time-history 

analysis capability for a given ground motion. 

In addition to earthquakes, due to increased terror threats, nonlinear analysis of reinforced 

concrete structures under extreme loads, such as impact and blast, have recently gained 

added importance. Various analytical procedures have been reported in the literature to 

determine the global response of reinforced concrete structures under such loading 

conditions. However, as noted by Saatci (2007), the analysis methods reported are either 

over-simplified, such as the ones that treat reinforced concrete as a linearly-elastic or 

elastic-plastic material, or over-complicated, such as the ones that employ the 

sophisticated modelling techniques of a local response for a global structure. Moreover, 

the analytical tools available, even the highly sophisticated ones, commonly do not 

inherently consider shear-related influences. However, as was observed during the impact 

testing of reinforced concrete beams by Saatci (2007), even if a member is flexure-critical 

under static loads, shear damage under impact loads plays a major role in the overall 

behaviour of the member. Therefore, ignoring shear-related mechanisms with methods 

that assume flexural behaviour may lead to significant errors in the computed responses. 

Therefore a nonlinear analysis tool is needed which is sufficiently practical for everyday 

use in an office design, yet sufficiently comprehensive to consider both flexure- and 

shear-related mechanisms at the global structural level. For these reasons, in this chapter, 

the implemented dynamic analysis procedure of VecTor5 is expanded to allow for an 

analysis capability under impact, impulse and blast loading conditions.   
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7.3 Essential Characteristics of a Dynamic Problem 

A structural-dynamic problem is distinct from a structural-static problem in three 

fundamental aspects. First, a structural-dynamic problem is time dependent; therefore, 

contrary to the static problem, a dynamic problem does not have a single solution. Rather, 

it includes a succession of solutions corresponding to the response history. Second, 

dynamic loads are not only resisted by the stiffness of the structure, as with the static 

loads, but also by inertial forces resulting from accelerations of the structural mass. 

Inertial forces are the most important distinguishing characteristics of a structural-

dynamics problem. In general, if the inertial forces represent a significant portion of the 

total load equilibrated by the internal forces of the structure, then the dynamic character 

of the problem must be considered (Clough and Penzien, 1993). Third, damping forces 

contribute to the load resistance of the structure by diminishing the amplitude of the free 

vibration of the structure. Particularly for the structures with various non-structural 

components, damping effects may be significant. 

To illustrate the difference between structural-static and structural-dynamic problems, 

consider the simple model of a single degree-of-freedom system (SDOF) given in Figure 

7.2. In a static system, the applied force, p, is resisted by one mechanism: the spring force  

fs. Therefore, the static equilibrium equations becomes as follows: 

sp k u or p f= ×       =                     (7.1) 

where k is the stiffness of the spring, and u is the displacement. 

In a dynamic system, on the other hand, the applied force p(t) is resisted by three 

mechanisms: the inertia force ( )If t , the damping force ( )Df t , and the spring force ( )sf t . 

As a result, the dynamic equation of motion can be written as 

( ) ( ) ( ) ( )I s Df t f t f t p t+ + =        or           (7.2) 

( ) ( ) ( ) ( )m u t c u t k u t p t× + × + × =&& &            (7.3)  
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where m is the mass, c is the damping coefficient, k is the spring stiffness, ( )u t&&  is the 

acceleration, ( )u t&  is the velocity, and ( )u t  is the displacement. 

For a multi-degree-of-freedom system (MDOF), the matrix equivalent of the dynamic 

equation of motion can simply be written as follows: 

[ ] { } [ ] { } [ ] { } { }( ) ( ) ( ) ( )m u t c u t k u t p t× + × + × =&& &              (7.4) 

 

 

 

 

7.4 Strategy Adopted for Inclusion of Dynamic Analysis Procedure into the 

Static Analysis Procedure of VecTor5 

The construction of the dynamic equation of motion of Eq. 7.4 requires a mass matrix, a 

damping matrix, a stiffness matrix, and a time-varying load vector. After the 

determination of the required matrices or vectors, solution of the dynamic equation of 

motion is required. For complex excitations such as earthquake loading, an analytical 

solution of the dynamic equation of motion is usually not possible, requiring a numerical 

evaluation technique for the solution of the dynamic equation of motion. 

In Chapter 5, VecTor5 was fully developed to perform a static nonlinear analysis under 

general loading conditions. In this formulation, as explained in Chapter 3, the solution of 

the static equilibrium equation of Eq. 7.1 is carried out by the global frame analysis 

algorithm by inversion of the stiffness matrix [k] to find the primary unknowns, 

displacements {u} as defined below. 

Figure 7.2 Equilibrium of Forces: (a) Static System; (b) Dynamic System 
(a) (b) 
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[ ] { } { }k u p× =       and     { } [ ] { }u k p−1= ×           (7.5) 

In order to be able to consider dynamic loading conditions, significant additions and 

modifications must be made to the existing calculation algorithm: 

(1) An algorithm for the creation of a mass matrix, a damping matrix and a dynamic 

load vector must be implemented. 

(2) A modal analysis algorithm should be implemented, which calculates vibration 

periods, mode shapes, damping coefficients and generalized masses, necessary 

for the creation of the damping matrix. 

(3) At least one numerical time-stepping solution technique should be built into the 

existing solution procedure. 

(4) An algorithm for the consideration of strain rate effects, which enhance the 

strength and stiffness of concrete and reinforcement under very high strain rates 

(up to 1000 s-1), should be implemented. Consequently, concrete and 

reinforcement properties should be constantly modified in the sectional 

calculations based on the current strain rates. 

It was desired to implement these calculations without radically changing the 

computation algorithm currently present in VecTor5 as nonlinear static analysis 

capability under the general loading conditions had to be completely retained. In other 

words, it was desired to condense the dynamic equation of motion of Eq. 7.4 so that it 

assumed the form of 

[ ] { } { }* *k u p× =    and    { } [ ] { }* *u k p−1= ×          (7.6) 

Through the adoption of such an approach, all the concepts described in Chapter 3, 

including the use of unbalanced forces, sectional calculations, second-order mechanisms 

and so on, were retained entirely.  
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7.5 Determination of Structural Property Matrices 

In the following sections, the theoretical principles and formulations regarding the 

structural property matrices (i.e., mass matrix, damping matrix, stiffness matrix and load 

vectors) will be discussed. 

7.5.1 Mass Matrix 

The most important distinguishing characteristic of a structural dynamic problem, the 

inertial forces, result from time-varying acceleration of the structural mass. Because the 

mass of the structure is distributed continuously throughout the actual structure, the 

accelerations should be defined continuously throughout the structure; this would require 

a solution in terms of partial differential equations. However, if the mass of the structure 

is assumed to be concentrated at discrete points, the analytical problem becomes greatly 

simplified. This method, known as the lumped-mass approach, was employed in the 

formulation of the developed procedure for the mass matrix. 

For clarification purposes, consider the frame model of a simply supported beam with 

five members shown in Figure 7.3(a). Based on the lumped-mass approach, the point 

masses are assumed to be concentrated at each end of the members as in Figure 7.3(b). 

From statics, half of the total mass of each member is assigned to each end. The total 

mass concentrated at any node of the complete structure is then determined as the sum of 

the nodal contributions from all members attached to that node as shown in Figure 7.3 

(c). For example, the lumped mass for the Node 3 is calculated to be 3 2 3b am m m= + . 

 

 

 

 

Figure 7.3 A Simply Supported Beam: (a) Model; (b) Elemental Masses;  
      (c) Nodal Masses

 

(b) 

(c) 

(a) 



 291

In the VecTor5 implementation, the masses due to the self-weight of the structure are 

calculated automatically based on the input density of the material and the geometry of 

the member. For each member, the total mass is calculated as follows: 

m b h Lρ= × × ×              (7.7) 

where m is the mass of the member in kg, ρ is the density of concrete in kg/m3, b is the 

width of the cross section in mm, h is the depth of the cross section in mm, and L is the 

length of the member in mm. Modifiable by the user, the default value of density for 

normal weight reinforced concrete was assumed to be 2400 kg/m3. In addition to the 

masses due to self weight, any other mass can be assigned to the desired nodes through 

the load data file. 

Once the lumped masses at the nodes are calculated, the mass matrix for the structure can 

readily be formulated. As the rotational inertia of the mass has negligible influence on the 

dynamics of a plane frame structure, only two translational degrees-of-freedom are 

considered (Chopra, 2007). Therefore, for a lumped-mass idealization, the mass matrix is 

diagonal with 

0ij jj jm if i j and m m=         ≠           =                        (7.8) 

where mj is the lumped mass associated with the jth translational degree-of-freedom. Note 

that mj is zero for a rotational degree-of-freedom. 

 

 

 

Based on the approach described above, the degrees-of-freedom for the lumped masses of 

the simply supported beam are shown in Figure 7.4. During a dynamic event, the 

summation of the masses in the direction of the dynamic excitation equals the total mass 

Figure 7.4 Mass Degrees-of-Freedom of a Simply Supported Beam 
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of the structure. If the mass of each member of Figure 7.4 is assumed to be equal to m, 

the resulting 12-by-12 diagonal mass matrix becomes as follows: 

[ ]

/ 2 0 0 0 0 0 0 0 0 0 0 0
0 / 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 / 2 0
0 0 0 0 0 0 0 0 0 0 0 / 2

m
m

m
m

m
m

m
m

m
m

m
m

m

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (7.9) 

Perhaps the biggest advantage of the lumped-mass matrix approach is the mathematical 

convenience in its determination and in the ensuing computations due to its diagonal 

characteristic. 

A second approach is available in determining the mass matrix of the structure. In this 

approach, making use of the finite element concept, the mass influence coefficients are 

evaluated for each member by a procedure similar to the analysis of element stiffness 

coefficients. The resulting mass matrix is called the consistent-mass matrix. However, 

this procedure generally requires considerable more computational effort than does a 

lumped-mass system for two reasons: the resulting matrix has many off-diagonal terms 

leading to a mass coupling, and all rotational and translational degrees-of-freedom must 

be included in a consistent-matrix (Clough and Penzien, 1993). For these reasons, this 

approach is not implemented into the analysis procedure developed. 

7.5.2 Damping Matrix 

The process by which free vibration of a structure steadily diminishes in amplitude is 

called damping (Chopra, 2007). This decay results from the dissipation of energy of the 

vibrating system by various mechanisms. In a reinforced concrete structure, energy 

dissipation primarily occurs through the nonlinear hysteresis of concrete and 
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reinforcement. However, many other mechanisms contribute to the energy dissipation, 

including the opening, closing and sliding at cracks in the concrete, and the friction 

between structural and non-structural elements such as partition walls. In addition, the 

hysteretic behaviour of non-structural elements may be significant. Therefore, it seems 

impossible to identify or mathematically describe all of the energy dissipating 

mechanisms (Chopra, 2007). For this reason, the damping characteristics of a structure 

are determined in a highly idealized manner. 

The damping of a MDOF system can conveniently be expressed in terms of modal 

damping ratios ( 1,2,..., )n n Nξ   =  instead of an explicit damping matrix. However, when 

evaluating the nonlinear response of a structure under dynamic excitations, the response 

cannot be expressed by superposition of uncoupled modal responses because mode 

shapes are not fixed but are changing with changes in stiffness, requiring an explicit 

damping matrix. In such a situation, the most effective way to determine the required 

damping matrix is to first evaluate one or more proportional damping matrices and then 

to combine them through an assumed formulation to obtain the so-called proportional 

damping matrix [c].  

There are a number of procedures available in the literature for constructing a 

proportional damping matrix. As they are already highly idealized representation of the 

damping properties of structures, further assumptions are usually included to make the 

resulting matrix easier to manipulate mathematically such as orthogonality with respect 

to the modes of vibration. 

One of the most commonly used proportional damping formulations is called Rayleigh 

damping, after Lord Rayleigh (1878), which assumes that damping is proportional to a 

combination of the mass, [ ]m , and the stiffness, [ ]k , matrices as follows:  

[ ] [ ] [ ]0 1c a m a k= × + ×            (7.10) 

Rayleigh damping leads to the following relation between damping ratios and 

frequencies. 
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0 1

2 2
n

n
n

a a ωξ
ω

×
= +

×
            (7.11) 

where nξ  is the modal damping ratio (ratio of the given damping to the critical damping), 

a0 and a1 are the proportionality constants of Rayleigh damping, and ωn is the natural 

frequency of the nth mode. 

As shown in Figure 7.5(a), the first term of Eq. 7.11 represents the mass proportional 

damping where the damping ratio is inversely proportional to the frequency, while the 

second term represents the stiffness proportional damping where the damping ratio is 

directly proportional to the stiffness. The combination of these two damping ratios 

creates the Rayleigh damping as shown in Figure 7.5(b). 

 

 

The Rayleigh damping proportionality constants, a0 and a1, can be determined from 

specified damping ratios, ξi and ξj, for the ith and jth modes, respectively. Expressing Eq. 

7.11 in matrix form for these two modes leads to   

0

1

1 /1
1 /2

i i i

j j j

a
a

ω ω ξ
ω ω ξ

⎡ ⎤ ⎧ ⎫⎧ ⎫
× =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦ ⎩ ⎭
           (7.12) 

Stiffness 
Proportional  
Damping 
ξ=a1xωn/2

Mass Proportional 
Damping  
ξ=a0/(2xωn) 

Rayleigh Damping      
ξ= a0/(2xωn)+a1xωn/2 

Figure 7.5 Variation of Damping Ratios with Natural Frequency (a) Mass- and  
       Stiffness-Proportional Damping; (b) Rayleigh Damping (Chopra, 2007) 

 (a)   (b)  
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which can be solved to yield 

2
0 12 i i ia aξ ω ω= × × − ×           (7.13) 

1 2 2

2 2j j i i

j i

a
ξ ω ξ ω

ω ω
× × − × ×

=
−

          (7.14) 

The damping matrix can then be calculated from Eq. 7.10 while the damping ratio for any 

other mode can be found from Eq. 7.11. 

This procedure is implemented into the dynamic analysis algorithm developed requiring 

the selection of two vibration modes and the corresponding damping ratios at the 

beginning of an analysis. This selection should be made carefully to ensure reasonable 

damping ratios for the modes contributing significantly to the response. It is 

recommended that mode i be taken as the fundamental mode of the structure (the first 

mode), while mode j be one of the highest modes which contributes significantly to the 

response.  The damping ratios of the modes between the two specified modes will be 

somewhat smaller than the specified damping ratios, while all modes higher than mode j 

will have damping ratios increasing monotonically with the frequency.  

To illustrate this concept, consider a simply supported beam with 13 degrees of dynamic 

freedom and assume that the first five modes are contributing significantly to the 

dynamic response of the structure. Therefore, the first five modes are desired to have an 

assumed 5% damping ratio. To do this, the first and fifth modes were assigned the 

assumed 5% damping ratio and a dynamic analysis was carried out with VecTor5. The 

eigen analysis results output of the program indicated that the damping ratios for all 

modes are as follows:  
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1 0.019100 329.0 5.00 8 0.000210 29919.9 10.06
2 0.001480 4245.4 1.80 9 0.000208 30207.6 10.19
3 0.001260 4986.7 1.99 10 0.000178 35298.8 11.85
4 0.000618 10167.0 3.56 11 0.000166 37850.5 12.71
5 0.000430 14612.1 5.00 12 0.000147 42742.8 14.37
6 0.000366 17167.2 5.84 13 0.000064 97868.9 32.78
7 0.000271 23185.2 7.85

Period (s) Period (s)Damping 
Ratio (%)

Damping 
Ratio (%)

Natural 
Frequency (1/s)

Natural 
Frequency (1/s)

Mode Mode

 

Inspection of Table 7.1 reveals that the damping ratios of the modes between the first and 

fifth have less than 5% damping ratios while the modes greater than the fifth have 

damping ratios increasing with the natural frequency. The end result of this situation is 

that the responses of high frequency modes are essentially eliminated by their high 

damping ratios (as much as 32.78% in this example). 

Although mathematically convenient and numerically stable, it is not possible, as shown 

above, to exactly control the damping ratios in the Rayleigh damping formulation. Other 

than the two predefined modes, the damping ratios for the remaining modes are 

automatically determined by the procedure. However, in some situations, direct 

specification of the damping ratios for more than two modes may be desired. 

In such a case, a more general formulation of the proportional damping matrix is needed. 

For this purpose, Caughey damping, after T. K. Caughey (1960), can be used. In this 

formulation, the damping ratios for all available modes can be exactly specified and the 

corresponding damping matrix is constructed as follows: 

[ ] { }1
1

0

N i

i
i

c m a m k
−

−

=

⎡ ⎤= × × ×⎣ ⎦∑           (7.15) 

where N is the total number of modes, and ai are constants which can be determined by 

solving N simultaneous equations as defined by Eq.  7.16. 

( )
1

2 1

0

1
2

N
i

n i n
i

aξ ω
−

−

=

= × ×∑           (7.16) 

Table 7.1 Eigen Analysis Results of a Simply Supported Beam 
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It is also possible to specify the damping ratios for J modes of an N-DOF system, where J 

< N. In this case, N should be replaced with J in Eq. 7.15 and Eq. 7.16. 

While the Caughey damping matrix makes it possible to specify the damping ratios for 

any number of modes, some problems are reported in the literature. First, Eq. 7.16 is 

reported to be ill-conditioned (Chopra, 2007). Second, in the case of less than N terms in 

Eq. 7.15, the creation of negatively damped modes, which would invalidate the analysis 

results, are reported by Clough and Penzien (1993).  Moreover, the solution of N 

simultaneous equations increases computation cost and analysis time. The resulting 

matrix becomes fully populated if more than two terms are included in Eq. 7.15, which 

further increases computational demand. For these reasons described, Caughey damping 

is not implemented into the dynamic analysis procedure developed. 

When performing a dynamic analysis with the proposed procedure, most of the energy 

dissipation occurs through the nonlinear concrete and reinforcement stress-strain 

hystereses; therefore, the introduction of additional damping is not desired. In fact, in the 

application of the developed analysis tool to previously tested structures, discussed in 

Chapter 8, no additional damping was used. However, it was found, under specific 

circumstances, that a little additional damping may be necessary, for instance, for the 

fundamental mode of the structure when no viscous damping is needed for all of the 

remaining modes. Such a situation might arise especially when using the linear 

acceleration method, developed later in this chapter. However, with the implemented 

Rayleigh damping, such a specification of damping ratios is strictly not possible. 

To address this issue, a second type of damping formulation is implemented into the 

analysis procedure developed. Known as alternative damping, this damping matrix is 

constructed through the superposition of modal damping matrices as follows (Clough and 

Penzien, 1993): 

1

2N
Tn n

n n
n n

c m m
M
ξ φ φ

=

⎡ ⎤× × ω
= × × × ×⎢ ⎥

⎣ ⎦
∑         (7.17) 
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where Mn is the generalized mass, nφ  is the mode shape, m is the mass matrix, and N is 

the total dynamic degrees-of-freedom. The nth term in this summation is the contribution 

of the nth mode with its damping ratio ξn. If this term is not included, the resulting 

damping matrix c will contain a zero damping ratio in the nth mode. It is reasonable to 

include only the first J modes of an N-DOF system (J < N) in Eq. 7.17 that are expected 

to contribute significantly to the response. The lack of damping in modes J+1 to N is 

reported to not create numerical problems (Chopra, 2007). 

For use in Eq. 7.17, the generalized mass for the nth mode is obtained as follows:  

T
n n nM mφ φ= × ×            (7.18) 

The mode shapes, nφ , are determined by the modal analysis subroutine as discussed later 

in this chapter.  

The above formulation was implemented into the dynamic analysis procedure developed, 

requiring the input of two damping ratios for the two specified modes. Consequently, this 

second damping option made it possible to consider viscous damping in up to two modes, 

while assuming zero damping for all of the remaining modes.  

7.5.3 Stiffness Matrix 

As explained in detail in Chapter 3, the stiffness matrix of the structure is determined by 

the global frame analysis algorithm, including the effects of geometric nonlinearity. 

Therefore, no additional calculations are necessary for the determination of the stiffness 

matrix for use in the dynamic equation of motion of Eq. 7.4. 

7.5.4 Load Vector 

In the formulation of the dynamic analysis procedure of VecTor5, four different dynamic 

loads are considered: time-varying base accelerations, time-varying forces (i.e., impulses) 

as defined by a tri-linear curve, initial velocities assigned to lumped masses, and constant 

accelerations assigned to lumped masses. 



