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ABSTRACT 

Stochastic simulation is used primarily as a basis for the resistance models in a reliability analysis 

and is often used to calibrate many structural concrete building codes.  This thesis outlines the 

implementation of stochastic simulation techniques into VecTor2, a NLFEA program for the 

analysis of reinforced concrete. Stochastic simulation was conducted on a subset of beams from 

the Toronto size effect series.  The simulation results form the basis of a reliability analysis that 

computes the reliability indices for the CSA A23.3-14 and the ACI 318-14 codes.  

Additionally, an experimental program assessing spatial variability within monolithic concrete 

using nondestructive techniques is presented and discussed.  Ultrasonic pulse velocity (UPV) 

measurements were taken on a grid for a large reinforced concrete specimen.  Data were collected 

from cylinders to develop a regression model for strength versus UPV.  Geospatial statistical 

methods were then employed to determine spatially variable material properties for a finite element 

model.  
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CHAPTER 1: INTRODUCTION 

Stochastic simulation is perhaps best understood in comparison with deterministic simulation.  In 

a deterministic simulation, the goal of the selected model is to replicate a physical system.  In the 

case of reinforced concrete, the Disturbed Stress Field Model (Vecchio et al., 2000) is a 

deterministic model for the analysis of reinforced concrete elements.  It aims to provide an accurate 

stress-strain response for reinforced concrete as an anisotropic smeared cracked material. What 

categorizes this simulation as deterministic is the need to define the input parameters. If the input 

parameters are known and the model is sufficient, the model will produce a good estimation of the 

physical behaviour.  In a stochastic simulation, the goal is to infer statistical data about an output 

quantity based on statistical knowledge of the system inputs. In the context of this thesis, the inputs 

under consideration are the spatial and global variability of concrete and steel material properties. 

Graham and Talay (2013) note that stochastic simulations are only useful for certain types of 

engineering problems.  Consider a system where the physical experiment can be described by well-

established models, but model parameters are difficult to calibrate.  In the case of reinforced 

concrete, it is well known that the concrete material properties exhibit a large variability (Mirza et 

al., 1979; Bartlett and MacGregor, 1996; Unanwa and Mahan, 2014). When testing structures in a 

laboratory, material testing is done on each specimen to determine the exact material properties.  

This allows for good deterministic models to produce accurate and reliable simulation of the 

structural behaviour. However, an engineer making an assessment of a structure in the field may 

not have access to perfect information. It may be too costly to determine the material properties, 

or physical testing may be impractical.   

As an example, consider the structural assessment of an existing foundation.  The foundation in 

question is a large pile cap for a 15000 ton cement storage silo seen in Fig. 1.1.  The original design 

for the foundation is based on the assumption that plane section remain plane and that sectional 

strength governs.  However, the span to depth ratio of the foundation is less than 2.4, which means 

that sectional assumptions for shear are likely violated. Thus an engineer has been tasked with 

assessing the strength of the pile cap.     
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 (a) (b) 

Fig.1.1: 15000 Ton Cement Storage Silo. Images courtesy of Consultec Ltd.  

(a) Elevation of Silo. (b) Foundation Detail. 

To start, a deterministic strut and tie model is developed.  The results of the strut and tie model 

indicate that the foundation is shear critical. This means that the strength of the foundation is 

heavily dependent on the behaviour of the concrete, and not the longitudinal reinforcing steel.  In 

addition, it is noted the failure mode of the foundation (brittle shear or ductile yielding of 

longitudinal reinforcement) is very sensitive to the material properties and the assumed strut angle.  

Such a problem is ideally suited to more advanced analysis procedures.  Thus the engineer may 

elect to use a nonlinear finite element program, perhaps VecTor2.  Traditionally, the structure is 

assessed as safe by using the nominal material properties as inputs and achieving an acceptable 

factor of safety.  However, due to the sensitivity of the material property inputs, additional 

information is required for the engineer to make a rational assessment of the structure.  It may be 

too costly to excavate around the foundation to determine the actual material properties.  Instead 

the problem can be approached in a stochastic framework. Information on the distribution of 

concrete and steel material properties can be used to produce information on the distribution of 

strength and the sensitivity to failure mode. A stochastic simulation could be carried out to 

determine the reliability index for this specific foundation. This reliability index can be compared 

against code recommended reliability indices to determine if the structure meets the safety 
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requirements of the local building code.  This is a practical example where stochastic simulation 

can aid engineers in their assessment of existing infrastructure.   