 299

Time-varying base acceleration loads can be utilized when performing a nonlinear 

dynamic time-history analysis. A recorded or a synthetic ground motion time-history can 

be applied to the structure in the horizontal (x-direction) or in the vertical (y-direction) 

direction. In some situations, it may be necessary to consider simultaneously acting 

ground motions. For example, while applying a specific ground motion in the horizontal 

direction, it may be desired to consider a certain percentage of the same motion in the 

vertical direction. For this reason, in the implementation, two scaling factors are 

considered for the horizontal and vertical directions. Based on the input factors, the same 

ground motion can be scaled and applied to both directions simultaneously. 

The load vector for the time-history analysis is created through the concept of effective 

support excitation, ( )effp t . Based on this concept, equivalent static nodal forces are 

calculated for the particular time under consideration and the load vector is set up 

accordingly as follows: 

( ){ } ( ){ } [ ] { } ( )eff gp t p t m r u t= = − × × &&         (7.19) 

where ( )tug&&  is the input ground acceleration, and { }r  is the influence coefficient vector 

which represents the displacements resulting from a unit support displacement. For 

example, consider the 6 DOF structure shown in Figure 7.6. If the ground motion is 

acting in the global x-direction, the influence coefficient vector will be 

{ }1 0 1 0 1 0 Tr = . For the consideration of two directions simultaneously, the r 

vector becomes fully populated with 1. 
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Time-varying forces can be utilized when performing a nonlinear impulse, blast or 

impact analysis. Pre-determined force-time histories can be applied to the desired nodes 

in either the global x- or y-direction. A tri-linear force-time history, as shown in Figure 

7.7, is required as input for such a loading. 

As the loads are the input values in this type of analysis, the load vector can easily be 

created considering the load application direction, the load value for the particular time 

under consideration and the node to which the load is applied. For example, assume that 

the load-time history below is applied to Node 4, in the global x-direction, of the 

structure shown in Figure 7.6. The load vector corresponding to time t1 becomes 

{ } { }1( ) 0 0 0 0 0 Tp t F= . 

 

 

 

 

 

 

 

 

Figure 7.7 Tri-Linear Force-Time History 

Figure 7.6 A 6-DOF Structure with Mass Degrees-of-Freedom Shown 

Force (kN) 

F1 

Time (s) t2 t3 
t4 

F2 
F3 

F4 

t1 
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Initial velocity loads can be utilized when performing a nonlinear initial velocity problem 

or, more importantly, a nonlinear impact analysis, as explained in detail in Section 8.3. 

Initial velocities can be assigned to the desired nodes in either the global x- or y-

direction. The input initial velocities are directly used in the numerical solution of the 

dynamic equation of motion, as described in Section 7.7.3. As a result, no load vector is 

created for this type of loading. 

Constant acceleration loads can be utilized when, for example, simulating the 

gravitational effects in any type of nonlinear dynamic analyses. They are used in this 

thesis when performing nonlinear impact analyses in Chapter 7. Constant accelerations 

can be assigned to the desired nodes in either the global x- or y-direction. Constant 

acceleration loads are taken into account through the use of the effective support 

excitation concept as explained above. 

7.6 Numerical Evaluation of the Dynamic Equation of Motion 

The dynamic equation of motion, for linearly elastic analyses, can conveniently be 

evaluated through a modal analysis technique which involves the evaluation of many 

independent response contributions combined to obtain the total response. However, 

when evaluating the nonlinear response of a structure under dynamic excitations, the 

response cannot be expressed by superposition of uncoupled modal responses because the 

mode shapes are not fixed but are changing with changes in stiffness.  

The only generally applicable procedure for analysis of an arbitrary set of nonlinear 

response equations is numerical step-by-step integration (Clough and Penzien, 1993). 

According to this method, the response history is divided into a sequence of short and 

equal time intervals, during which the response is calculated, based on the physical 

properties existing at the beginning of the time interval. Thus, the nonlinear behaviour of 

a MDOF system is approximated as a sequence of linear analyses in which the physical 

properties of the system change progressively.  In the numerical step-by-step integration, 

stepping from one time instance to another is usually not an exact procedure (Chopra, 

2007). Many approximate procedures are available in the literature for this purpose. The 
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only generally applicable procedures for evaluation of the nonlinear dynamic response 

are based on the variation of acceleration. 

Based on the assumed variation of acceleration, three numerical step-by-step integration 

methods were implemented into the dynamic analysis procedure developed. These are 

Newmark’s average acceleration, Newmark’s linear acceleration, and Wilson’s Theta 

method. The formulations related to these methods are presented in the following 

sections. 

7.6.1 Incremental Equation of Motion 

When performing the step-by-step calculations for a nonlinear dynamic analysis, the 

physical properties of the structure are assumed to remain constant only for short 

increments of time. Accordingly, it is convenient to formulate the response in terms of an 

incremental equation of motion. 

Consider the simplest model of a single degree-of-freedom system shown in Figure 

7.2(b). The equilibrium of forces acting on the mass at time ti may be written as follows: 

( ) ( ) ( ) ( )tptftftf SDI =++           (7.20) 

And a short time later, tΔ , the equilibrium requirement becomes 

( ) ( ) ( ) ( )ttpttfttfttf SDI Δ+=Δ++Δ++Δ+        (7.21) 

Subtracting Eq. 7.20 from Eq. 7.21 yields the so-called incremental equation of motion 

( ) ( ) ( ) ( )tptftftf SDI Δ=Δ+Δ+Δ          (7.22) 

where the incremental forces may be expressed as follows: 

( ) ( ) ( )I I If t f t t f t m uΔ = + Δ − = × Δ&&          (7.23)  
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( ) ( ) ( ) ( )D D Df t f t t f t c t uΔ = + Δ − = × Δ &         (7.24)  

( ) ( ) ( ) ( )S S Sf t f t t f t k t uΔ = + Δ − = × Δ         (7.25)  

( ) ( ) ( )p t p t t p tΔ = + Δ −           (7.26) 

In Eq. 7.24 and Eq. 7.25, ( )c t  and ( )k t  represent average values of the damping and 

stiffness which may vary during the time increment. However, the average values depend 

on the final values which are unknowns. This situation requires an iterative solution. 

However, in practice, it is common to use the initial tangent values instead, as shown in 

Figure 7.8 (Clough and Penzien, 1993). 

 

Substituting the force expressions of Eqs. 7.23 to 7.26 back into Eq. 7.22 leads to the 

final form of the incremental equilibrium equation, as follows: 

( ) ( ) ( )m u c t u k t u p t× Δ + × Δ + × Δ = Δ&& &         (7.27) 

Denoting the values at the beginning of the time interval with 0 and at the end of time 

interval with 1, the incremental acceleration, velocity and displacement can be written as              

1 0u u uΔ = −&& && &&     ;   1 0u u uΔ = −& & &     and    1 0u u uΔ = −        (7.28) 

Figure 7.8 Incremental Quantities: (a) Nonlinear Damping; (b) Nonlinear Stiffness  
      (Clough and Penzien, 1993) 

(a) (b) 
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7.6.2 Newmark’s Method 

In 1959, Newmark suggested a family of time-stepping methods based on the following 

equations: 

1 0 0 1(1 )u u t u t uγ γ= + − × Δ × + ×Δ ×& & && &&            (7.29) 

2 2
1 0 0 0 1

1
2

u u t u t u t uβ β⎛ ⎞= + Δ × + − × Δ × + × Δ ×⎜ ⎟
⎝ ⎠

& && &&        (7.30) 

where the parameters γ  and β  define the variation of acceleration over a time step and 

determine the stability and accuracy characteristics of the method. The typical values of 

1
2

γ =  and 1 1
6 4

β≤ ≤  are satisfactory from all points of view, including that of accuracy 

(Chopra, 2007). However, two special cases of Newmark’s method are widely used in the 

literature; these are the well-known average acceleration and linear acceleration methods 

(Figure 7.9). In the average acceleration method β  is taken as 1
4 , while in the linear 

acceleration method 1
6β = . 

 

 

In the numerical solution of the incremental equation of motion with Newmark’s method, 

two different formulations can be developed: implicit and explicit. In the implicit 

formulation, Eq. 7.29 and Eq. 7.30 are directly used in the numerical solution, giving way 

Figure 7.9 Newmark’s Method (a) Average Acceleration: γ=1/2 and β=1/4;  
      (b) Linear Acceleration: γ=1/2 and β=1/6 

(a) (b) 
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to an iterative process because the unknown 1u&&  appears on the right-hand side of the Eq. 

7.29 and Eq. 7.30. In the explicit formulation, Eq. 7.29 and Eq. 7.30 are modified so that 

the right-hand sides do not include any unknowns, enabling a non-iterative solution 

technique. Therefore, the explicit formulation is usually preferred over the implicit one 

(Clough and Penzien, 1993).  

For implementation into the analytical tool developed, the explicit formulation was used 

to avoid a triple iterative calculation as the procedure is already based on a double 

iterative process (i.e., global and sectional calculation iterations). 

7.6.3 Non-Iterative (Explicit) Solution of the Incremental Equation of Motion 

Eq. 7.29 and Eq. 7.30 can simply be rewritten as  

0u t u t uγΔ = Δ × + × Δ × Δ& && &&      (7.31) 

2
2

0 02
tu t u u t uβΔ

Δ = Δ × + × + × Δ × Δ& && &&         (7.32) 

Conversion to an explicit formulation is performed by solving Eq. 7.32 to obtain 

0 02

1 1 1
2

u u u u
t tβ β β

Δ = × Δ − × − ×
×Δ ×Δ ×

&& & &&         (7.33) 

Substitution of Eq. 7.33 into Eq. 7.31 gives 

0 02
tu u u t u

t
γ γ γ

β β β
⎛ ⎞× Δ

Δ = × Δ − × − − Δ ×⎜ ⎟×Δ ×⎝ ⎠
& & &&        (7.34) 

In Eq. 7.33 and Eq. 7.34, all unknowns on the right-hand side are eliminated, enabling an 

explicit solution. 

Substitution of Eq. 7.33 and Eq. 7.34 into Eq. 7.27 and rearrangement yields 
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iii puk ˆˆ Δ=Δ             (7.35) 

where 

 2

1k̂ k c m
t t

γ
β β

= + × + ×
×Δ ×Δ

         (7.36) 

0 0
1 1ˆ 1

2 2
p p m c u m t c u

t
γ γ

β β β β
⎡ ⎤⎛ ⎞ ⎛ ⎞

Δ = Δ + × + × × + × + Δ × − × ×⎢ ⎥⎜ ⎟ ⎜ ⎟×Δ × ×⎝ ⎠ ⎝ ⎠⎣ ⎦
& &&    (7.37) 

In Eq. 7.36 and Eq. 7.37, the system properties k and m should be determined based on 

the assumption made (i.e., initial tangent slope or average slope in Figure 7.8). 

As a result, using the system properties m, k and c, algorithm parameters γ  and β , 

velocities 0u& , and accelerations 0u &&  at the beginning of the time interval, the incremental 

displacement is found as follows: 

ˆ
ˆ
pu

k
Δ

Δ =             (7.38) 

The velocity at the end of time step can now be calculated using Eq. 7.34. It is 

recommended by Clough and Penzien (1993) to calculate the final acceleration from the 

equation of motion (rather than Eq. 7.31), to preserve the equilibrium equation, as 

follows: 

1 1 1
1

p c u k uu
m

+ × − ×
=

&
&&           (7.39) 

7.6.4 Stability of Newmark’s Method 

The average acceleration method is an unconditionally stable procedure, which results in 

bounded solutions regardless of the time step length. The linear acceleration method, on 
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the other hand, is a conditionally stable procedure requiring a time-step length, tΔ , less 

than 0.551 nT×  where Tn is the natural period of the highest mode. When evaluating the 

response of an MDOF system, this stability limit may impose severe restrictions on tΔ  as 

the period of the highest mode usually corresponds to a very small number. For example, 

consider again the simply supported beam with 13 modes. The periods calculated are 

presented in Table 7.1 where the 13th mode has a period of 0.0000642 sec. For a stable 

solution, the linear acceleration method requires a time step length which is less than 

0.551 0.0000642 0.000035 sec× =  . This choice of tΔ  requires approximately 28200 time 

steps to compute the response of the system for 1 second of the excitation. Due to the 

excessive computational demand required by the conditionally stable linear acceleration 

method, it is clear that the numerical procedure used should be an unconditionally stable 

one. 

The average acceleration method is an unconditionally stable method suitable for the 

nonlinear analysis of MDOF systems. However, it has two drawbacks. The first is that a 

sequence of constant acceleration steps is a less accurate approximation of the true 

behaviour than a sequence of linear acceleration steps. Numerical experiments have 

demonstrated the superiority of the linear acceleration assumption as compared to the 

average acceleration assumption (Clough and Penzien, 1993). The second, and perhaps 

more important, drawback is that, similar to the linear acceleration, the average 

acceleration method does not provide any numerical damping in the solution. This is a 

disadvantage because it is desirable to filter out the response contributions of modes 

higher than the first J significant modes ( J N< ) because these higher modes, which 

have been calculated from an idealization of structure, are usually not accurate relative to 

the actual properties of the structure (Chopra, 2007). 

For the reasons explained above, a third procedure called Wilson’s Theta method was 

implemented into the analytical procedure developed. This method is an unconditionally 

stable version of the linear acceleration procedure and provides numerical damping to the 

solution. 
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7.6.5 Wilson’s Theta Method 

Wilson’s Theta method, after E. L. Wilson (1976), is a modification of the conditionally 

stable linear acceleration method to make it unconditionally stable. In this method, the 

acceleration is assumed to vary linearly over an extended time step length, t tδ θ= × Δ  as 

shown by Figure 7.10. The accuracy and stability of the method depends on the assumed 

value of the parameter θ , which should be always greater than 1. However, for an 

unconditionally stable solution, 1.37θ ≥  is required. A value of 1.42θ =  is reported to 

give the optimal accuracy (Chopra, 2007). 

The procedure can be formulated based on the incremental equation of motion, as 

described for the Newmark’s Method in Section 7.6.3, by replacing tΔ with tδ and pΔ  

with pδ , leading to the resulting equilibrium equation as follows: 

ˆ ˆk u pδ δ× =             (7.40) 

where 

2

1k̂ k c m
t t

γ
β δ β δ

= + × + ×
× ×

         (7.41) 

Figure 7.10 Wilson’s Theta Method: Variation of Acceleration with Time 



 309

0 0
1 1ˆ 1

2 2
p p m c u m t c u

t
γ γδ δ δ

β δ β β β
⎡ ⎤⎛ ⎞ ⎛ ⎞

= + × + × × + × + × − × ×⎢ ⎥⎜ ⎟ ⎜ ⎟× × ×⎝ ⎠ ⎝ ⎠⎣ ⎦
& &&    (7.42) 

p pδ θ= × Δ   and   t tδ θ= × Δ          (7.43) 

Using the system properties m, k and c, algorithm parameters 1
2

γ =  and 1
6

β = , velocity 

0u& , and acceleration 0u&& , at the beginning of the time interval, the incremental 

displacement uδ   is found as follows: 

ˆ
ˆ
pu

k
δδ =             (7.44) 

The incremental acceleration uδ &&   can now be calculated as follows: 

0 02

1 1 1
2

u u u u
t t

δ
β δ β δ β

= × Δ − × − ×
× × ×

&& & &&         (7.45) 

It should be noted that the calculated incremental values correspond to the extended time 

step; therefore, the final values corresponding to the actual time step must be determined 

as follows: 

1u uδ
θ

Δ = ×&& &&             (7.46) 

Once the incremental acceleration at the end of the actual time step is found, the resulting 

incremental velocity and displacement can be calculated through the same equations used 

for Newmark’s Method (Eq. 7.31 and Eq. 7.32). 

7.6.6 Solution Based on Total Loads and Secant Stiffness 

As explained previously, the nonlinear frame analysis procedure employed in the 

developed analytical tool involves an iterative total-load secant-stiffness formulation. For 
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this reason, a total-load, secant stiffness based formulation for the numerical solution of 

the dynamic equation of motion, after Saatci (2007), is required for consistency. It was 

also desired to implement the three solution techniques defined above. For this reason, 

based on a total-load secant-stiffness approach, a three parameter formulation was 

derived in order to accommodate all three methods; namely, Newmark’s average 

acceleration method, Newmark’s linear acceleration method, and Wilson’s Theta method. 

The summary of the derivations is presented below. 

The dynamic equation of motion can be expressed in term of total loads as follows: 

   0 0 1 1 1statm u u c u u k u p p                     (7.47) 

where the subscript 0 represents the values at the beginning of the time step, and the 

subscript 1 values at the end of the time step. 

Substituting in Newmark’s first equation (Eq. 7.29), and considering an extended time 

step t t   , Eq. 7.47 becomes 

   0 0 0 1 1 1 *statm u u c u t u t u k u p p                          (7.48) 

The calculation of the equivalent load 1 *p  at the end of time step requires some 

additional manipulations as follows: 

p p               (7.43) 

where 1 * op p p    and 1 0p p p            (7.49) 

Therefore, 

1 1 0* )op p p p               (7.50) 
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Rearrangement of Eq. 7.50 results in  

1 1 0* )p p p= × θ − × (1− θ           (7.51) 

When 1θ = , the procedure reduces to the standard Newmark’s method with 1 1*p p= . 

Substitution of Eq. 7.33 and Eq. 7.51 into Eq. 7.48 and rearrangement in the matrix 

format yields,             (7.52) 

[ ] [ ] [ ] { }
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γ θ
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⎡ ⎤+ × × × Δ
                          = + + × + +  ⎢ ⎥× Δ × Δ⎣ ⎦
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& &&

& && &&

 

Further rearrangement of Eq. 7.52 leads to the fundamental equation of the dynamic 

analysis procedure implemented into the developed analysis procedure as follows:  

{ } { } { }1stat dyn stat dynk k u p p+ +⎡ ⎤⎡ ⎤ ⎡ ⎤+ × = +⎣ ⎦ ⎣ ⎦⎣ ⎦
             (7.53) 

where  

[ ] [ ]
2

( )
( )dyn

m c t
k

t
γ θ

β θ
+ + × × × Δ

⎡ ⎤ =⎣ ⎦ × × Δ
          (7.54) 

{ } { } [ ] [ ] { } { } { }

[ ] { } { }{ } [ ] { }

0 0 0
1 2

0 0 0

( )
*

( ) ( ) 2

( )

dyn

u u um c t
p p

t t

c u t u m u

γ θ
β θ θ

θ

+ ⎡ ⎤+ × × × Δ
= + × + +  ⎢ ⎥× Δ × Δ⎣ ⎦

                         − × + × Δ × − ×

& &&

& && &&

    (7.55) 
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Eq. 7.53 makes it possible to perform nonlinear dynamic analyses, based on a total-load 

secant-stiffness approach, without radically changing the computation algorithm 

currently present in VecTor5 as developed for general loading conditions.  

Through the use of Eq. 7.53, it is possible to carry out a nonlinear dynamic analysis based 

on one of the three numerical analysis procedures: 

(1) Newmark’s average acceleration method: substitute  1
2

γ =  and 1
4

β =  and 1θ =  

(2) Newmark’s linear acceleration method: substitute  1
2

γ =  and 1
6

β =  and 1θ =  

(3) Wilson’s Theta method: substitute  1
2

γ =  and 1
6

β =  and 1.42θ =  

As mentioned previously, the value of θ  governs the stability and accuracy of Wilson’s 

Theta method. A value 1θ ≥  is sufficient for this procedure to work. However, for an 

unconditionally stable solution 1.37θ ≥  is required. A default value of 1.42θ = is used 

in VecTor5 calculations as it is reported to give the optimal accuracy (Chopra, 2007). 

7.7 Dynamic Analysis Procedure Implemented  

A flowchart indicating the dynamic analysis steps is presented in Figure 7.11, where the 

newly added steps are shown with bold type and the modified steps with dotted lines.  
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Figure 7.11 Flow Chart for the Global Frame Analysis of VecTor5 
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7.7.1 Read Auxiliary Data File 

In addition to the parameters required for a static analysis, several dynamic analysis 

parameters are required in this file. These are: the selection of one of the three time-
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    Figure 7.11 Flow Chart for the Global Frame Analysis of VecTor5 (continued) 
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integration methods, consideration of masses due to self-weight, input of up to two 

vibration modes and the corresponding damping ratios, and input of ground acceleration 

factors. 

7.7.2 Read Load Data Files 

Dynamic loads such as ground motion-time history, impulse/impact/blast load-time 

history as a tri-linear curve, initial velocities, and constant accelerations are input in this 

file. Additional dynamic masses can also be defined in this file. 

7.7.3 Initialization of Dynamic Variables 

Similar to the static degrees-of-freedom, three dynamic degrees-of-freedom are assumed 

for each node: two translational and one rotational as shown in Figure 7.12. Note that the 

rotational degrees-of-freedom will be active in the case of an analysis with additional 

viscous damping defined. As the rotational mass degrees-of-freedom are neglected 

(Figure 7.4), the rotational accelerations and velocities will be zero in the case of an 

analysis with no additional viscous damping defined. 

 

 

In its most general form, each node has a total of 9 displacement, velocity and 

acceleration values associated with it. At the beginning of each time stage, the initial 

values of these variables should be updated using the final values at the end of previous 

time stage as defined below. 

Figure 7.12 Dynamic Degrees-of-Freedom of a Typical Member 
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        (7.56) 

where subscript 0 refers to the value at the beginning of the time stage while subscript 1 

is the value at the end of the time stage. The superscript pre signifies that the values are 

taken from the previous time stage.  

In the first time stage, all values are taken as zero on the condition that no initial 

velocities or constant accelerations are defined in the load data files and that the analysis 

is not resumed from a previous analysis through the use of a seed file. In the presence of 

an initial velocity load, input initial velocities are assigned to the appropriate nodes in the 

relevant directions (x- or y-direction) in the first time stage only. In the presence of a 

constant acceleration load, at all time stages, input accelerations are assigned to the 

appropriate nodes in the relevant directions (x- or y-direction). In the case of resumption 

of a previous analysis by means of a seed file, the values at the end of previous analysis 

are taken as the initial values in the first time stage only. 

7.7.4 Construction of Mass Matrix 

As explained in Section 7.5.1, the masses due to self-weight are calculated and combined 

with any additional masses defined in the load data file to create the mass matrix.  

7.7.5 Construction of Rayleigh Damping Matrix 

In the case of an analysis requiring the use of Rayleigh damping, using the updated 

structural stiffness matrix and the mass matrix, the Rayleigh damping matrix is 

constructed as explained in Section 7.5.2.  

In this calculation, the proportionality constants a0 and a1 are calculated at the beginning 

of the analysis (t = 0) and used throughout the analysis as constant values. In reality, 

however, those values may change due to the nonlinear behaviour of the structure such as 

the changes in stiffness and mode shapes.  
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In the formulation of VecTor5, nonlinear structural behaviour is taken into account by 

means of the unbalanced forces approach, and the initial stiffness matrix of the structure 

is used throughout the analysis. The only nonlinearity included in the stiffness matrix is 

the geometric nonlinearity due to P–Δ effects. In addition, the determination of a0 and a1 

are performed through the static condensation of the stiffness matrix, which increases the 

computation time significantly if performed in each iteration or even in each load stage. 

For these reasons, the initial a0 and a1 values are used together with the updated stiffness 

matrix when evaluating the Rayleigh damping matrix as defined by Eq. 7.10.  

This assumption is believed not to have a significant impact on the responses computed 

by VecTor5. As the energy dissipation primarily occurs through the nonlinear concrete 

and reinforcement hysteresis, usually no additional damping is required when performing 

a nonlinear dynamic analysis with VecTor5. In cases where additional viscous damping 

is desired, a ratio in the range of maximum 1% to 3% should suffice in most situations. 

As a result, consideration of viscous damping is not an essential part of the analyses 

performed with VecTor5; it is intended to be optional.     

7.7.6 Construction of Additional Dynamic Stiffness Matrix 

As mentioned before, the most important distinguishing dynamic characteristic of a 

structural-dynamics problem is the influence of the inertial forces. These forces are 

generated by the masses due to accelerations caused by fast and time-varying motions. As 

a result, inertial forces provide a significant portion of the structural resistance to the 

dynamic loads (Clough and Penzien, 1993). Therefore this additional resistance should be 

included in the structural stiffness matrix. 

As derived in Section 7.6.6, at the beginning of each time stage, the additional dynamic 

stiffness matrix, dynk +⎡ ⎤⎣ ⎦ , can be conveniently determined by Eq. 7.54.   

7.7.7 Construction of Dynamic Load Vectors 

Dynamic load vectors are created at the beginning of each time stage as equivalent static 

nodal forces based on the externally applied dynamic loads which can be:  time-varying 
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base accelerations, time-varying forces as defined by a tri-linear curve, initial velocities 

assigned to lumped masses, and constant accelerations assigned to lumped masses. The 

details of this calculation are presented in Section 7.5.4. 

7.7.8 Construction of Additional Dynamic Load Vectors 

Dynamic loads are not only created by the externally applied dynamic loads but also by 

the motion of the structure itself (i.e., structural displacements, velocities and 

accelerations) during a dynamic vibration. Therefore, all the external and internal 

dynamic forces should be assembled in a load vector, called herein the additional 

dynamic load vector { }dynp +  as defined by Eq. 7.55. 

On the right-hand side of Eq. 7.55, the second term represents the load effects from the 

structural vibration itself. It includes nodal displacements, velocities and accelerations 

which are multiplied by a combination of the mass matrix and damping matrix to create 

forces. The third term includes the damping matrix with a negative sign to represent the 

resisting effects of the damping mechanism. The fourth term, with a negative sign, clearly 

denotes the creation of the inertial forces which resist the applied dynamic loads. 

7.7.9 Calculation of Final Displacements (at end of extended time step) 

In Section 7.6.6, the fundamental equation of the dynamic analysis procedure 

implemented was defined by Eq. 7.52. The final nodal displacements can thus be 

calculated as follows: 

{ } { } { }{ }1

1 stat dyn stat dynu k k p p
−+ +⎡ ⎤⎡ ⎤ ⎡ ⎤= + × +⎣ ⎦ ⎣ ⎦⎣ ⎦

          (7.57) 

It should be noted that, if Wilson’s Theta method is used, the calculated displacements 

correspond to the artificially extended time step and should be corrected as explained 

below. 
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7.7.10 Calculation of Final Accelerations, Velocities and Actual Displacements 

The final acceleration values, three values for each node in the x-, y- and z-directions, as 

defined in Section 7.7.3, at the end of the extended time step length, are calculated by Eq. 

7.58 which is based on Eq. 7.45.  

1 0 0 0
2( ) ( ) 2

u u u u
u

t t


    


  
    

          (7.58) 

The final accelerations, three values for each node in the x-, y- and z- directions, for the 

actual time step are then found based on Eq. 7.46 as follows: 

1 0

u
u u




 
              (7.59) 

The final velocities, three values for each node in the x-, y- and z-directions, for the 

actual time step are then found based on Eq. 7.31 as follows: 

 1 0 1 0 0u t u t u u u                     (7.60) 

Finally, the actual displacements, three values for each node in the x-, y- and z-directions, 

for the actual time step are then found based on Eq. 7.32 as follows: 

2
2

1 0 0 1 0 0)
2

t
u t u u t u u u
                    (7.61) 

7.7.11 Nonlinear Sectional Analyses 

For the consideration of strain rate effects, a new subroutine is added into the sectional 

analysis subroutine. Based on this new addition, strain rates for each concrete layer, each 

longitudinal reinforcement layer and each smeared transverse reinforcement layer are 

first calculated. Dynamic increase factors are then determined and concrete and 
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reinforcement material properties are modified accordingly. The details of this 

calculation are presented in Section 7.8. 

7.7.12 Modal Analysis 

A modal analysis is performed at the first time stage (t = 0 sec) to determine the natural 

vibration characteristics of the structure to be analyzed under dynamic excitations. Using 

the initial linear-elastic stiffness matrix, the purpose of this analysis is to calculate: 

natural modal periods and frequencies, mode shapes, generalized masses if alternative 

damping is used, and Rayleigh damping proportionality constants, a0 and a1 if such a 

damping is used. A flowchart of the implemented algorithm is presented in Figure 7.13. 

7.7.12.1 Calculation of Vibration Frequencies, Periods and Mode Shapes 

The natural frequencies and mode shapes must satisfy the following algebraic equation: 

 [ ] { } [ ] { }2
n n nk w m× φ = × × φ           (7.62) 

Rearrangement of Eq. 7.62 leads to the so-called frequency equation as follows: 
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Eigen Analysis 
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Calculate 
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Analysis Results 

Figure 7.13 Flow Chart for the Modal Analysis of VecTor5 
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[ ] [ ]2 0nk w m− × =            (7.63) 

Expanding the determinant results in an algebraic equation of the Nth degree, the N roots 

of which  2 2 2
1 2( , ,..., )Nw w w  represent the frequencies that are possible in the system. 

Once these roots are found, the corresponding mode shapes { }nφ  can be obtained as 

follows: 

[ ] [ ] { }2 0n nk w m⎡ ⎤− × × φ =⎣ ⎦           (7.64) 

Eq. 7.63 and Eq. 7.64 require positive definite mass [ ]m  and stiffness [ ]k  matrices; that 

is, non-zero diagonal terms are required in both matrices. For this reason, based on the 

mass degrees-of-freedom available, the stiffness matrix must be reduced to the same 

degrees-of-freedom. Such an operation requires a procedure called static condensation. 

The VecTor5 formulation of this procedure is based on the one formulated by Clough and 

Penzien (1993).  

The standard eigenvalue problem, [ ] { } [ ] { }A y yλ× = × , arises frequently in mathematics; 

therefore, many solution algorithms are available in computer software libraries. 

However, to be able to use such an algorithm, Eq. 7.62 should be converted to the 

standard eigenvalue problem form. A method described by Chopra (2007) was used for 

this purpose. Based on this method, [A] is calculated as follows 

[ ] [ ] [ ] [ ]1/2 1/2A m k m− −= × ×           (7.65) 

and the eigenvalues and eigenvectors of [ ] { } [ ] { }A y yλ× = ×  are then found using 

standard mathematical procedures. The resulting frequencies and mode shapes can then 

be found as 

nnw λ=    and   { } [ ] { }1/2
n nm yφ −= ×         (7.66) 
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For the calculation of the standard eigenvalue problem, a FORTAN subroutine called 

EISPACK (Garbow, 1974) is used. Developed at the Argonne National Laboratory, this 

subroutine is freely available on the internet. 

7.7.12.2 Calculation of Alternative Damping Matrix 

The construction of the alternative damping matrix is carried out based on Eq. 7.17, 

where the initial vibrational frequencies, mode shapes and generalized masses are utilized 

as calculated from initial transformed section properties. This matrix is used throughout 

the analysis. 

7.7.12.3 Calculation of Rayleigh Damping Constants 

The proportionality constants a0 and a1 are determined through Eq. 7.13 and Eq. 7.14, 

and the damping ratios for the modes other than the two specified are calculated by Eq. 

7.11, as explained in Section 7.5.2. 

7.8 Consideration of Strain Rates 

Transient dynamic loads typically result in high levels of strain rates (i.e., change in the 

strain per unit time) in the materials they applied to. Typical strain rates for various types 

of loading are given in Figure 7.14. 

 

 

 

 

 

Figure 7.14   Typical Strain Rates for Various Types of Loading (CEB-FIP, 1988) 
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Subjected to high strain rates, concrete and steel materials may exhibit significant 

strength increases. This increase is postulated to be related to the inertial effects (Ho, 

2004). With concrete, for example, under high strain rates, expansion or contraction 

creates inertial resistance in the surrounding concrete, which may create effects similar to 

confinement. Many studies are available in the literature relating to strain rate-strength 

increase variations. Typically, the relationship between the dynamic increase factor (DIF) 

and the strain rates is presented graphically, where the DIF is the ratio of the dynamic to 

the static property of the material. The DIFs for concrete may relate to the peak stress cf ′ , 

the peak strain 0ε , and the modulus of elasticity cE . For the reinforcement, the DIFs are 

generally available for the yield stress yf , and the ultimate stress uf . 

For the consideration of strain rates and the DIFs mentioned, a new subroutine was added 

into the sectional analysis procedure of VecTor5. In the newly implemented subroutine, 

the strain rates are calculated in each sectional iteration of each time stage based on the 

equation as follow: 

pre

t
ε εε −

=
Δ

&             (7.67) 

where ε&  is the strain rate, ε is the total strain in the current time stage, preε  is the total 

strain at the end of previous time stage, and tΔ  is the time step length. 

Two strain rates are calculated for concrete: one for the principal compressive strain and 

one for the principal tensile strain. In addition, strain rates are calculated for the 

reinforcement using the total strains: one for each of the longitudinal reinforcement 

components and one for the smeared transverse reinforcement in each concrete layer. 

These calculations require storing and updating the related total strains at all iterations 

performed. Once the strain rates are determined, the corresponding DIF is calculated 

according to the formulations presented below. 
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7.8.1 Concrete (CEB-FIB Model, 1990) 

For concrete, the calculation of the DIF values is based on the formulation suggested by 

the CEB-FIP Model Code (1990) as follows: 

Under Compression 

1.026
1

6 30
30 10fcDIF if s

αε ε
×

−
−

⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&         (7.68) 

1/3 130fcDIF if sγ ε ε −= ×                             300 ≥ >  & &        (7.69) 

where 1
5 0.9

=
′+ × cf

α   and (6.156 )10γ ×α−0.492=        (7.70) 

0.020
1

6 300
30 10cDIF if sε

ε ε −
−

⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&         (7.71) 

0.026
1

6 300
30 10cEDIF if sε ε −

−
⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&         (7.72) 

At each iteration of the sectional analyses, the concrete compressive strength cf ′  is 

enhanced by fcDIF , the peak strain 0ε  by cDIFε , and the modulus of elasticity Ec by 

EcDIF . For strain rates greater than 300 s-1, the DIFs corresponding 1300 sε −=  & are 

assumed. 

Under Tension 

1.016
1

6 30
3 10

×
−

′ −
⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&f tDIF if s

δε ε         (7.73) 

1/3 130 −
′ = ×                           300 ≥ >  & &f tDIF if sη ε ε        (7.74) 
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where  1
10 0.6 cf

δ =
′+ ×
  and (6.933 )10η ×δ−0.492=        (7.75) 

0.020
1

6 300
3 10cDIF if sε

ε ε −
−

⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&         (7.76) 

0.016
1

6 300
3 10ctEDIF if sε ε −

−
⎛ ⎞=             ≤  ⎜ ⎟×⎝ ⎠

&
&         (7.77) 

In the sectional analyses, the concrete tensile strength ′tf  is enhanced by ′f tDIF , and the 

modulus of elasticity in tension Ect  by EctDIF . For strain rates greater than 300 s-1, the 

DIFs corresponding 1300 sε −=  & are assumed. The resulting relations are presented in 

Figure 7.15. 
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7.8.2 Reinforcement 

For both the longitudinal and transverse reinforcement, two different formulations are 

implemented. These are the Malvar and Crawford model (1998), and the CEB-FIB model 

(1988).  
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Figure 7.15 Strain Rate - DIF Relationships: (a) Concrete in Compression: CEB-FIB  
         Model (1990); (b) Concrete in Tension: CEB-FIB Model (1990) 
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7.8.2.1 Malvar and Crawford (1998) 

This model is selected as default as discussed in Section 8.8.5. According to this model, 

41 10

fy

fyDIF if s
  


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At each iteration of the sectional analyses, the yield stress yf  is enhanced by fyDIF , and 

the ultimate stress uf  by fuDIF . The calculations are performed for both the longitudinal 

and transverse reinforcement. For strain rates greater than 225 s-1, the DIFs corresponding 

to 1225 s   are assumed. The resulting relations are presented in Figure 7.16(a). 

7.8.2.2 CEB – FIP (1988) 

The second option available is based on CEB-FIP Model Code (1990). According to this 

model, 
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For strain rates greater than 10 s-1, the DIFs corresponding to 110 sε −=  & are assumed. The 

resulting relations are presented in Figure 7.16(b). 
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7.9 Selection of an Appropriate Time Step Length 

Selection of the time step length has a significant impact on the accuracy of the analysis 

results. This is caused primarily by the fact that: the system properties are assumed to be 

constant throughout the length of the time step, an assumed variation of the accelerations 

is considered during the time step length, and an accumulation of errors may occur at the 

end of each time step. Therefore, a reasonably short time step length should be selected 

for the analysis. It is recommended by Chopra (2007) that the time step length should be 

approximately 10jT where Tj is the period of the Jth mode of an N degree-of-freedom 

system where the first J modes are expected to contribute significantly to the response. 

This suggestion can be taken as a starting point in the case of a nonlinear analysis. It is 

recommended to reduce the time step lengths until the response becomes acceptably 

consistent.  

To illustrate this concept, consider a simple cantilever structure which consists of two 

columns and two assigned masses creating a 4 DOF system as shown in Figure 7.17. The 
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Figure 7.16 Strain Rate - DIF Relationships for Reinforcement: (a) Malvar and Crawford  
        Model (1998); (b) CEB-FIB Model (1988) 
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loading consists of an impulse force-time history applied at the top mass (Node 3) in the 

global x-direction as shown in Figure 7.18.  

 

 

        

 

 

 

 

 

The analysis was first performed assuming linear-elastic behaviour. According to the 

eigen analysis results, the natural vibration periods are presented in Table 7.2. 

 

 

 

Figure 7.17 Structural Details of a Simple Cantilever Structure  

Figure 7.18 Impulsive Loading Considered for the Simple Cantilever Structure 

Table 7.2 Modal Periods for Linear-Elastic Analysis for the Simple Cantilever Structure 

fy fu Es Esh εsh

(MPa) (MPa) (MPa) (MPa) (x 10-3)
400 550 200000 3000 4

Reinforcement

f'c ε0 Ec

(MPa) (x 10-3) (MPa)
32 2 32000

Concrete

1 0.3590 3 0.0147
2 0.0539 4 0.0056

Mode Period (s) Mode Period (s)
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As all four modes should be included in the response, for optimal accuracy, an analysis 

with a time step length Δt of 0.0056 /10 0.0005 s=   may be a reasonable starting point. 

For demonstrative purposes, the linear-elastic analysis was carried out considering 

various time steps using the average acceleration procedure. The resulting displacement-

time responses are given in Figure 7.19. 

-14

-10

-6

-2

2

6

10

14

0 0.5 1 1.5 2

Time (s)

M
ax

 L
at

er
al

 D
is

p.
 (m

m
)

DT=0.01 s
DT=0.005 s
DT=0.0005 s
DT=0.00005 s
DT=0.000025 s

 

As seen in Figure 7.19, the use of time step lengths greater than 0.0005 s did not produce 

a reasonable approximation to the exact response (i.e., the response which does not 

change with the use of smaller time step lengths). A time step length of 0.01 s 

overestimated the exact peak displacement by 87%, while a time step length of 0.005 

resulted in an overestimation of 43%. As the time step was reduced, the displacement 

response converged to the exact response (Figure 7.20(a)). In this study, the exact 

responses were approached from above with diminishing displacement responses by the 

use of smaller time steps.  

It seems reasonable to assume a time step length of 10NT for the first analysis and then 

repeat the analysis with a reduced the time step length to decide whether the selected time 

step is appropriate. For this particular example, the response obtained using a time step of 

Figure 7.19 Displacement Responses for the Simple Cantilever Structure (Linear-Elastic  
         Analysis) 
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0.00005 s improved the displacement response by only 2 percent as compared to the 

response obtained using a time step of 4 10NT = =0.0005 s, suggesting that the selected 

time step is appropriate for the problem at hand. As for the reaction (base shear force) 

response, a similar pattern was observed but the gains attained by using smaller time step 

lengths were less than those of the displacement response. 
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In order to investigate the effects of time step length in the case of a nonlinear analysis, 

the same structure under the same impulsive loading was analyzed considering nonlinear 

behaviour.  Based on the eigen analysis results, the modal periods of the structure are 

listed in Table 7.3. The periods from the nonlinear analysis were found to be slightly less 

than those from the linear-elastic analysis. This is due to the use of transformed section 

properties which includes the stiffness of the reinforcement in the nonlinear analysis as 

opposed to the gross section properties used in the linear-elastic analysis. The resulting 

displacement-time response is given in Figure 7.21. 

 

Figure 7.20 Analysis Results for Different Time Step Lengths for the Simple Cantilever  
        Structure (Linear-elastic Analysis): (a) Max. Displacement; (b) Max Base Shear 

(a) 

Table 7.3 Modal Periods for Nonlinear Analysis for the Simple Cantilever Structure 
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A similar relationship between the selected time step length and the displacement 

response accuracy was obtained (Figure 7.22). In addition, the elongation in the period 

was another variable in the nonlinear analysis results. The use of time steps larger than 

10NT  produced unacceptable responses in terms of not only the peak displacement but 

also the period of the oscillation. 
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 Figure 7.22 Analysis Results for Different Time Step Lengths for the Simple Cantilever  
        Structure (Nonlinear Analysis with No Yielding): (a) Max. Displacement;            
        (b) Max Base Shear

(b) 

Figure 7.21 Displacement Responses for the Simple Cantilever Structure (Nonlinear
         Analysis with No Yielding) 
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In the nonlinear analysis above, the reinforcement stresses were well below the yield 

stresses (at a maximum of approximately 25 MPa). Thus, in a subsequent analysis, it was 

desired to obtain a response including plastic deformations. For this purpose, a scale 

factor of 10 was used for the impulse load, and the nonlinear analysis was repeated. 

Based on the analysis results, the initial modal periods were the same as the previous 

analysis (Table 7.3). The analysis results indicated that the longitudinal reinforcement 

attained a maximum strain of 4.2 x 10-3 at the peak displacement. The resulting 

displacement response is given in Figure 7.23. 
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The selection of an appropriate time step length seems more important in nonlinear 

analyses involving plastic deformations. Figure 7.23 clearly demonstrates how an 

excessively coarse time step can lead to grossly inaccurate results. The analysis with a 

time step length of 0.01 s resulted in an overestimation of the peak deformation by 300% 

compared to the results from a time step of 0.0005 s. As recommended previously, the 

use of a time step length /10Nt TΔ =  provided a reasonable approximation to the peak 

displacement but underestimated the period of the oscillation slightly. In terms of the 

maximum base shear force, less gain was realized with the use of a smaller time step 

length compared to the displacement response (Figure 7.24).  

Figure 7.23 Displacement Responses for the Simple Cantilever Structure (Nonlinear  
        Analysis with Significant Yielding) 



 333

0

50

100

150

200

250

300

350

0.000010.00010.0010.01

Time Step Length (s)M
ax

. D
is

pl
ac

em
en

t (
m

m
)

 

In conclusion, it is recommended performing an initial analysis with a time step length in 

the range of the smallest period of the structure, and then repeating the analysis with a 

smaller time step length to verify that the computed response does not change 

significantly. 

7.10 Use of Additional Viscous Damping in Nonlinear Analysis for Stability 

Reasons 

When performing a nonlinear dynamic analysis, one of the most important considerations 

is the stability of the analysis. The numerical analysis technique is expected to perform 

without a significant accumulation of errors and without loss of convergence in the 

course of the analysis. 

In the case of the linear acceleration method, a time step less than0.551 NT× , where TN   is 

the smallest modal period of the structure, is required. This stability limit necessitates the 

use of extremely small time step lengths as the period of the highest mode usually 

corresponds to an excessively small number. However, dynamic analysis experience with 

VecTor5 demonstrated that a small time step length is required regardless to obtain a 

reasonable simulation of the response. Therefore, the stability limit of the linear 

acceleration method did not cause a major difficulty in this study.  
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Figure 7.24 Analysis Results for Different Time Step Lengths for the Simple Cantilever  
                    Structure (Nonlinear Analysis with Significant Yielding): (a) Maximum     
             Displacement; (b) Maximum Base Shear 
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Rather than the use of small time step lengths, the need to introduce damping when using 

either the average or linear acceleration method was the main concern. It was observed 

that nonlinear analyses with these two procedures may lose stability if no viscous 

damping is introduced to the system. Consider the impact analysis performed for the 

Beam SS2a-1, analyzed in Chapter 8. The nonlinear analysis was performed using the 

average acceleration method and no viscous damping was defined. During the analysis, 

convergence was noticed to be inconsistent. Some time stages reached the maximum 

iteration limit with a poor convergence factor. The displacement and reaction responses 

obtained are given in Figure 7.25. Instability of the support reaction is clear with many 

fluctuating values. Some instability is also visible in the displacement response. There is 

also a noticeable amplification at the beginning of the second cycle in the displacement 

response. Such results obtained at the end of an analysis usually invalidate the entire 

analysis, raising grave concerns about the accuracy of the analytical procedure used.    
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The same analysis was then repeated using Rayleigh damping with 0% and 1% damping 

assigned to the first and second modes, respectively. During this analysis, acceptable 

convergence was observed at all time stages. The results obtained are presented in Figure 

7.26. 
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Figure 7.25 Linear Acceleration Method with No Damping:  (a) Displacement Response;  
        (b) Reaction Response (Beam SS2a-1)
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As seen from the graphs above, the analysis with damping provided responses that were 

acceptable in terms of numerical stability. However, the selected damping ratio has a 

great influence on the computed response. Using more damping tends to reduce the 

displacement amplitudes and cause the vibration to diminish sooner. Therefore, an 

appropriate damping ratio should be selected, which is not a straightforward decision.  

As mentioned previously, the nonlinear analysis procedure developed considers nonlinear 

material hysteresis through which most of the energy dissipation occurs; therefore, the 

additional viscous damping is not usually required.  Accordingly, one approach that may 

be used is to determine the minimum damping ratios that will stabilize the analysis. 

According to this approach, with the use of, for example, Rayleigh damping, two 

vibration modes are to be determined to which the damping is assigned. A series of 

analyses are then performed to find the minimum amount of damping which would 

stabilize the response. Such an approach was successfully used by Saatci (2007) in the 

nonlinear impact analyses of reinforced concrete beams; these beams are also analyzed 

herein in Chapter 8.  

There are two difficulties in such an approach. The first one involves the selection of the 

two vibrational modes to which the damping will be applied. Selection of the first two 
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Figure 7.26 Linear Acceleration Method with Damping:  (a) Displacement Response;  

        (b) Reaction Response (Beam SS2a-1)
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modes may cause excessive damping in the higher modes participating in the dynamic 

response of the structure. For example, for the beam considered above, SS2a-1, if the 

damping ratios of 0% and 1% are assigned to the first and second modes, respectively, 

the damping ratios for the remaining modes assume the values as shown in Table 7.4. 

Note the excessive damping ratios of the higher modes.  

 

1 0 8 10.55 15 23.3
2 1 9 13.15 16 24.3
3 1.93 10 16.38 17 25.89
4 3.73 11 18.54 18 30.43
5 5.87 12 19.13 19 38.08
6 7.2 13 21.44 20 39.88
7 9.63 14 22 21 175.03

Mode Damping 
Ratio (%) Mode Damping 

Ratio (%) Mode Damping 
Ratio (%)

 

The second difficulty is that the multiple analyses required in determining the minimum 

damping ratios may take significant engineering time. This may eventually lead the 

analyst to use high damping ratios in the first analysis to avoid disappointment at the end 

of the analysis.  

To specifically address these difficulties, a third procedure, Wilson’s Theta method, was 

implemented into the dynamic analysis procedure of VecTor5. As mentioned previously, 

the biggest advantage of this procedure is the inherent numerical damping it provides 

which stabilizes the analyses. In the studies performed for this thesis, Wilson’s Theta 

method was intensively used to analyze, linearly and nonlinearly, several structures under 

various dynamic loading conditions without the use of any additional viscous damping. 

No stability loss was observed regardless of the time step used. For example, for the 

Beam SS1a-1, the responses obtained for an undamped nonlinear analysis are given in 

Figure 7.27. 

Table 7.4 Modal Damping Ratios Calculated for Rayleigh Damping (Beams SS2a-1) 
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7.11 Discussion of the Numerical Damping Present in Wilson’s Theta Method 

Because the additional viscous damping is not desired in the nonlinear solution, the 

concept of numerical damping needs further examination. In other words, it is not desired 

to dampen out the actual structural response through the numerical damping present in 

the Wilson’s Theta method; rather, it is desired that the solution be stabilized with no 

noticeable numerical damping in the response. To investigate this issue, it is more 

appropriate to consider a linear-elastic analysis. In a nonlinear analysis, the response 

diminishes due to material hysteresis; therefore, it is difficult to determine the 

contribution of the numerical damping to this decay. For this purpose, the analysis of the 

structure in Figure 7.17 was repeated using Wilson’s Theta method with no damping 

defined. The displacement responses obtained for several different time step lengths are 

given in Figure 7.28. It is clear that the numerical damping present in the method did not 

cause any decay in the displacement response. 

 

 

 

(a) (b) 

Figure 7.27 Wilson’s Theta Method with No Damping:  (a) Displacement Response;  
        (b) Reaction Response (Beam SS2a-1)
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The reaction response is presented in Figure 7.29. With time steps of 0.01 s and 0.005 s, 

some numerical damping effects are visible. The response, which initially includes higher 

mode contributions, dampens out somewhat and then retains the same amplitude of 

deformations. This is attributed to the process of filtering out the higher mode 

contributions from the reaction response and is deemed to be an advantage of this 

procedure. These higher modes, which have been calculated from an idealization of the 

structure, are usually not accurate relative to the actual properties of the structure 

(Chopra, 2007). When the time step is reduced, this filtering trend disappears as shown in 

Figure 7.30; the responses include several higher mode contributions. As discussed 

previously, a time step length less than or equal to 0.0005 s was needed for this analysis 

to be reasonably accurate. Therefore, no visible numerical damping will be present in the 

calculated reaction response of this structure. Similarly, in the analyses performed in this 

study, it was observed that no numerical filtering out of the reaction response occurred 

due to the small time step lengths needed. 

Wilson’s Theta method is reported by Chopra (2007) to provide numerical damping for 

modes with a shorter period than the time step length. Based on this statement, as the 

second modal period of the structure was 0.0539 s, the use of time steps of 0.05 s and 

0.01 s provided numerical damping for the last two modes (i.e., third and fourth modes) 

(Figure 7.29). In accordance with the same statement, time steps of 0.0005 s and smaller 

Figure 7.28 Displacement Responses for Different Time Step Lengths for the Simple  
        Cantilever Structure 
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did not provide any numerical damping as the smallest period of the structure was 

0.00056 s (Figure 7.30).  

In conclusion, a time step length in the range of the smallest period of the structure (or 

smaller) is usually required for an acceptable accuracy in the analyses performed with the 

developed analysis tool. Therefore, numerical filtering of the reaction response in 

Wilson’s Theta method is typically not an issue of practical concern, whether or not it is a 

desirable feature of the Wilson’s Theta method. 
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Figure 7.29 Reaction Responses for Time Step Lengths of 0.01 s and 0.05 s for the Simple  
        Cantilever Structure

Figure 7.30 Reaction Responses for Time Step Lengths of 0.0005 s, 0.00005 s and 0.000025 s  
        for the Simple Cantilever Structure 



 340

7.12 Linear-Elastic Verification of the Analytical Procedure Developed 

In order to validate the implemented dynamic analysis algorithms, a simple structure was 

analyzed linear-elastically. The structure under consideration is the simple cantilever 

structure with four dynamic degrees-of-freedom as shown in Figure 7.17. Two different 

types of dynamic loads were considered for this structure: a ground acceleration-time 

history loading, and an impulsive loading. The analyses were carried out with VecTor5 

and SAP2000 and the results were compared. The verification of VecTor5 for an initial 

velocity loading was carried out by means of hand calculations. For this purpose, a one-

dynamic-degree-of-freedom structure was analyzed and the results were compared.  

In the verification analyses, the three time integration methods were used arbitrarily. In 

addition, viscous damping was included in some of the analyses for verification of the 

implemented Rayleigh damping algorithm. The details of the analyses are documented in 

the following sections. 

7.12.1 Ground Accelerations 

For the time-history analysis, the Northridge (Santa Monica, 1994) ground acceleration 

record was used. Obtained from the National Information Service for Earthquake 

Engineering (NISEE) at the University of California, Berkeley, the record includes 60 

seconds of acceleration data recorded with a time interval of 0.02 seconds. The maximum 

acceleration observed was 8.66 m/s2  (Figure 7.31).  
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 Figure 7.31 Northridge Earthquake Accelerogram 
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The analyses were performed for the first 20 seconds of the record for demonstrative 

purposes. For the numerical analysis technique, the Wilson’s Theta method with no viscous 

damping was employed. The resulting displacement and base shear force responses are 

shown in Figure 7.32 and 7.33. 
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Figure 7.32 Displacement Response for the Simple Cantilever Subjected to Northridge  
   Earthquake (No Damping): (a) 3 s to 10 s; (b) 10 to 20 s 

Figure 7.33 Reaction Response for the Simple Cantilever Subjected to Northridge  
         Earthquake (No Damping): (a) from 3 to 10 s 
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To verify the implemented Rayleigh damping algorithm, the analysis was repeated 

assigning a 5% damping ratio to the first and second vibration modes. The damping ratios 

for the remaining two modes were calculated by the programs automatically as explained 

in Section 7.5.2. The resulting responses are presented in Figure 7.34 and 7.35. 
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Figure 7.34 Displacement Response for the Simple Cantilever Subjected to Northridge  
                  Earthquake (with Damping): (a) 3 to10 s; (b) 10 to 20 s 

(b) 

Figure 7.33 Reaction Response for the Simple Cantilever Subjected to Northridge  
         Earthquake (No Damping): (b) from 10 to 20 s 
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7.12.2 Impulse Forces 

The same structure was analyzed for the case where it is subjected to the impulse force-

time history shown in Figure 7.18, applied to the top mass level (Node 3 in Figure 7.17). 

Analyses were performed for a time step length of 0.005 s using the Newmark’s average 

acceleration procedure. Rayleigh damping was used with an assignment of 0% and 5% 

damping on the first and second modes of vibration, respectively. The displacement and 

reaction responses are presented in Figure 7.36 and 7.37. 
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Figure 7.35 Reaction Response for the Simple Cantilever Subjected to Northridge  
                  Earthquake (with Damping): (a) 3 to 10 s; (b) 10 to 20 s 
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7.12.3 Initial Velocity 

The initial velocity analysis capability of VecTor5 was verified with hand calculations. 

For this purpose, the structure used thus far was simplified to a one degree-of-freedom 

system as shown in Figure 7.38.  Gross section properties were assumed with the 

modulus of elasticity of concrete taken as 32000 MPa. 

 

 

 

Figure 7.36 Displacement Response for the Simple Cantilever Subjected to the Impulsive      
          Loading (with Damping) 

Figure 7.37 Reaction Response for the Simple Cantilever Subjected to the Impulsive 
         Loading (with Damping) 
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The structure was analyzed for the condition where an initial velocity of 8 m/s was 

applied to the top mass in the global x-direction (Node 2 in Figure 7.38). Analyses were 

performed for a time step length of 0.001 s, using Newmark’s linear acceleration 

procedure. 

The hand calculation procedure was performed according to the following steps. First, the 

structural stiffness matrix was created with reference to the global x- and y- axes as 

follows: 

2.7 0 5400
[ ] 0 480 0 /

5400 0 14.4
k kN mm

6

⎡ ⎤
⎢ ⎥=      ⎢ ⎥

×10⎢ ⎥⎣ ⎦

 

The lateral stiffness matrix corresponding to the dynamic degree-of-freedom u1 was then 

calculated through the use of static condensation as [ ] [675] /latk kN m=   . 

The period of the system was calculated by means of Eq. 7.84 and verified with the 

VecTor5 calculated period of 0.342 s. 

22 2 0.342 sec
675

mT
k

π π= × × = × × =  
 

          (7.84) 

The free vibration response due to an initial acceleration was calculated through Eq. 7.85. 

Figure 7.38 Details of the 1-DOF Structure Subjected to Initial Velocity Loading 
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0( ) sin( )n
n

xx t w t
w

= × ×
&

           (7.85) 

where x(t) is the displacement, 0x&  is the initial velocity, wn is the natural frequency of the 

system calculated as 2 /n nw Tπ= , and t is the elapsed time. 

Finally, the base shear force was calculated as /( ) 675 ( )N mmk x t x t× =  × . The resulting 

displacement and reaction responses are presented in Figure 7.39 and 7.40. 
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Figure 7.39 Displacement Response for the 1-DOF Structure (No Damping) 

Figure 7.40 Reaction Response for the 1-DOF Structure (No Damping) 
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For verification of the damping implementations, the analyses were repeated with an 

assigned 5% damping ratio. In the hand calculations, the displacement response for an 

initial velocity was calculated using Eq. 7.86. 

( )0( ) / sin )nw t
D Dx t e x w w tξ− × ×= × × ( ×&                                 (7.86) 

where ξ is the damping ratio and wD is the damped frequency of the system calculated as 

21D nw w ξ= × − . 

The resulting displacement and reaction responses are presented in Figure 7.41 and 7.42. 
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Figure 7.41 Displacement Response for the 1-DOF Structure (with 5% Damping) 

Figure 7.42 Reaction Response for the 1-DOF Structure (with 5% Damping) 
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7.12.4 Conclusion 

The linear-elastic dynamic analyses carried out with VecTor5 for the ground acceleration 

loading (Figure 7.32 to Figure 7.35), for the impulsive loading (Figure 7.36 and Figure 

7.37) and for the initial velocity loading (Figure 7.39 to Figure 7.42) provided essentially 

the same responses as did SAP2000 and hand calculations in term of both displacements 

and reactions. The visible small variations in the responses can be attributed to numerical 

errors which are an inherent part of computerized analyses. 
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CHAPTER 8 
DYNAMIC LOADING: VERIFICATION & APPLICATIONS 

8.1 Chapter Layout 

This chapter discusses the application of the newly implemented nonlinear dynamic 

analysis algorithms to previously tested structures. The purpose of this application is not 

only to verify the new algorithms but also to provide guidelines for modelling of 

reinforced concrete frame-related structures, particularly those subjected to impact loads. 

The chapter starts with a summary of the comprehensive experimental program 

undertaken by Saatci (2007) involving twenty tests on simply-supported reinforced 

concrete beams under impact loads.  

It is then followed by the analytical modelling of the beams tested in the experimental 

program. During the modelling process, a general guideline for modelling structures 

under impact loads when only the contact velocity and the impacting mass are known is 

provided. In addition, the selection of an appropriate time step length and the proper use 

of dynamic analysis parameters are discussed. 

The chapter continues with the analyses of the beams using the procedures and 

formulations developed, and with comparisons of the analytical responses with the 

experimental results in terms of displacement and reaction responses, reinforcement 

strains, damage levels and failure modes when applicable.  

Finally, the chapter concludes with a detailed discussion of the analytical predictions as 

compared to the experimental responses. Some deficiencies discovered in the 

formulations are also discussed. In addition, when necessary, the appropriate use of  the 

different formulations and options implemented are discussed. 
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8.2 Saatci Beams 

An experimental program was recently conducted at the structural testing laboratory of 

the University of Toronto to verify the dynamic analysis formulations implemented into a 

nonlinear finite element program, VecTor2, and to supply the literature with detailed and 

reliable test data pertaining to the impact response of shear-critical structures. The 

experimental program involved eight beams (four pairs) with varying shear reinforcement 

ratios tested under free-falling drop-weights. The beams were tested several times, 

providing a total number of 20 impact tests.  

Details of the Beams 

All eight beams were simply supported and spanned a clear distance of 3.0 m between 

two roller supports, leaving a 940 mm overhang on each side (Figure 8.1). All beams had 

a 250 x 410 mm cross section.  

 

The same amount of longitudinal reinforcement, with identical configuration, was used in 

all eight beams (Figure 8.2(a)). The main variable in the cross sections of the beams was 

the percentage of the transverse reinforcement. The four different ratios of shear 

reinforcement used were 0%, 0.1%, 0.2% and 0.4%. The concrete strengths were also 

varied slightly, ranging from 44.7 MPa to 50.1 MPa. All reinforcement and concrete 

material properties are documented in Table 8.1. The naming convention adopted for 

each beam was based on the transverse reinforcement ratio as shown in Figure 8.2(b).  

 

                           

Figure 8.1 Dimensions of Saatci Beams 

Table 8.1 Material Properties of Saatci Beams 

f'c ε0 Ec

(MPa) (x10-3) (MPa)
SS0 50.1 2.32 32000
SS1 44.7 2.36 27000
SS2 47 2,42 28000
SS3 46.7 2.51 27000

Concrete
As db fy fu Es Esh εsh εu

(mm2) (mm) (MPa) (MPa) (MPa) (MPa) (x10-3) (x10-3)

No.30 700 29.9 464 630 195000 1088 12.5 165
D-6 38.7 7 605 652 190250 2794 3.2 20

Reinforcement
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Thus, according to this convention, Beams SS0a, SS0b, SS1a, SS1b, SS2a, SS2b, SS3a 

and SS3b comprised the experimental program. Beam series-a and -b had identical details 

in all respects. They were subjected to a different loading program as described below. 

Loading Procedure 

All beams were tested under impact loads induced by free-falling drop-weights (Figure 

8.3). For all tests, the weights were dropped from a clear height of 3.26 m above the 

specimen, resulting in an 8.0 m/s calculated impact velocity. All specimens, except SS0b, 

were tested more than once in order to investigate the effects of impact loads on 

previously damaged beams. 

Two different loading programs were adopted in the experiment. The a-series beams 

were subjected to a drop-weight of 211 kg in the first impact test. A drop-weight of 600 

kg was then used in second and third impact tests. The b-series beams, on the other hand, 

were subjected to a drop-weight of 600 kg in the first and second impact tests. A drop-

weight of 211 kg was then used in the third impact test.  

Taking into account the loading regime, the naming convention for a beam, for example 

SS2a, became as follows: SS2a-1, SS2a-2 and SS2a-3 where the numbers 1, 2 and 3 

represented the first, second and third tests, respectively.  

Figure 8.2 (a) Cross Section of Saatci Beams; (b) Name Convention Adopted (Saatci, 2007) 

(a) (b) 

SS 2 a 
Designation 

for test 
program 

0.2% transverse 
reinforcement 

Twin, a or b 
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Support Conditions 

All of the specimens were tested under the same simply-supported conditions. As uplift of 

the beams from the supports was expected during impact, a special arrangement of the 

supports was employed to prevent uplift of the specimens without creating any moments at 

the supports during vibration. For this purpose, the beams were held down with two No.30 

reinforcement bars. The bars were threaded at both ends and bolted at the top end to a 

hollow structural steel (HSS) section which crossed the specimen (Figure 8.4(a)). At the 

bottom end, in order to enable free rotation, the bars were fitted to spherical bearings which 

were supported by steel floor beams bolted to the strong floor. A hinge was placed between 

the specimen and the HSS section at the top. With this setup, the specimens were able to 

rotate freely with minimal secondary moments at the supports (Figure 8.4(b)).  

Although these support conditions rendered the system longitudinally unrestrained, they 

were chosen so as to prevent any possible axial load developing during the testing, which 

would have further complicated the analyses. As a result of this instability in the test setup, 

it was observed both by video records and displacement sensors that the specimens 

typically vibrated slightly in the longitudinal direction during the tests. The effects of this 

Figure 8.3 Experiment Details of Saatci Beams (a) Light Drop-Weight (211 kg); (b) Heavy  
      Drop-Weight (600 kg); (c) Test Setup (Saatci, 2007) 

(a) (b) (c) 
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Figure 8.4 Test Setup for Saatci Beams: (a) Cross Section at the Supports; (b) Side View 
      of Support (Floor beams are not shown.)  (Saatci, 2007) 

movement on the vertical displacement measurements were found to be insignificant 

(Saatci, 2007).   

 

8"x8"x1
2" HSS Section

Hinge

Roller

Load cell

Spherical bearing

Support Bars (No30)

Support pedestal

Steel plate (12" thick)

Steel plate (1 12" thick)

 
 

 

 

8.3 Analytical Modelling 

Taking advantage of the symmetry of the beams and the test setup, only one-half of each 

beam was modelled (Figure 8.5). In the model, half of the main span of the beam was 

divided into 6 segments with 250 mm segment lengths, each equalling approximately 0.6 

times the cross section depth. For the overhangs, 4 segments with 235 mm lengths were 

used.  

 

 

 

Figure 8.5 Analytical Model for Saatci Beams  

8"x8"x1
2" HSS Section

Support Bars (No30)

Steel plate (12" thick)
Hinge

Test specimen

Roller

Load cell

Spherical bearing

Floor beam

Steel plate (1 12" thick)

Support pedestal
5"x5"x1

2" HSS Section

(a) (b) 
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The cross section was modelled using 32 concrete layers and two steel layers (Figure 

8.6(a)). As shown in Figure 8.6(b), transverse reinforcement ratios were assigned to all 

layers except the clear cover layers. Out-of-plane reinforcement was smeared into a 

tributary area of approximately 5 times the bar diameter (5 x 7.0 mm = 35mm) as shown 

in Figure 8.6 (c). 

 

 

The concrete properties used were as determined from standard cylinders; the 

longitudinal and transverse reinforcement properties were as determined by standard 

coupon tests (Table 8.1). The tensile strength of concrete was calculated through the 

formula ' '0.33t cf f= ×  as recommended by CSA A23.3-04. 

Support Restraints 

As mentioned in Section 8.2, to prevent any possible uplift, a special arrangement of the 

supports (Figure 8.4) was employed in the test setup through the use of a concrete 

pedestal under the beam and two support bars above the beam. If the support pedestal and 

support bars were included, the model of the beam would include two compression-only 

members at Node 5 as shown in Figure 8.7. The linear-elastic compression only members 

Figure 8.6 (a) Sectional Layers used in the Model of Saatci Beams; (b) Smeared  
            Reinforcement Ratios; (c) Tributary Area for the Out-of-Plane Reinf. 

(a) 

(b) 

(c) 

Spacing
ρt (%) ρz (%)  s (mm)

SS0 0.0 0.0 n/a
SS1 0.1 0.19 300
SS2 0.2 0.38 150
SS3 0.3 0.57 100

Reinf. Ratios
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would be used so that when Node 5, for example, displaced upwards, it did not cause 

tension force on the bottom support bar (Member 13) as was the case in the experimental 

setup. 

 

However, such an approach for representing the supports creates difficulties in term of 

modelling. One such difficulty is the uncertainty in the vibrational characteristics of the 

instrumentation used in the test setup as shown in Figure 8.4. During the impact and the 

ensuing oscillation, these parts are expected to vibrate which is difficult to model 

accurately. The other difficulty relates to the uncertainty in the calculation of the stiffness 

and inertial effects of the concrete pedestal and support bars including the HSS section.  

As opposed to strut-and-tie models, the developed procedure is a sectional model that 

does not take into account the local support conditions. In other words, no transverse 

clamping stresses or concrete struts are created in the support regions. Therefore, a highly 

detailed representation of supports is not required.  

For the reasons described above, the support was modelled as a simple roller by 

restraining the vertical degree-of-freedom of Node 5. The influence of this simplified 

support on the analytical predictions is discussed in Section 8.8.6. In addition to the roller 

support, to satisfy the condition of symmetry, both the horizontal and rotational degrees 

of freedom were restrained at Nodes 11 and 12 (Figure 8.5). 

 

Figure 8.7 Analytical Model of Saatci Beams including Special Supports (not used) 
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Loading 

The main difficulty when modelling a structure under an impact load is the inclusion of 

the impact load itself. If the impact load-time history is known, the analyses can easily be 

carried out defining the impact load-time history as a load case similar to the impulse 

load-time history definition. However, the estimation of impact load-time history is a 

challenging task requiring several simplifications and assumptions which would limit the 

applicability of the procedures. Such an approach, for example, can be found in CEB-FIP 

(1988).  

Therefore, the modelling of the impacting mass without the need to estimate the impact 

force-time history was much preferred in the formulation and application of VecTor5. 

The implementation of initial velocities and the development of compression-only 

members were carried out essentially for this reason. 

Consequently, the impacting mass was simulated through the use of a special modelling 

technique similar to that used by Saatci (2007). Based on this technique, a fictitious 

segment (Member 11) was added to the model to simulate the load transfer from the 

drop-weight to the midspan of the beam. The following assumptions were made for this 

fictitious segment: 

(1) A very high stiffness (1 x 109 MPa modulus of elasticity with a 410 x 250 mm 

cross section) was assigned to this segment to create a hard impact condition.  

(2) Linear-elastic behaviour was assumed for the fictitious segment to prevent any 

possible plastic deformations which would cause local energy dissipation. In reality, 

however, during the impact of the drop-weight on the beam, some energy dissipation 

occurred through such mechanisms as heat generation and local concrete spalling. 

However, a realistic consideration of such mechanisms in the analytical model is 

very difficult, if not impossible. Therefore, a linear-elastic assumption for the 

fictitious member was adopted, neglecting the local energy dissipation to avoid 

guess-work.  

(3) The fictitious member was assumed to carry compression only in order to 

simulate the separation of the drop-weight from the beam immediately after the 
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impact occurs. Otherwise, the drop-weight would become attached to the beam after 

the impact, pulling it upwards due to the upward acceleration occurring during the 

bounce. Such behaviour would obviously render the model invalid. 

The drop-weight was simulated by assigning a lumped mass to the top of the fictitious 

segment (Node 12). As Node 12 coincided with the axis of symmetry, only half of the 

mass was considered. Therefore, depending on the testing sequence, either a 105.5 kg or  

a 300 kg mass was assigned to Node 12. Only the y-degree-of freedom of this mass was 

included in the calculation as the x-degree-of-freedom of that node was restrained due to 

symmetry.  

The impact load was simulated by assigning an initial velocity of 8.0 m/s to the drop-

weight (Node 12). In addition, a constant acceleration of 9.81 m/s was assigned to the 

drop-weight in order to simulate the gravitational effects once the separation occurred.  

Masses 

The nodal masses of the beam were calculated automatically by the program, assuming a 

material density of 2400 kg/m3 (Figure 8.8).  

 

As a result, the output file of the developed analytical procedure indicated the mass data 

as shown in Table 8.2. 

 

Figure 8.8 Lumped Masses and Initial Velocity Loading Applied to Saatci Beams 
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Jnt Mass-x Mass-x Vel-x Acc-x Mass-y Mass-y Vel-y Acc-y
self add. init. const. self add. init. const.
(kg) (kg) (m/s) (m/s2) (kg) (kg) (m/s) (m/s2)

1 28.9 0 0 0 28.9 0 0 0
2 57.8 0 0 0 57.8 0 0 0
3 57.8 0 0 0 57.8 0 0 0
4 57.8 0 0 0 57.8 0 0 0
5 59.7 0 0 0 0.00 0 0 0
6 61.5 0 0 0 61.5 0 0 0
7 61.5 0 0 0 61.5 0 0 0
8 61.5 0 0 0 61.5 0 0 0
9 61.5 0 0 0 61.5 0 0 0

10 61.5 0 0 0 61.5 0 0 0
11 0.00 0 0 0 30.8 0 0 0
12 0.00 0 0 0 0.00 105.5 -8.00 -9.81  

Seed Files 

As mentioned previously, after the first impact tests, the damaged beams were typically 

tested for a second and third time. The need to analyze the damaged beams for a second 

and third time required the use of seed files in which previous analysis results were stored 

in a binary format, allowing for future analysis of the damaged beams. Through the use 

of seed files, the damaged beam models were re-analyzed with the appropriate impacting 

mass depending on the testing sequence. 

8.4 Analysis Parameters and Material Behaviour Models Used 

As explained previously, one of the main focuses of this thesis is to perform analyses by 

using only default material models and analysis options common to all VecTor programs 

and predefined prior to this work. Therefore, the default analysis parameters and material 

behaviour models were used in the analyses of all beams with two exceptions.  

As both the peak strain and the initial modulus of the elasticity of concrete were known 

from the cylinder tests, the Popovics formulation (1973) for normal strength concrete was 

selected for the concrete base curve under compression, rather than the default Hognestad 

(Parabola). As discussed in Section 4.2, depending on the known concrete properties, an 

appropriate selection of the concrete base curve in compression is recommended. 

However, if the analyses were performed with the default option of Hognestad 

(Parabola), the results did not change noticeably. A typical comparison of the responses 

Table 8.2 Lumped Mass Data for Saatci Beams as Output by VecTor5 
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obtained using the default formulation and Popovics formulation is presented in Figure 

8.9. 
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For the reinforcement hysteresis, the elastic-plastic model with strain hardening was 

selected rather than the default Seckin model with Bauschinger effect (Figure 5.15). The 

former model was selected after the observance of recovering reinforcement plastic offset 

strains under low strain reversals when using the Seckin Model.  

It was noted during the impact analyses of Saatci Beams (Saatci, 2007) that the bottom 

longitudinal reinforcement typically yielded at the midspan in the first positive cycle, 

followed by low level strain reversals including both tension and compression excursions 

(Figure 8.10(a)). Shown in Figure 8.10(b) is the calculated plastic strain-time history for 

the reinforcement at the midspan of Beam SS2b-1.  Note the recovery in the plastic offset 

strain. This behaviour analytically caused the residual midspan displacement to slightly 

recover, which was not observed experimentally. The top reinforcement typically 

behaved linear-elastically without yielding in the analytical model. Consequently, the 

Seckin model with Bauschinger effect was not used in the impact analyses performed in 

this chapter. 
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Figure 8.9 Comparison of Experimental and Analytical Responses for Different Concrete  

       Base Curve Models (SS3a-3): (a) Midspan Displacement; (b) Support Reaction 
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If the analyses were performed with the Seckin model, the only noticeable difference 

would be the residual displacements. A typical comparison of the responses obtained 

using the Seckin model and the elastic-plastic model with strain hardening is presented in 

Figure 8.11. Note how the residual displacement recovered somewhat during the 

vibration when the Seckin model was used. 
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Figure 8.11 Comparison of Experimental and Analytical Responses for Different Steel  
         Hysteresis Models (SS2b-1): (a) Midspan Displacement; (b) Support Reaction 
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The material behaviour models for concrete and steel, as well as the general analysis 

options, used throughout all beam analyses are listed in Table 8.3. 

 
Concrete Behaviour Model Reinforcement Behaviour Model

Compression Base Curve Popovics (NSC)* Hysteresis El-Plastic w/ Hardening*
Compression Post-Peak Modified Park-Kent Dowel Action Tassios (Crack Slip)
Compression Softening Vecchio 1992-A Strain Rate Effects Malvar and Crawford

Tension Stiffening Modified Bentz
Tension Softening Linear
Tension Splitting Not Considered Analysis Options Model

Confinement Strength Kupfer / Richart Geometric Nonlineartity Considered
Dilatation Variable - Kupfer Shear Analysis Mode Parabolic Shear Strain

Cracking Criterion Mohr-Coulomb (Stress) Shear Protection On
Crack W idth Check Crack Limit (Agg/5) Time Integration Method Wilson's Theta

Hysteresis NL  (Vecchio) Convergence Limit 1.00001
Slip Distortion Vecchio-Lai Maximum No of Iterations 100

Strain Rate Effects CEB-FIB * non-default  

8.5 Damping 

As discussed previously, the use of either the average or linear acceleration method 

requires some level of additional viscous damping for stability reasons. As most of the 

energy dissipation of concrete and reinforcement is already taken into account through 

the nonlinear material hysteretic behaviour, the use of additional viscous damping is not 

usually desired. For this reason, the Wilson Theta method with no additional damping 

was used. The damping characteristics of the analytical predictions are discussed in 

Section 8.8.3, and compared to the experimental responses. 

8.6 Selection of an Appropriate Time-Step 

The time step length selected has a major effect on the accuracy of the computed 

responses.  Therefore, an appropriate value must be selected for the problem at hand. As 

explained previously, a dependable method for determining a suitable time step length is 

to assume a time step length and then progressively re-analyze the structure while 

reducing the assumed length, until a reasonably consistent response is obtained. 

It was recommended in Chapter 7 that a time step length in the order of the smallest 

natural vibration period of the structure might provide optimal accuracy. For this reason, 

the eigen analysis results created at the beginning of the analysis were utilized. According 

Table 8.3 Material Behaviour Models and General Analysis Options Used 
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to the eigen analysis results, the modal periods of the beam with a 105.5 kg mass at Node 

12 are presented in Table 8.4(a), and modal periods of the beam with a 300 kg mass at 

Node 12 are presented in Table 8.4(b). The smallest period of the beams (21st mode) is 

approximately 0.00003 s.   

 

1 0.0176 12 2.71E-04 1 0.0217 12 2.71E-04
2 0.0048 13 2.42E-04 2 0.00517 13 2.42E-04
3 0.00262 14 2.36E-04 3 0.00262 14 2.38E-04
4 0.00138 15 2.22E-04 4 0.00149 15 2.22E-04
5 8.81E-04 16 2.13E-04 5 8.81E-04 16 2.13E-04
6 7.20E-04 17 2.00E-04 6 7.28E-04 17 2.00E-04
7 5.37E-04 18 1.71E-04 7 5.37E-04 18 1.73E-04
8 4.92E-04 19 1.36E-04 8 5.09E-04 19 1.37E-04
9 3.94E-04 20 1.30E-04 9 3.94E-04 20 1.31E-04
10 3.16E-04 21 3.01E-05 10 3.16E-04 21 3.25E-05
11 2.80E-04 11 2.85E-04

Mode Period (s) Mode Period (s) Mode Period (s)Mode Period (s)

 

As a result, a time step length in the order of 0.00001 s was anticipated. A series of 

analyses were then performed with varying time step lengths to determine the time step 

length to be used (Figure 8.12) 
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Table 8.4 Natural Periods: (a) Model with 105.5 kg Mass; (b) Model with 300 kg Mass 

Figure 8.12 Comparison of Experimental and Analytical Responses for Different Time Step  
        Lengths (SS3b-1): (a) Midspan Displacement; (b) Support Reaction 
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As is apparent from the graphs above, the responses did not change significantly with 

time step lengths shorter than 0.00001 s. However, the computation time required 

increased significantly (Figure 8.13).  Therefore, the selection of an appropriate time step 

length came down to the determination of an optimal balance between the accuracy and 

computation time. As a result, a time step length of 0.00001 s was selected and used for 

all impact analyses performed for the beams under consideration.  
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8.7 Comparison of the Analytical and Experimental Responses 

The following section presents the comparisons of the analytically and experimentally 

obtained responses including midspan displacements and support reactions (Figure 8.14 

to Figure 8.51). In addition, views of the beams at the end of each test are presented as 

taken from Saatci (2007). Comparisons of the longitudinal reinforcement strains, as 

calculated and experimentally reported at the midspan and at the support, can be found in 

Appendix A.   

 

 

 

 

Figure 8.13 Computation Time Required for Different Time Step Lengths (SS3b-1) 
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Test SS0a - 1 (211 kg impacting mass) 

 

 

-12

-10

-8

-6

-4

-2

0

2

4

6

0 0.05 0.1 0.15 0.2 0.25

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

Experiment
Analysis

 

 

Test SS0a - 2 (600 kg impacting mass) 
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Figure 8.15 Comparison of Experimental and Analytical Responses for SS0a-1:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.14 View of Beam SS0a-1 after Test: (a) North Half; (b) South Half 

(a) (b) 

Figure 8.16 View of Beam SS0a-2 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS0b-1 (600 kg impacting mass) 
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Figure 8.17 Comparison of Experimental and Analytical Responses for SS0a-2:  
        (a) Midspan Displacement; (b) Support Reaction 

Figure 8.19 Comparison of Experimental and Analytical Responses for SS0b-1:  
        (a) Midspan Displacement; (b) Support Reaction 

(a) (b) 

(a) (b) 

Figure 8.18 View of Beam SS0b-1 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS1a - 1 (211 kg impacting mass) 
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 Test SS1a - 2 (600 kg impacting mass) 

 

 

-44

-40

-36

-32

-28

-24

-20

-16

-12

-8

-4

0
0 0.05 0.1 0.15 0.2 0.25

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

Experiment
Analysis

 
 

-600
-500
-400

-300
-200
-100

0
100
200

300
400
500

0 0.02 0.04 0.06 0.08 0.1

Time (s)

R
ea

ct
io

n 
(k

N
)

-400

-300

-200

-100

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1

Time (s)

R
ea

ct
io

n 
(k

N
)

Figure 8.20 Comparison of Experimental and Analytical Responses for SS1a-1:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.22 Comparison of Experimental and Analytical Responses for SS1a-2:  
         (a) Midspan Displacement; (b) Support Reaction 

(a) (b) 

Figure 8.21 View of Beam SS1a-2 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS1a - 3 (600 kg impacting mass) 
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Test SS1b - 1 (600 kg impacting mass) 
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Figure 8.24 Comparison of Experimental and Analytical Responses for SS1a-3:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

(a) (b) 

Figure 8.23 View of Beam SS1a-3 after Test: (a) North Half; (b) South Half 

Figure 8.25 View of Beam SS1b-1 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS1b - 2 (600 kg impacting mass) 
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Figure 8.26 Comparison of Experimental and Analytical Responses for SS1b-1:  
         (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.28 Comparison of Experimental and Analytical Responses for SS1b-2:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.27 View of Beam SS1b-2 after Test: (a) North Half; (b) South Half 

(a) (b) 



 369

Test SS2a – 1 (211 kg impacting mass) 
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Test SS2a – 2 (600 kg impacting mass) 

 

 

-600
-500

-400
-300
-200
-100

0
100
200
300

400
500

0 0.02 0.04 0.06 0.08 0.1

Time (s)

R
ea

ct
io

n 
(k

N
)

Figure 8.30 Comparison of Experimental and Analytical Responses for SS2a-1:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.29 View of Beam SS2a-1 after Test: (a) North Half; (b) South Half 

(a) (b) 

Figure 8.31 View of Beam SS2a-2 after Test: (a) North Half; (b) South Half 

(a) (b) 
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 Test SS2a - 3 (211 kg impacting mass) 
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Figure 8.32 Comparison of Experimental and Analytical Responses for SS2a-2:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.34 Comparison of Experimental and Analytical Responses for SS2a-3:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.33 View of Beam SS2a-3 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS2b – 1 (600 impacting mass) 
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Test SS2b-2 (600 impacting mass) 
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Figure 8.36 Comparison of Experimental and Analytical Responses for SS2b-1:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

(a) (b) 

Figure 8.37 View of Beam SS2b-2 after Test: (a) North Half; (b) South Half 

(a) (b) 

Figure 8.35 View of Beam SS2b-1 after Test: (a) North Half; (b) South Half 
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 Test SS2b – 3 (211 impacting mass) 
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Figure 8.38 Comparison of Experimental and Analytical Responses for SS2b-2:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.40 Comparison of Experimental and Analytical Responses for SS2b-3:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.39 View of Beam SS2b-3 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS3a – 1 (211 kg impacting mass) 
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Test SS3a – 2 (600 kg impacting mass) 
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Figure 8.43 Comparison of Experimental and Analytical Responses for SS3a-2:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.42 View of Beam SS3a-2 after Test: (a) North Half; (b) South Half 
(a) 

Figure 8.41 Comparison of Experimental and Analytical Responses for SS3a-1:  
        (a) Midspan Displacement; (b) Support Reaction

(b) 
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Test SS3a – 3 (600 kg impacting mass) 
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Test SS3b – 1 (600 kg impacting mass) 

 

 

Figure 8.45 Comparison of Experimental and Analytical Responses for SS3a-3:  
         (a) Midspan Displacement; (b) Support Reaction

Figure 8.44 View of Beam SS3a-3 after Test: (a) North Half; (b) South Half 

(a) (b) 

Figure 8.46 View of Beam SS3b-1 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS3b – 2 (600 kg impacting mass) 
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Figure 8.47 Comparison of Experimental and Analytical Responses for SS3b-1:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.49 Comparison of Experimental and Analytical Responses for SS3b-2:  
        (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.48 View of Beam SS3b-2 after Test: (a) North Half; (b) South Half 

(a) (b) 
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Test SS3b – 3 (211 kg impacting mass) 
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8.8 Discussion of the Responses 

The comparisons of the peak displacements, peak reactions and residual displacements, 

as obtained analytically and experimentally, are summarized in Table 8.5. Note that tests 

of SS0b-2, SS0a-3, SS0b-3 and SS1b-3 were not performed due to the complete failures 

sustained during the previous testing. 

8.8.1 Peak Displacements 

The peak displacements of the beams were predicted with very good accuracy, given the 

severity of the loading and the high degree of damage typically sustained. Considering 

the 17 tests for which the experimental peak displacement values were reported, a mean 

value of 0.99 and a coefficient of variation (COV) of 9.5% were achieved with respect to 

the predicted-to-observed peak displacement ratio.  
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Figure 8.51 Comparison of Experimental and Analytical Responses for SS3b-3:  
         (a) Midspan Displacement; (b) Support Reaction

(a) (b) 

Figure 8.50 View of Beam SS3b-3 after Test: (a) North Half; (b) South Half 

(a) (b) 
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The accuracy of the predictions improved considerably as the damage levels of the 

specimens increased. For the first impact analyses of the undamaged beams (7 tests), a 

mean ratio of 1.01 and a coefficient of variation of 12.7% were attained. For the second 

analyses of the damaged beams (6 tests) the values became 0.97 and 8.2%; for the third 

analyses of the damaged beams (4 tests), the values improved to 1.00 and 6.1%. Note the 

improvement in the COV which decreased by half from the first to third tests. 

 

VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
SS0a-1 11.7 9.3 1.26 400.0 300.0 1.33 -0.2 -1.6 0.13
SS1a-1 10.3 11.9 0.87 416.5 356.4 1.17 -0.4 -0.9 0.44
SS2a-1 10.1 10.5 0.96 430.0 326.8 1.32 0.0 -0.5 n/a
SS3a-1 10.0 10.6 0.94 442.3 398.0 1.11 0.0 0.0 n/a
SS0b-1 Shear Fail. Shear Fail. n/a 504.3 399.8 1.26 Shear Fail. Shear Fail. n/a
SS1b-1 37.6 39.2 0.96 549.0 624.8 0.88 -18.9 -17.7 1.07
SS2b-1 37.4 37.6 0.99 621.6 592.5 1.05 20.4 19.0 1.07
SS3b-1 37.8 35.1 1.08 671.3 667.7 1.01 23.0 17.5 1.31

Mean 1.01 1.14 0.81
COV (%) 12.7 16.0 49.8

VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
SS0a-2 Shear Fail. Shear Fail. n/a 457.6 514.8 0.89 Shear Fail. Shear Fail. n/a
SS1a-2 38.8 39.3 0.99 564.0 510.0 1.11 -18.4 -17.5 1.05
SS2a-2 37.5 38.1 0.98 661.0 644.0 1.03 20.6 18.0 1.14
SS3a-2 38.1 36.8 1.04 703.0 802.0 0.88 23.2 17.0 1.36
SS1b-2 62.9 76.6 0.82 352.4 562.4 0.63 -42.8 -60.0 0.71
SS2b-2 58.6 61.5 0.95 498.0 621.0 0.80 37.5 39.1 0.96
SS3b-2 57.2 54.6 1.05 551.0 713.0 0.77 40.5 33.0 1.23

Mean 0.97 0.87 1.08
COV (%) 8.2 16.0 22.7

VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
SS1a-3 64.5 n/a n/a 346.5 503.0 0.69 -42.7 n/a n/a
SS2a-3 60.2 56.6 1.06 499.3 718.0 0.70 -36.6 -34.8 1.05
SS3a-3 58.7 57.0 1.03 577.0 689.0 0.84 40.2 35.5 1.13
SS2b-3 32.4 34.3 0.94 237.8 308.5 0.77 18.5 17.8 1.04
SS3b-3 28.7 30.4 0.94 286.0 344.9 0.83 15.3 n/a n/a

Mean 1.00 0.76 1.07
COV (%) 6.1 7.1 5.1

Mean 0.99 AVG 0.95 AVG 0.98
COV (%) 9.5 COV (%) 21.3 COV (%) 33.9

n/a: data not available due to faulty sensors

Peak Displacement (mm) Peak Reaction (kN) Residual Disp. (mm)

Peak Displacement (mm) Peak Reaction (kN) Residual Disp. (mm)

Peak Displacement (mm) Peak Reaction (kN) Residual Disp. (mm)

All Tests

 

Table 8.5 Comparison of Displacement and Reaction Results for Saatci Beams 
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The same conclusion is reached from another point of view; improved accuracy in the 

calculated peak displacements is observed for the beams subjected to heavier drop-

weights which cause more damage than for the lighter drop-weights. Considering the 6 

tests subjected to the lighter drop-weights, a mean value of 0.99 and a coefficient of 

variation (COV) of 13.7% were realized. However, for the 11 test with heavier drop-

weights, the values improved to 1.00 and 7.1%. Again, in this case, the COV diminished 

by almost half. This better prediction of the peak displacements when the beams were 

subjected to greater damage levels can be attributed to several factors. 

The first factor relates to the experimental setup. Certain deficiencies and irregularities in 

the test setup, such as the flexibility of the test apparatus, uneven contact of the support 

rollers with the specimens, uneven contact of the drop-weight with specimens, and 

vibrations in the longitudinal direction were reported by Saatci (2007). These 

mechanisms were inherently neglected in the analytical modelling of the beams. It can be 

postulated that when subjected to the heavier drop-weights, the specimens suffered more 

damage causing greater peak displacements in which the effects of the experimental 

deficiencies played a relatively smaller role. However, subjected to a lighter drop-weight 

causing less peak displacements, the experimental deficiencies may have contributed 

significantly to the overall displacement response of the beams. 

Another factor may relate to the use of a fictitious member to simulate the load transfer 

from the drop-weight to the member. When using such a member, it was assumed that the 

member behaved linear-elastically, thereby neglecting the local energy dissipation. 

However, in the actual test, considerable local damage was reported to have taken place 

around the point where the impact load was applied. In addition, a special arrangement of 

steel plates was used at the impact point to create a well distributed impact force in the 

experimental setup. It is likely that some energy was dissipated by these plates through 

friction and heat generation. This energy dissipation was more likely significant in the 

overall response of the beams subjected to the lighter drop-weights compared to those 

subjected to the heavier drop-weights and sustaining more damage. 
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A third factor may relate to the effects of higher modes. As explained in Section 7.11, 

with the use of the Wilson’s Theta method, the higher mode contributions are somewhat 

filtered out due to the numerical damping present in the method. It can be postulated that 

at more severe damage levels, the higher mode contributions to the overall response of 

the test beams diminish. This can result in behaviour more similar to the analytical 

solution, thereby providing a better displacement response for the beams that sustained 

greater damage. The use of Newmark’s average or linear acceleration methods would 

create an even greater filtering of the higher modes due to the use of Rayleigh damping 

required for stability reasons, as discussed in detail in Section 7.5.2.  

In terms of the peak displacement predictions, the least accuracy with a predicted-to-

observed mean ratio of 1.26 was encountered in the specimen containing no stirrups; 

namely, SS0a-1. The behaviour of reinforced concrete elements which do not contain any 

shear reinforcement is intrinsically associated with mechanisms heavily dependent on 

concrete tensile strength (Vecchio, 2000). However, the tensile strength of concrete is not 

constant for a particular concrete but varies with a number of parameters such as the 

volume of concrete, gradient of longitudinal strain, and the presence of restrained 

shrinkage strains (Collins and Mitchell, 1991). As a result, due to the uncertainties 

regarding the tensile strength of concrete, a lower-bound value of 0.33 f c′× , 

recommended by CSA A23.3-04, is often used, as is the case throughout this study. 

Consequently, when analyzing a specimen with no shear reinforcement, more scattered 

predictions should typically be anticipated as experienced in the analysis of SS0 beams. 

8.8.2 Residual Displacements 

The residual displacements of the beams were predicted with reasonable accuracy. 

Considering all 14 tests for which the experimental residual displacement data were 

reported, a mean value of 0.98 and a coefficient of variation (COV) of 33.9% were 

achieved for the predicted-to-observed residual displacement ratio. The high scatter in the 

predictions was mainly caused by two tests involving undamaged specimens under the 

lighter drop-weights; namely, SS0a-1 and SS1a-1. However, although the discrepancies 

in the actual residual displacements of these two tests were quite negligible, they appear 
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to be high when considering their predicted-to-observed ratios of 0.13 and 0.44, 

respectively. The highest discrepancy between the analysis and test in terms of residual 

displacement in these two beams was a mere 1.4 mm. Such a discrepancy can rationally 

be associated with the deficiencies in the experimental setup as explained above. When 

those two tests are excluded, a mean value of 1.09 and a COV of 16.9% were achieved 

for the remaining 12 tests, which can be accepted as being of reasonable accuracy.  

8.8.3 Damping Characteristics 

The post-peak damping characteristics of the beams were predicted with reasonable 

accuracy when considering all 16 tests for which the post-peak responses were reported 

in the experimental study. The damping characteristics of three of the beams (SS1a-1, 

SS3a-2 and SS3b-1) were captured with excellent accuracy. The displacement responses 

for ten beams dampened out slightly faster than the experimental responses while the 

responses of 3 beams (SS0a-1, SS2a-1 and SS3a-1, three of the four first tests under the 

lighter drop-weights) damped out slower than the experimental responses. Especially for 

SS0a-1 and SS3a-1, the theoretical response diminished significantly slower than the 

experimental response. The reduced prediction accuracy of the damping characteristic of 

these beams under the lighter drop-weighs can be attributed to the three factors discussed 

in Section 8.8.1. 

It should be noted that Wilson’s Theta method was used in all analyses with no additional 

viscous damping; all damping resulted from the nonlinear concrete and reinforcement 

hystereses. When all 16 analyses were considered, the slight tendency in the analytical 

predictions was to dampen out more quickly than the experimental responses. In other 

words, the addition of viscous damping to the analyses would have caused deteriorated 

accuracy in terms of dampening of the displacement responses when all 16 tests were 

considered. This further justifies the use the unconditionally stable Wilson’s Theta 

method with no additional damping, which was one of the focuses of the dynamic 

analysis procedure developed in this study. It should be noted, however, that when 

analyzing a structure having non-structural components, the use of additional viscous 

damping may be necessary due to the energy dissipation of non-structural elements as 
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discussed in Section 7.5.2. In this case, either Newmark’s method or Wilson’s Theta 

method can be employed with a proper additional viscous damping ratio. 

8.8.4 Vibrational Periods 

The vibrational periods of the beams were typically underestimated by 15 to 20 percent. 

For demonstrative purposes, a comparison of the analytically and experimentally 

determined vibrational periods of Beam SS2a is presented in Table 8.6. 

 

Cycle VecTor5 Test Ratio VecTor5 Test Ratio VecTor5 Test Ratio
1st 0.0263 0.0315 0.83 0.0363 0.0413 0.88 0.0382 0.0471 0.81
2nd 0.0245 0.0269 0.91 0.0295 0.0327 0.90 0.0306 0.0388 0.79
3rd 0.0245 0.0275 0.89 0.0301 0.0331 0.91 0.0318 0.0400 0.80
4th 0.0245 0.0275 0.89 0.0307 0.0335 0.92 n/a 0.0406 n/a
5th 0.0245 0.0275 0.89 0.0330 0.0337 0.98 n/a 0.0411 n/a

LE: Linear-Elastic
LE Period = 0.0217

Period of Vibration (s)
SS2a-1 (211 kg) SS2a-2 (600 kg) SS2a-3 (600 kg)

Period of Vibration (s) Period of Vibration (s)

LE Period = 0.0176 LE Period = 0.0217
 

In the first test under the drop weight of 211 kg, the period of the vibration remained 

constant after the second cycle in both the experiment and the analysis as indicated in 

Table 8.6(a). This is related to the damage levels sustained by the beam, which suffered 

little damage under the first drop weight with essentially zero residual displacement as 

shown in Table 8.5. Subjected to the second and the third impacts, the beam sustained 

significant damage and plastic deformation levels (i.e., experimental residual 

displacements of 18.0 and 34.8 mm, respectively), which resulted in an increase in the 

period of the vibrations in both the experiment and the analysis as shown in Table 8.6(b) 

and Table 8.6(c). 

The fundamental periods of vibration calculated by the analytical tool developed, using 

the initial transformed section properties, are also presented in Table 8.6 as linear-elastic 

periods. It should be noted that these linear-elastic modal periods are used in the 

Table 8.6 Comparison of Experimental and Analytical Period of Vibrations (Beam SS2a):    
     (a) First Test; (b) Second Test; (c) Third Test 

(a) (b) (c) 
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nonlinear dynamic analyses only when using one of the implemented additional viscous 

damping schemes, as explained in Section 7.7.5 and Section 7.7.12.2. When using the 

Rayleigh damping formulation, these initial modal periods are used to calculate the 

proportionality constants as defined by Eq. 7.13 and Eq.7.14. When using the alternative 

damping formulation, the linear-elastically calculated modal periods, mode shapes and 

generalized masses are used in accordance with Eq. 7.17. When performing a nonlinear 

dynamic analysis with zero additional viscous damping, none of these linear-elastically 

calculated parameters are used. In all cases, the analyses are performed based on the 

principles outlined in Chapters 3, 5 and 7.  

The analytical underestimation of periods of vibration with stiffer analytical behaviour 

can be associated with the nonlinear material behaviour models, such as the concrete 

hysteresis, reinforcement hysteresis and crack formulations. These models were typically 

developed for static loading conditions and do not take into account the dynamic nature 

of the impact loads. To illustrate the importance of, for example, the concrete hysteresis 

in the post-peak vibrational behaviour, the nonlinear analysis of Beam SS2a-1 was 

repeated using two different models: the Vecchio model with nonlinear unloading and the 

Palermo model. The comparison of the displacement responses are shown in Figure 8.52. 

Notice the elongation of the period when using the Palermo model. Because the focus of 

this study is to perform analyses by using only default material models and analysis 

options, the default concrete hysteresis rule, the Vecchio model with nonlinear unloading, 

was used throughout this thesis. 
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Figure 8.52 Comparison of Responses for Different Concrete Hysteresis Models (SS2a-1):  
        (a) Midspan Displacement; (b) Support Reaction 
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As an example of the influence of the strain rate formulations, Beam SS2a-1 was 

analyzed twice: first considering the strain rate effects and then neglecting them (i.e., 

using the input static material properties). In both analyses, the concrete hysteresis of the 

Vecchio Model with nonlinear unloading was used. The comparisons of the resulting 

responses are shown in Figure 8.53. Note the change in the vibrational period.   
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The sensitivity of the vibrational periods to the material behaviour models used suggests 

the need for more comprehensive models that better represent behaviour under dynamic 

loading conditions. More experimental and analytical study is required in this realm to 

better understand and address these issues. 

8.8.5 Strain Rate Effects 

As formulated in Section 7.8, to account for the enhanced strength of concrete and steel 

materials at the high strain rates expected under an impact loading conditions, dynamic 

increase factors (DIF) were introduced into the sectional analysis calculations of the 

analytical procedure developed. Those formulations typically improve the static 

properties of concrete and reinforcement based on the strain rates calculated for the 

current time stage.  
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Figure 8.53 Comparison of Responses with and without Strain Rate Effects (SS2a-1):  
         (a) Midspan Displacement; (b) Support Reaction 
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In the consideration of the DIFs for concrete (Figure 8.54), the CEB-FIP (1990) 

formulations, perhaps the most comprehensive among the few available models, were 

used as documented in Section 7.8. However, these formulations were derived mainly for 

plain concrete tested under almost constant rates of stress or strain. In other words, they 

are only valid for constant rates of loading (CEB-FIB, 1988), whereas strain rates change 

rapidly during an impact-induced vibration (Saatci, 2007). Moreover, these formulations 

were mainly derived based on the available experimental data. However, when there was 

insufficient information available, they were determined theoretically. For example, it is 

stated, for the DIF for concrete compressive strength, in CEB-FIP Synthesis Report 

(1988) Clause 3.3.1 that, “It should be noted, however, that this steep increase [in the 

strength of concrete] has been determined theoretically and that experimental evidence is 

only attainable for natural rocks. Recent experimental results for concrete have not fully 

confirmed this prediction.” 
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For the DIFs of reinforcing steel, two formulations were implemented: the CEB-FIP 

(1988) and the Malvar and Crawford (1998) formulations. Although fewer assumptions 

were involved in the derivation of these formulations, there is a significant contradiction 

between the two models in terms of the DIF for the yield strength of the reinforcing steel. 

As shown in Figure 8.55, the yield strength is enhanced at a much greater rate in the 

Malvar and Crawford formulation. 

Figure 8.54 DIFs for Concrete (CEB-FIP, 1990): (a) In Compression; (b) In Tension 
(a) (b) 
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Although both formulations were implemented and can be used as desired, a selection for 

the default set for use in dynamic analyses with VecTor5 was needed. For this purpose, a 

parametric analytical study was conducted including the impact tests of the Saatci beams. 

In this study, three sets of analyses were performed using: no strain rate effects, the 

Malvar and Crawford formulations (1998), and the CEB-FIP formulations (1988) for the 

reinforcing steel. In the analyses considering strain rate effects, the only available model 

implemented, the CEB-FIP (1990) formulations, was used for the concrete. It was 

observed that when strain rate effects were neglected in the analyses, the peak and, 

especially, the residual displacements were overestimated significantly. The use of the 

CEB-FIP (1988) formulations for the reinforcing steel typically improved the responses, 

resulting in less overestimation of the peak and residual displacements. The formulations 

proposed by Malvar and Crawford (1998) produced the best agreement with the 

experimental peak and residual displacements, although there was again a slight tendency 

to overestimate the peak and, particularly, the residual displacements as observed from 

the analytical results presented in Section 8.8.2. A typical comparison of the responses 

obtained from the all three analyses and the experiment is presented in Figure 8.56.   

Figure 8.55 DIFs for Reinforcement: (a) Malvar and Crawford; (b) CEB-FIP (1988) 

(a) (b) 
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In conclusion, the implemented strain rate formulations were selected carefully from the 

available models which reflected current knowledge. However, there are significant 

contradictions and assumptions regarding these formulations. Therefore, improvements in 

these models for dynamic loading conditions are needed, requiring more experimental 

and analytical investigation. 

8.8.6 Peak Reaction Forces 

The peak support reactions of the beams were predicted with acceptable accuracy. 

Considering all 20 tests, a mean value of 0.95 and a coefficient of variation (COV) of 

21.3% were achieved for the predicted-to-observed support reaction ratio. The general 

tendency in the analytical predictions was to overestimate the peak reaction forces in the 

first tests where a mean value of 1.14 and a COV of 16.0% were realized. In the second 

analyses, underestimation of the peak reaction forces was typical with a mean value of 

0.87 and a COV of 16.0%. In the third tests, the peak support reactions were 

underestimated with a mean ratio of 0.76 and a COV of 7.1%. 

The biggest inaccuracy in the peak support reaction predictions, however, was with the 

uplift forces which were typically observed in the experimental study immediately after 

the impact of the drop-weight. This behaviour is typically caused by sudden upward 
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Figure 8.56 Comparison of Responses for Different Strain Rate Formulations (SS2b-1): 
        (a) Midspan Displacement; (b) Support Reaction  
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inertial forces created by the structural masses as a resistance to the suddenly applied 

impact loads. In the experimental study, this force was reported to be typically in the 

range of 50 kN. However, the analyses predicted the uplift force in the range of 500 kN, 

which was unacceptable in all respects. Such high uplift forces resulted from the 

infinitely rigid roller support assumption.  

As mentioned in Section 8.2, in the experimental setup a special arrangement for the 

supports was employed. It consisted of 1665 mm long two No.20 support bars and a 

bottom concrete pedestal. However, in the analytical model, the supports were modelled 

using infinitely rigid simple rollers due to the uncertainties in the modelling of the special 

support conditions, as explained in Section 8.3. 

For demonstrative purposes, Beam SS2a-1 was re-modelled, approximately including the 

top support bars, with an estimated stiffness of 170 000 N / mm2, and the bottom concrete 

pedestal using the model shown in Figure 8.7. The reaction responses obtained from this 

model and from the original model with the simple roller support are compared in Figure 

8.57. Note how the uplift force decreased from 550 kN to a much more reasonable 55 kN. 

This modified model, however, was not used in the actual modelling, due to the 

difficulties and uncertainties explained in Section 8.3.  
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In conclusion, the uplift forces were highly dependent on the special support conditions 

employed in this particular experiment; consequently, their simulation was deemed to be 

Figure 8.57 Comparison of Support Reactions for Different Support Models (SS2a-1) 
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not an essential consideration in this study. Therefore, the extreme overestimation of 

uplift forces was accepted and the simpler model was used throughout this study.  

8.8.7 Reinforcement Strains 

Comparisons of the peak tensile longitudinal reinforcement strains at the midspan and at 

the support, as obtained analytically and experimentally, are summarized in Table 8.7. In 

the analytical determination of midspan strains, the average strain values calculated for 

the bottom reinforcement layer of Member 10 was used. Longitudinal reinforcement 

strains for the supports were determined as the average value of the top reinforcement 

layers of Member 4 and Member 5.  

The peak longitudinal reinforcement strains, measured and calculated at the midspan of 

the beams, were calculated with reasonable accuracy in most cases. In the first test of the 

undamaged beams (7 tests), excellent accuracy was achieved with a mean value of 0.99 

and a coefficient of variation of 6.9% for the predicted-to-observed peak reinforcement 

strain ratio. In the second tests, the values deteriorated to 1.57 and 85.9%. The 

unacceptably high scatter in the predictions was mainly caused by two tests: SS3a-2 and 

SS1b-2. Beam SS1b-2 was extensively damaged with crack widths reaching as high as 30 

mm as shown in Figure 8.27. In the third tests, the values became 1.30 and 60.4%. This 

unacceptable scatter in the predictions of the third tests was mainly caused by SS1a-3 

which was also extensively damaged as shown in Figure 8.23.  

The accuracy of the experimental determination of the reinforcement strains is subject to 

several factors. First of all, local crack conditions in the vicinity of the strain gauges have 

a major effect on the strain readings. Especially at high deformation stages, with large 

width cracks near the gauge locations, the contact of the gauge with the bar may loosen 

causing strain readings to be typically smaller than the actual strains in the bar. This is 

most likely the case for SS1b-2 and SS1a-3. In addition, cracks near the gauges may 

cause significant local increases in the reinforcement strains. As a result, strain readings 

are closely related to the proximity of the gauge to the cracks. However, in the analytical 

predictions, average strain values were calculated and compared to the strain readings 
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which may correspond to the strains at the crack locations. In such a case, 

underestimation of the experimental strain readings should be expected. 

 

VecTor5 Test Ratio VecTor5 Test Ratio
SS0a-1 2.4 2.3 1.06 1.3 0.8 1.59
SS1a-1 2.2 2.3 0.98 1.4 1.1 1.27
SS2a-1 2.2 2.1 1.05 1.5 0.9 1.60
SS3a-1 2.3 2.5 0.92 1.5 1.1 1.36
SS0b-1 Shear Fail. Shear Fail. n/a Shear Fail. Shear Fail. n/a
SS1b-1 10.2 10.4 0.98 1.9 1.7 1.12
SS2b-1 15.4 17.3 0.89 2.0 1.6 1.25
SS3b-1 19.7 18.6 1.06 2.1 2.6 0.82

Mean 0.99 1.29
COV (%) 6.9 27.2

VecTor5 Test Ratio VecTor5 Test Ratio
SS0a-2 Shear Fail. Shear Fail. n/a Shear Fail. Shear Fail. n/a
SS1a-2 8.5 9.0 0.95 1.0 1.2 0.81
SS2a-2 14.2 14.3 1.00 2.0 1.6 1.24
SS3a-2 18.6 5.8 3.19 2.2 1.7 1.28
SS1b-2 6.8 3.6 1.87 1.0 1.5 0.65
SS2b-2 23.2 20.2 1.14 1.4 2.0 0.70
SS3b-2 29.6 22.9 1.29 1.6 2.7 0.61

Mean 1.57 0.88
COV (%) 85.9 30.1

VecTor5 Test Ratio VecTor5 Test Ratio
SS1a-3 14.6 6.2 2.35 1.4 1.3 1.04
SS2a-3 2.0 1.6 1.24 1.6 1.9 0.87
SS3a-3 16.7 17.9 0.93 1.7 1.7 0.95
SS2b-3 17.6 18.0 0.98 1.0 1.4 0.66
SS3b-3 19.7 20.2 0.98 0.8 2.2 0.37

Mean 1.30 0.78
COV (%) 60.4 26.9

AVG 1.27 AVG 1.01
COV (%) 60.7 COV (%) 35.0

Peak Midspan Strain (x10-3) Peak Support Strain (x10-3)

Peak Midspan Strain (x10-3) Peak Support Strain (x10-3)

Peak Midspan Strain (x10-3) Peak Support Strain (x10-3)

All Tests
 

The peak longitudinal reinforcement strains, measured and calculated at the support of 

the beams, were predicted only marginally well. The general tendency in the predictions 

was to overestimate the strains in the first tests and to underestimate the strains in the 

second and third tests. Similar to the peak support reaction forces, this tendency can be 

associated with the simplified modelling of the beams. Nonetheless, considering the 18 

Table 8.7 Comparison of Experimental and Analytical Reinf. Strains for Saatci Beams 
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tests with available experimental strain readings, a mean value of 1.01 and a coefficient 

of variation of 35.0% may be accepted as sufficient, considering the use of an overly 

simplified support.  

8.8.8 Damage Levels and Failure Modes 

Beam Series SS0 and SS1 

The comparison of the beams’ crack widths, damage levels and failure modes, when 

applicable, obtained analytically and experimentally, are presented in Table 8.8 for the 

beam series SS0 and SS1. All crack widths are the maximum crack widths measured or 

calculated at the final resting stage of the experiment or analysis. 

VecTor5 Test
SS0a-1 0.1 0.2
SS0a-2 Shear Fail. Shear Fail.
SS0b-1 Shear Fail. Shear Fail.

SS1a-1 0.9 0.25
SS1a-2 4.3 4.0
SS1a-3 6.4 5.0
SS1b-1 4.3 5.0
SS1b-2 6.3 30.0

Wcr (mm) - Shear Dominant Behaviour or Failure Mode

Shear FailureExtensive Shear Damage

VecTor5 Experiment
Shear Cracking

Extensive Shear Failure 
Shear Failure

Shear Cracking
Extensive Shear Cracking
Extensive Shear Damage
Extensive Shear Cracking

 

Inspection of Table 8.8 suggests that very good correlation with the experimental 

behaviour was obtained analytically. Shear-related mechanisms were the major cause of 

the damage sustained by these beams in both the analytical and experimental cases. More 

notably, the failure mode of the beams SS0a-2 and SS0b-1 were predicted with excellent 

accuracy. In the analytical model, SS0a-2 experienced an extensive shear failure 

involving Members 6, 7, 8, and 9. A similar shear failure mechanism was observed 

experimentally as shown in Figure 8.16. On the other hand, the shear failure of SS0b-1 

involved only Member 9 in the analytical model, also similar to the experimental 

observation as shown in Figure 8.18. 

The least accuracy in the analytical predictions was encountered with SS1b-2. The level 

of shear damage was underestimated by the analysis. The model sustained extensive 

Table 8.8 Comparison Crack Widths and Damage Modes for SS0 and SS1 Beams 
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shear damage but was able to retain its integrity and complete the analysis without a 

failure, whereas the beam sustained complete shear failure in the test. 

The shear crack widths obtained analytically showed an excellent correlation with the 

experimental shear crack widths except for SS1b-2. 

It is of interest to note that both beam series (SS0 and SS1) were shear-critical under 

static loading conditions. Similarly they exhibited shear-dominated behaviours under 

impact loads both in the experiments and in the analyses. 

Beam Series SS2 and SS3 

A similar comparison involving the beams series SS2 and SS3 is given in Table 8.9. 

 

VecTor5 Test VecTor5 Test
SS2a-1 0.3 0.2 0.4 n/a
SS2a-2 2.0 3.0 3.4 1.8
SS2a-3 2.9 5.0 5.3 1.8
SS2b-1 2.2 1.8 3.4 1.3
SS2b-2 2.5 2.0 6.0 n/a
SS2b-3 2.4 2.0 6.0 n/a

SS3a-1 0.0 0.2 0.1 n/a
SS3a-2 1.2 1.1 4.6 0.8
SS3a-3 1.5 1.3 8.0 n/a
SS3b-1 1.0 0.4 5.0 1.0
SS3b-2 1.3 2.0 9.0 2.0
SS3b-3 1.8 2.0 9.0 n/a

n/r: value not reported

Wcr (mm) - Shear Wcr (mm) - Flexure Dominant Behaviour or Failure Mode
VecTor5 Experiment

Shear Cracking
No Significant Change

Shear Cracking
No Significant Change

Flexure+Shear Cracking Shear Cracking

Extensive Shear Cracking

Shear+Flexural Cracking
Shear Cracking

Shear+Flexural Cracking
Extensive Shear Damage

Flexure+Shear
Shear Cracking

No Significant Change
 

The dominant behaviour and the damage levels of the beams were predicted with 

remarkable accuracy. Similar to the experimental observations, the analytical behaviours 

of these beams were flexure-dominant for the first impact tests. The behaviour then 

shifted towards shear cracking in the second tests, analytically and experimentally. In the 

third impact tests, the experimental observation of ‘no-significant-change’ damage levels 

was also predicted with excellent accuracy by the analytical procedure.  

The least accurately predicted response came from Beam SS3a subjected to the first 

impact test (the lighter drop-weight). The analytical prediction underestimated the shear 

Table 8.9 Comparison of Crack Widths and Damage Modes for SS2 and SS3 Beams 
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cracking and showed a predominantly-flexural behaviour, whereas shear cracking was 

the dominant behaviour in the experiment. Nonetheless, considering the analytical 

displacement and reaction responses of this beam, this result can be accepted as 

reasonable. 

The analytical shear crack widths showed a very good correlation to the experimentally 

determined widths in almost all tests. However, the flexural crack widths calculated at the 

midspan systematically overestimated the experimental values significantly. This was 

likely caused by local effects which enhanced the strength of concrete. As discussed in 

Section 1.2.4, the sectional analyses do not consider how the loads are introduced into the 

member by neglecting, for example, the beneficial effects of the compressive clamping 

stresses and concrete strut actions. This may translate into more tensile straining of the 

concrete at the midspan, where the impact is applied, and may increase the flexural crack 

widths in turn. 

It is of interest to note that both beam series (SS2 and SS3) were flexure-critical under 

static loading conditions. However, when subjected to impact loading, shear-related 

mechanisms played a significant role in their behaviour both in the experiment and in the 

analysis.  

8.9 Summary, Conclusions and Recommendations 

The analysis procedure developed in Chapter 5 for general loading conditions was 

significantly expanded and modified in Chapter 7 to allow for nonlinear analyses under 

dynamic loading conditions including time-varying base accelerations, time-varying 

impulse, impact and blast forces, initial mass velocities, and constant mass accelerations. 

Three time integration methods were implemented with the Wilson’s Theta method being 

the most favoured one. The motivation for this was to avoid the need to introduce some 

additional viscous damping for stability reasons which arises when using the other two 

procedures, i.e., Newmark’s average and linear acceleration methods. As was discussed 

in detail in Section 7.10, the selection of the vibration modes to which damping is 

assigned, and the selection of the appropriate damping ratios, is a major task involving 
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assumptions regarding several unknowns and requiring a series of repeated analyses 

which may take significant engineering time. It was also observed that the structural 

response changes significantly under different damping ratios, which makes the selection 

of an appropriate damping scheme more critical. Moreover, the nonlinear analysis 

procedure employed in VecTor5 considers nonlinear material hysteresis through which 

most of the energy dissipation occurs, thus not particularly requiring additional viscous 

damping. It should be, however, noted that when analyzing a real structure having non-

structural components, the use of additional viscous damping may be necessary due to the 

energy dissipation of non-structural elements as discussed in Section 7.5.2. In this case, 

either Newmark’s method or Wilson’s Theta method can be employed with an 

appropriate additional viscous damping ratio. 

In this chapter, the analytical procedure developed for dynamic loading condition was 

verified with a well-instrumented and well-documented experimental program (Saatci, 

2007) involving 20 impact tests on eight reinforced concrete beams. The experimental 

behaviours of the beams were carefully compared to the analytical behaviours in terms of 

the displacement, support reaction and reinforcement strain responses. Damage levels, 

residual displacements, failure modes, and crack widths at the end of the loadings, as 

obtained experimentally and analytically, were also compared. Moreover, the analytical 

post-peak vibrational characteristics were compared to the experimental responses in 

terms of damping and vibrational periods. As well, guidelines for modelling reinforced 

concrete frame-related structures, particularly those subjected to impact loads, were 

provided. 

Considering all 20 impact tests, a mean of 0.99 and a coefficient of variation (COV) of 

9.5% were achieved for the predicted-to-observed peak displacement ratio. For the peak 

reaction forces, a mean of 0.95 and a COV of 21.3% were attained. For the residual 

displacements at the end of the loadings, a mean value of 0.98 and a COV of 33.9% were 

realized. The failure modes and damage levels sustained by the beams were predicted 

accurately. In addition, the computed post-peak characteristics showed reasonably strong 

correlations with the experimental results. 
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The damping characteristics of the test beams were captured reasonably well. The use of 

Wilson’s Theta method with no additional damping provided stable analyses and proved 

to be a viable nonlinear dynamic analysis technique. Note that currently available 

nonlinear analyses programs generally require a certain percentage of viscous damping, 

sometimes up to 5%, even though they include other energy dissipating mechanisms such 

as the concrete hysteresis (Filippou et al., 1992). Therefore, the implementation of 

Wilson’s Theta method with no additional damping was perhaps the most notable 

accomplishment among the dynamic implementations. 

Also notable is that the displacement responses of previously damaged beams in second 

and third tests were predicted with high accuracy. The predicted-to-observed ratio of the 

peak displacements in the second and third impact tests had a mean of 0.98 with a COV 

of 7.1%. Since a very limited number of analytical tools are available for such an 

analysis, the capability of analyzing previously damaged structures proved to be a 

valuable feature of the analytical procedure developed. 

The vibrational periods of the beams were predicted reasonably well with an 

underestimation of 15 to 20 percent. This was attributed to some of the material 

behaviour models used, which were primarily developed for static loading conditions. It 

was emphasized that more comprehensive models directly incorporating dynamic effects 

are required for improved analytical predictions. 

The peak support reactions were predicted with acceptable accuracy even though an 

overly simplified roller support was used to simulate the special support condition 

employed in the experiment. However, unacceptably high uplift forces were predicted. 

In conclusion, the newly implemented dynamic analysis algorithms of VecTor5 

performed well. The behaviour of the beam specimens under impact loads were 

simulated with an accuracy which is acceptable in most engineering situations, let alone 

for elements that were subjected to very extreme levels of damage. Both shear- and 

flexure-related mechanisms were captured well. 
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Also notable is that the analyses were completed without any loss of computational 

stability and in a short period of time. A typical impact analysis of a beam in this study 

required a computation time of approximately 19 minutes*. This is significant 

considering that several hours were required for such analyses using finite element 

procedures with comparable computational power (Saatci, 2007). 

To account for the strength gain of concrete and reinforcement materials under high 

strain rates, a number of formulations were implemented to calculate the dynamic 

increase factors. Although the implemented strain rate formulations were selected 

carefully from the available models which reflect current knowledge, significant 

assumptions and contradictions were noted regarding those formulations. The significant 

effects of these formulations on the calculated responses were pointed out with an 

emphasis on the need for more experimental and analytical studies to improve these 

formulations for more accurate simulations. 

*On a Laptop computer with an Intel ® Dual Core 2 Due® T7500 (2.2 GHz) Processor®, a 2 GB DDR2,    
  677MHz RAM and a 7200 RPM hard disk drive. 
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CHAPTER 9 
SUMMARY, CONCLUSIONS & RECOMMENDATIONS 

9.1 Summary 

In addition to providing a review of the previous studies and a critical look at the current 

state-of-the-art, this study was concerned with the development and verification of an 

analytical procedure for the nonlinear analysis of frame structures with the aim of 

capturing shear-related mechanisms as well as axial and flexural mechanisms. A frame 

analysis program, VecTor5, based on predecessor program TEMPEST (Vecchio, 1987; 

Vecchio and Collins, 1988), was further developed for this purpose. Originally developed 

in the early 1980s at the University of Toronto, TEMPEST was based on the Modified 

Compression Field Theory (MCFT) (Vecchio and Collins, 1986) and was capable of 

performing nonlinear frame analyses under temperature and monotonic loading 

conditions. Although providing generally satisfactory simulations, there were a number 

of deficiencies present in its computational algorithms. 

This study consisted of three major parts: improvement of the original analysis procedure 

for monotonic loading conditions, further development of the procedure for general 

loading conditions, and further development of the procedure for dynamic loading 

conditions. Each part was supported by verification studies performed on a large number 

and variety of structures previously tested. In addition, considerations in nonlinear 

modelling were discussed with the aim of providing guidelines for general modelling 

applications. 

In the first part, the original analytical procedure of VecTor5 was significantly improved 

and expanded to allow for improved simulations of the nonlinear behaviour of frame 

structures under monotonic loading conditions. The following modifications and 

additions were made to the original formulations of VecTor5 in this first part: 

1. The sectional analyses algorithm was completely rewritten with an emphasis on 

improved representation of shear behaviour. 
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2.  Refinements in the underlying theories that have occurred in the past two decades, 

such as the Disturbed Stress Field Model (DSFM) (Vecchio, 2000), were 

implemented. 

3. The deficiencies previously reported were corrected. 

4. Additional second-order effects such as reinforcement dowel action, concrete 

dilatation; concrete prestrains, concrete tension softening, and concrete crack slip 

check were implemented. 

5. A new shear protection algorithm was implemented to approximately take into 

account the increased strengths of D-regions. 

6. A new shear failure check algorithm was implemented to detect the shear failures of 

members which may have gone unnoticed with significant unbalanced shear forces in 

the cases where the specified maximum number of iterations turns out to be 

insufficient for the structure being analyzed. 

7. The existing dynamic averaging scheme was improved to significantly reduce the 

unbalanced forces. This implementation was made a default feature of the analytical 

procedure. 

8. A new variable crack spacing calculation algorithm was implemented to take into 

account the variable spacings of cracks depending on the longitudinal and transverse 

reinforcement configuration. 

9. Stress calculations in the out-of-plane direction, strain hardening behaviour of 

transverse reinforcement and calculation of reinforcement local stresses and strains at 

a crack were included into the sectional analyses. 
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10. The total number of elements, concrete layers and steel layers, which can be handled 

by the program, were increased. A more comprehensive warning mechanism for input 

errors and a more detailed output for advanced users were provided. 

11. The stability and convergence characteristics of the original program were improved 

significantly. 

The resulting analytical procedure for monotonic loading condition was verified with a 

variety of structures including two sets of beams, three large-scale frames and six large-

scale shear walls, all of which were previously tested. As the main focus of the analytical 

procedure developed was to accurately simulate shear-related mechanisms, two-thirds of 

the structures considered exhibited shear-dominated behaviour in the experiments. The 

experimental behaviours of the structures were compared to the analytical behaviours in 

terms of load-deflection responses, reinforcement strains, crack widths, failure modes and 

failure displacements. In addition, the analytical post-peak responses were compared to 

the experimental responses and the energy dissipation characteristics were discussed. 

In the second part of this study, the analytical procedure developed was expanded to 

consider general loading conditions including the special cases of cyclic and reversed-

cyclic loading. The following additions were made to the existing analytical procedure: 

1. The concrete and reinforcement strain histories were included in the sectional 

analyses. Concrete strain histories were considered based on the incremental 

formulation proposed by Vecchio (1999).  

2. Three concrete hysteresis models were implemented: 

i. The Vecchio model with linear unloading (Vecchio, 1999), 

ii. The Vecchio model with nonlinear unloading (Vecchio, 1999), 

iii. The Palermo model with decay (Palermo and Vecchio, 2003). 

3. Three reinforcement hysteresis models were implemented: 
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i. The Seckin Model with Bauschinger effect (Seckin, 1981), 

ii. The Elastic-Plastic model with strain hardening, 

iii. The Elastic-Plastic model. 

The resulting analytical procedure for general loading condition was verified with a 

variety of structures consisting of one large-scale frame, four large-scale beam-column 

subassemblies and six 1/3-scale shear walls, all of which were previously tested. The 

experimental behaviours of the structures were compared to the analytical behaviours in 

terms of load-deflection responses, reinforcement strains, crack widths, failure modes and 

failure displacements. Important in the seismic assessment of structures, the total energy 

dissipation and the displacement ductility ratios were also compared to the experimental 

results.  

In the third part of this study, the analytical procedure developed was significantly 

expanded to consider dynamic loading conditions including time-varying base 

accelerations, impulse, impact and blast forces, initial mass velocities, and constant mass 

accelerations. The following additions and modifications were made to the existing 

analytical procedure: 

1. Three time integration methods were implemented: 

i. Newmark’s average acceleration method (1959), 

ii. Newmark’s linear acceleration method (1959), 

iii. Wilson’s Theta method (1976). 

2. Two damping formulations were implemented to account for additional viscous 

damping mechanisms: 

i. Rayleigh damping (1878), 

ii. Alternative damping (Clough and Penzien, 1993). 
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3. Two dynamic increase factor formulations were implemented to account for the 

strength gain of concrete and the reinforcement under high strain rates: 

i. CEB-FIP (1988 and 1990) formulations, 

ii. Malvar and Crawford (1998) formulations. 

4. A new modal analysis algorithm was implemented to calculate the vibration 

characteristic of the structure, such as the mode shapes and frequencies. 

5. New algorithms were implemented to determine the lumped-mass matrix and 

dynamic load vectors. 

The resulting analytical procedure developed for dynamic load conditions was verified 

with a well-instrumented and well-documented experimental program (Saatci, 2007) 

involving 20 impact tests on the eight reinforced concrete beams. The experimental 

behaviours of the beams were compared to the analytical behaviours in terms of the 

displacement, support reaction and reinforcement strain responses. Damage levels, 

residual displacements, failure modes, and crack widths at the end of the loadings, as 

obtained experimentally and analytically, were also compared. Moreover, the analytical 

post-peak vibrational characteristics were compared to the experimental responses in 

terms of damping and periods of vibration.  

In all three parts, important considerations in the nonlinear modelling were discussed 

through the use of practical examples; details of the analytical models were presented 

with the aim of providing guidelines for the general modelling process. Moreover, the 

appropriate use of the newly implemented options and the appropriate selection of several 

parameters were discussed, including the selection of appropriate time steps, 

displacement steps and segment lengths, the use of additional viscous damping, and the 

selection of a time integration method. 
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9.2 Conclusions 

 The following conclusions apply to the nonlinear static analyses of the three 

previously tested structures analyzed with some available software programs: 

1. Strength predictions for flexure-critical structures are, in general, a straightforward 

calculation; reasonable estimations should be expected even when using the default 

models for flexural behaviour. On the other hand, caution should be exercised when 

calculating the ductility of flexure-critical structures; erroneous estimates may be 

obtained. Considering the two flexure-critical structures analyzed, using the default 

models for flexural behaviour, providing four values: 

i. The strengths of the structures were predicted successfully with a mean of 

0.96 and a coefficient of variation (COV) of 5.6% for the predicted-to-

observed ratio. 

ii. The ultimate displacements corresponding to the failure conditions of the 

structures were not predicted with reasonable accuracy. One of the software 

programs used did not indicate any failure displacements; the other typically 

predicted less than half of the experimental failure displacements. 

2. Using generic or unknown models to simulate the behaviour of shear-critical 

structures can easily lead to grossly inaccurate results for both strength and ductility 

predictions. Considering the shear-critical frame analyzed, using the default models 

for shear behaviour, providing two values: 

i. The strength of the frame was poorly predicted with a mean of 0.79 and a 

COV of 67.6% for the predicted-to-observed ratio. 

ii. The failure displacement was not predicted with acceptable accuracy. One of 

the software programs used did not indicate any failure displacement; the 

other predicted less than one-tenth of the experimental failure displacement. 
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3. There is a need for advanced yet practical nonlinear analysis procedures which 

inherently include shear-related influences as well as flexure and axial related ones, 

thereby capturing all possible failure mechanisms.  

4. The procedure needed for the nonlinear analysis of reinforced concrete frames should 

not require previous knowledge of the failure mechanism of the structure and should 

not require expert knowledge on the selection of material models and assumptions in 

the analysis. 

 The following conclusions apply to all three parts of this study (i.e., monotonic, 

general and dynamic loading conditions): 

1. The analytical procedure developed was shown to be successful in simulating the 

experimental responses of previously tested specimens with a high level of accuracy.  

i. For all the static analyses performed, comprising 55 simulations, a mean of 

1.01 and a coefficient of variation (COV) of 10.4% were achieved for the 

predicted-to-observed strength ratio. The analyses covered a variety of 

structures, half of which were shear-critical, subjected to monotonic and 

reversed-cyclic loading conditions. For all the dynamic analyses performed 

under impact loading conditions, comprising 20 simulations, a mean of 0.99 

and a COV of 9.5% were achieved for the predicted-to-observed peak reaction 

forces ratio. These analyses included the second and third impact tests on the 

damaged beams. Considering the challenges involved in the simulation of the 

behaviour of such structures under such loading conditions, these values can 

be regarded as excellent. 

ii. For all the analyses performed, the failure or damage modes were predicted 

with excellent accuracy for 90% of the structures. The failure modes of the 

remaining 10% structures were partially correctly captured. A failure mode 

which was contradictory to the experimental observations (e.g., shear failure 

rather than flexural failure or vice versa) was never predicted. 
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iii. The stiffnesses of the structures examined were captured reasonably well with 

slightly stiffer analytical responses than the experimental responses. This was 

attributed to the interference of the loading machine and irregularities in the 

experimental set-ups. 

2. The implementations of the MCFT and DSFM theories into a sectional calculation 

procedure proved successful; the shear-dominated behaviours of the structures 

examined were predicted well. 

3. The newly implemented shear protection algorithm performed well; premature shear 

failures of sections adjacent to beam-column panel zones, point load application 

areas, and support areas were prevented. 

4. The newly implemented shear failure check algorithm performed well; sudden shear 

failures of several structures were detected that may have gone unnoticed otherwise. 

5. Newly implemented algorithms for various second-order mechanisms performed 

well; improved simulations of the post-peak responses of the structures were 

achieved. 

6. The aim of obtaining reasonable simulations with reasonable engineering effort was 

achieved. 

i. All analyses were performed with the use of default material behaviour 

models and analysis options. No decisions regarding the expected behaviour, 

failure mode or selection of appropriate parameters were made prior to the 

analyses. No additional calculations, such as interaction responses or moment-

curvature responses of the cross sections, were performed in the modelling 

process. 

ii. The analyses typically required little computation time. Under monotonic 

loading, approximately one minute was required for the analysis of each of the 

beams examined; the longest analysis time of approximately 6 minutes was 
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required for the Duong frame*. Under general loading, approximately 20 

minutes were required for the analysis of one of the PCA shear walls. Under 

dynamic loading, approximately 19 minutes were required for the impact 

analysis of one of the Saatci beams. These are remarkable considering the 

several hours required for such an analyses using finite element procedures as 

reported by Saatci using comparable computational power. 

7. Optimum segment lengths to be used in the frame models were recommended as a 

result of a parametric study. A segment length in the range of 50% of the cross 

section depth was recommended for frame-related structures (i.e., beams, columns 

and frames); a segment length in the range of 10% of the cross section depth was 

suggested for shear walls (see Section 9.3, point 8). 

 The following additional conclusions were reached in the first part of this study (i.e., 

monotonic loading conditions): 

1. The developed analytical procedure for monotonic loading was shown to be 

successful in simulating the experimental responses of previously tested specimens 

with a high level of accuracy. For a variety of 33 structures examined, two-thirds of 

which were shear-critical: 

i. A mean of 1.03 and a coefficient of variation (COV) of 11.9% were achieved 

for the predicted-to-observed strength ratio. For displacements corresponding 

to complete failure, a mean of 0.85 with a COV of 20.7% was realized. 

Considering the challenges involved in the modelling of shear-critical 

structures, these ratios can be regarded as highly satisfactory.  

ii. The failure modes of the structures were predicted accurately. In addition, the 

computed reinforcement strain responses, member elongation responses and 

concrete crack widths showed reasonably strong correlations with the 

experimental results. 

*On a Laptop computer with an Intel ® Dual Core 2 Due® T7500 (2.2 GHz) Processor®, a 2 GB DDR2,    
  677MHz RAM and a 7200 RPM hard disk drive. 
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2. The effective stiffness values for the three reinforced concrete frames examined were 

typically found, through the use of experimental load-deflection responses, to be 

approximately 0.25 times the uncracked gross stiffness values. 

 The following additional conclusions were reached in the second part of this study 

(i.e., general loading conditions): 

1. The analytical procedure developed for general loading was shown to be successful in 

simulating the experimental responses of previously tested specimens with a high 

level of accuracy. For a variety of 11 structures examined in the both positive and 

negative loading directions, comprising 22 simulations: 

i. A mean of 0.97 and a coefficient of variation (COV) of 6.0% were achieved 

for the predicted-to-observed strength ratio. For the displacements 

corresponding to the peak load capacities, a mean of 1.07 with a COV of 

23.4% was realized. 

ii. The failure modes of the structures were predicted accurately for the majority 

of the specimens. In addition, the computed reinforcement strain responses, 

member elongation responses and crack widths showed reasonably strong 

correlations with the experimental results. 

iii. Important in the seismic assessment of structures, the total energy dissipated 

by the structures was predicted with reasonable accuracy, achieving a mean of 

1.18 with a COV of 14.6% for the predicted-to-observed ratio. Considering 

the challenges involved in the simulation of behaviour of reinforced concrete 

under reversed-cyclic loading conditions, these ratios can be regarded as 

highly satisfactory. 

iv. The strength degradation characteristics of the structures, under repeated 

cycles at the same displacement amplitude, were simulated well. Also notable 

is that this degradation occurred despite the use of the default concrete 

hysteresis, which does not consider strength degradation. The computed 
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strength degradation was a result of increased shear straining and cracking. 

The crack width limit model was found to significantly contribute to the 

strength degradation. 

v. The highly irregular loading protocol of SP6 specimen (Seckin, 1981) was 

successfully simulated through the use of implemented seed files (i.e., binary 

input files). 

 The following additional conclusions were reached in the third part of this study (i.e., 

dynamic loading conditions): 

1. The analytical procedure developed for dynamic loading was shown to be successful 

in simulating the experimental responses of 8 beam specimens previously tested 

under impact loading. Considering all 20 impact analyses: 

i. A mean of 0.99 and a coefficient of variation (COV) of 9.5% were achieved 

for the predicted-to-observed peak displacement ratio. For the predicted-to-

observed peak reaction forces, a mean of 0.95 and a COV of 21.3% were 

attained. A mean value of 0.98 and a COV of 33.9% were realized for the 

predicted-to-observed residual displacements at the end of the loadings. These 

ratios can be regarded as highly satisfactory in most engineering situations, let 

alone for elements that were subjected to extreme levels of damage.  

ii. The failure modes and damage levels sustained by the beams were predicted 

accurately. Both shear- and flexure-related mechanisms were captured well.  

iii. The computed damping characteristics showed reasonably strong correlations 

with the experimental results. 

iv. The vibrational periods of the beams were captured reasonably well with 

typical underestimation of approximately 15 to 20 percent. This was attributed 

to some of the material behaviour models used, which were primarily 

developed for static loading conditions, and to the assumption of rigid 

supports. 
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2. The use of the Wilson’s Theta method with no additional damping provided stable 

analyses and proved to be a viable nonlinear dynamic analysis technique. Note that 

other currently available nonlinear analyses programs generally require a certain 

percentage of viscous damping, sometimes up to 5%, even though they include 

energy dissipating mechanisms such as the concrete hysteresis (Filippou et al. 1992). 

Therefore, the implementation of Wilson’s Theta method with no additional viscous 

damping was perhaps the most notable accomplishment among the dynamic 

implementations. 

3. The displacement responses of previously damaged beams in second and third tests 

were predicted with high accuracy. The predicted-to-observed ratio of the peak 

displacements in second and third impact tests had a mean of 0.98 with a COV of 

7.1%.  Since a very limited number of analytical tools are available for such analyses, 

the capability of analyzing previously damaged structures proved to be a valuable 

feature of the analytical procedure developed. 

4. The peak support reactions were predicted with acceptable accuracy, but 

unacceptably high uplift forces were predicted due to the use of overly simplified 

roller supports in the modelling of special support conditions employed in the 

experiment. 

9.3 Current Limitations and Recommendations for Future Work 

1. The analysis procedure developed should not be used for the detailed analysis and 

assessment of beam-column joints; rather, it should be used for global analyses of 

large frame structures. 

2. New procedures (e.g. a new member type) should be developed for simulations of the 

behaviour of beam-column joint panel regions, capturing the joint distress. 
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3. Bond-slip mechanisms of the longitudinal reinforcement should be implemented into 

the current computation algorithm for better simulations of structural behaviour under 

large strain reversals. 

4. The longitudinal bar buckling mechanism should be implemented into the current 

computation algorithm for better simulations of structural behaviour under large 

compressive strains. 

5. A more general tension softening formulation should be developed for improved 

simulations of the behaviour of members containing very little amounts of shear 

reinforcement. 

6. The concrete and reinforcement constitutive models, which were primarily developed 

for static loading conditions, should be further developed directly incorporating strain 

rate-related effects for improved analytical predictions in dynamic analyses. 

7. More comprehensive strain rate formulations, which are developed specifically for 

the reinforced concrete, should be utilized. The implemented strain rate formulations 

were selected carefully from the available models which reflect current knowledge; 

more experimental and analytical studies are required to improve the formulations for 

more accurate simulations. 

8. A more comprehensive study including shear-critical shear walls should be 

conducted to reach a conclusive recommendation for the optimum segment lengths to 

be used in the modelling of shear walls. 

9. Introduction of a new algorithm for automatic member segmentation in which the 

frame members are automatically divided into smaller segments would reduce the 

effort required when modelling large frames. 
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APPENDIX A 

COMPARISON OF ANALYTICALLY AND EXPERIMENTALLY 

OBTAINED LONGITIDUNAL REINFORCEMENT STRAINS FOR 

SAATCI BEAMS (Saatci, 2007) 
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Figure A.1 Comparison of Experimental and Analytical Responses for SS0a-1: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

(a) (b) 

(a) (b) 

Figure A.2 Comparison of Experimental and Analytical Responses for SS1a-1: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain

Figure A.3 Comparison of Experimental and Analytical Responses for SS1a-2: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

(a) (b) 
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Figure A.4 Comparison of Experimental and Analytical Responses for SS1a-3: (a) Midspan –  

       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.5 Comparison of Experimental and Analytical Responses for SS1b-1: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.6 Comparison of Experimental and Analytical Responses for SS1b-2: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 
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Figure A.7 Comparison of Experimental and Analytical Responses for SS2a-1: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.8 Comparison of Experimental and Analytical Responses for SS2a-2: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.9 Comparison of Experimental and Analytical Responses for SS2a-3: (a) Midspan –  
       Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

0 0.05 0.1 0.15 0.2 0.25

Time (s)

St
ra

in
 (x

10
-3

)

Experiment
Analysis

(a) (b) 



 425

0
2

4

6

8

10

12
14

16

18

20

0 0.05 0.1 0.15 0.2 0.25
Time (s)

St
ra

in
 (x

10
-3

)
Experiment
Analysis

 

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25
Time (s)

S
tra

in
 (x

10
-3
)

Experiment
Analysis

 

0
2
4
6
8

10
12

14
16
18
20

0 0.05 0.1 0.15 0.2 0.25
Time (s)

St
ra

in
 (x

10
-3

)

Experiment
Analysis

  

-0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25
Time (s)

St
ra

in
 (x

10
-3
)

Experiment
Analysis

-0.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25
Time (s)

St
ra

in
 (x

10
-3
)

Experiment
Analysis

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

0 0.05 0.1 0.15 0.2 0.25Time (s)

St
ra

in
 (x

10
-3
)

Experiment
Analysis

(a) (b) 

(a) (b) 

(a) (b) 

Figure A.10 Comparison of Experimental and Analytical Responses for SS2b-1: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.11 Comparison of Experimental and Analytical Responses for SS2b-2: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.12 Comparison of Experimental and Analytical Responses for SS2b-3: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 
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Figure A.13 Comparison of Experimental and Analytical Responses for SS3a-1: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.14 Comparison of Experimental and Analytical Responses for SS3a-2: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.15 Comparison of Experimental and Analytical Responses for SS3a-3: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 
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Figure A.16 Comparison of Experimental and Analytical Responses for SS3b-1: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.17 Comparison of Experimental and Analytical Responses for SS3b-2: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 

Figure A.18 Comparison of Experimental and Analytical Responses for SS3b-3: (a) Midspan –  
         Bottom Reinforcement Strain; (b) Support - Top Longitudinal Reinforcement Strain 
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INTRODUCTION TO THE USER’S MANUAL OF VECTOR5 

VecTor5 is a nonlinear sectional analysis program for two dimensional frame-related 

structures consisting of beams, columns and shear walls, subjected to temperature, static 

and dynamic loading conditions. Temperature loads include nonlinear thermal gradients; 

static loads include monotonic, cyclic and reversed-cyclic load cases; dynamic loads 

include base accelerations (time-history analysis under an input accelerogram), impulse, 

impact and blast loads, initial velocity and constant acceleration load cases. Based on the 

Modified Compression Field Theory (Vecchio and Collins, 1986) and the Disturbed 

Stress Field Model (Vecchio, 2000), VecTor5 uses a smeared, rotating crack approach for 

reinforced concrete using a total load, secant stiffness formulation.  

The computational algorithm performs two interrelated analyses. Using a direct stiffness 

method, VecTor5 performs a global frame analysis first. Rigorous sectional analyses of 

concrete member cross sections are then performed at various sections along the lengths 

of the members, using a distributed nonlinearity fibre model approach. The computed 

responses are enforced with the use of an unbalanced force approach where the 

unbalanced forces are reduced to zero iteratively. 

VecTor5 is capable of considering such second order effects as material and geometric 

nonlinearities, time- and temperature-related effects, membrane action, nonlinear 

degradation of concrete and reinforcement due to elevated temperatures, compression 

softening due to transverse cracking, tension stiffening due to load transfer between 

cracked concrete and reinforcement, tension softening due to fracture-associated 

mechanisms, shear slip along crack surfaces, nonlinear concrete expansion, confinement 

effects, previous loading history, effects of slip distortions on element compatibility 

relations and concrete prestrains. In addition, required for the dynamic analyses, VecTor5 

considers strain rate effects on the concrete and reinforcement and damping effects on the 

structural response. 

The complete user’s manual and the basic version of VecTor5 can be found in the 

publications and the software sections of the VecTor Analysis Group website at 

‘www.civ.utoronto.ca/vector’. 

www.civ.utoronto.ca/vector
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