The variability associated with existing infrastructure in general is not limited simply to the 

inherent material variability.  There is a large degree of uncertainty associated with deteriorated 

infrastructure.  The extent, location, and behaviour of reinforced concrete deterioration is a topic 

of significant research.  Thus it is imperative that the ability to analyze deteriorated reinforced 

concrete is implemented into advanced analysis programs.  If the above example had exhibited 

signs of reinforcing corrosion, the assessment of its reliability is further complicated.  There is 

much work to be done on the development of analysis tools that can capture concrete deterioration 

in a reliability framework. The first step towards such tools is the focus of this thesis.  

1.1 Scope of Stochastic Modelling Capabilities 

The stochastic modelling capabilities implemented in this thesis include Monte Carlo sampling 

and Latin Hypercube sampling for uncorrelated uniform sampling, uniform sampling with 

correlated random variables, and spatial variation using random field generation.  Monte Carlo 

sampling is recommended in the literature when the number of simulations can be very large.  The 

advantage of Monte Carlo sampling is that it provides a completely unbiased sample of the input 

variables.  However, due to computational limitations, generating greater than a few hundred 

simulations may be impractical. In this case, it is recommended that Latin Hypercube sampling be 

used as it provides a good estimate of the mean and standard deviation of the output parameters.  

The implementation of random fields in this thesis is limited to Gaussian random fields.  This 

assumes that the distributions are normal.  However, for many of the selected models, a lognormal 

distribution is used for the concrete compressive strength.  The inclusion of lognormal distributions 

for random fields is not yet implemented. This is addressed partially by coupling global uniform 

sampling with localized random field sampling.  Additionally, the implemented software will not 

identify discontinuities in material properties and apply different random fields to each of the 

discontinuities. User specified material property scaling factors can be employed for any spatial 

variation that is outside of the scope of the implemented analysis types.  Lastly, correlated random 

fields cannot be generated for different random variables.  The implementation for random field 

analysis assumes that the tensile strength and modulus of elasticity are scaled directly from the 
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compressive strength.  The simulation of cross correlated random field was outside of the scope 

of this thesis.  The simulation of independent random fields was considered not to represent reality 

and thus the direct scaling approach is preferred.   

1.2 Thesis Outline 

This section summarizes the components of this thesis and outlines the order in which they are 

presented. Each chapter is summarized briefly below.  It is intended to help the reader understand 

the direction of this thesis.  

Chapter 2 presents the relevant literature and background knowledge for this thesis. A review of 

basic statistics and an introduction into reliability analysis is discussed.  Literature on several 

statistical models for concrete and steel strength are presented and discussed.  

Chapter 3 presents the procedures, results, and analysis of the subsidiary experimental program. A 

large reinforced concrete slab strip was constructed and tested by Collins et al. (2015).  Non-

destructive testing data were collected on a large specimen to determine the spatial variability of 

the in-situ concrete strength for the purpose of assessing how spatial variability influences 

modelling of reinforced concrete beams.  

Chapter 4 summarizes all of the various implementations for stochastic simulation tools in 

VecTor2. The theory behind each implementation is discussed and the verification of the 

implementation is presented.  

Chapter 5 employs the implementations discussed in Chapter 4 to conduct a reliability study of 

beams without shear reinforcement.  The CSA A23.3-14 and ACI 318-14 codes are compared 

through the lens of a reliability analysis. 

Chapter 6 outlines the main conclusions and identifies areas where future research is required.  

1.3 Research Significance 

Stochastic simulation is used primarily as a basis for the resistance models in a reliability analysis.  

In the case of reinforced concrete, simplified reliability has been used to calibrate many building 

codes (Nowak and Szerszen, 2003; Razkozy and Nowak, 2014; Bartlett, 2006).  The material 
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resistance factors in the case of the Canadian code, and the member resistance factors in the case 

of the American code, are calibrated to achieve a code level reliability.  However, as a recent 

prediction competition (Collins et al., 2015) has shown, prediction of the shear strength of concrete 

beams with no transverse reinforcement still remains a challenging task. With such uncertainty, 

the calibration of resistance factors and load factors for building codes requires software that can 

provide a good deterministic prediction of structural behaviour. VecTor2 represents a viable option 

for the simulation of reinforced concrete. It has the ability to analyze virtually any planar reinforced 

concrete structure, including disturbed regions. The addition of stochastic simulation tools to 

VecTor2 allow it to be used to create member resistance curves and thus be a useful tool in the 

assessment of safety and structural reliability for reinforced concrete members. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides an overview of the literature pertaining to stochastic simulation and the 

behaviour and analysis of corroded reinforced concrete. A review of basic statistics and reliability 

analysis is provided.  Several statistical models for concrete and steel material properties are 

reviewed and discussed. A selected number of Monte Carlo simulations are presented and 

discussed.  Lastly, relevant experimental results and existing models for the analysis of corroded 

reinforced concrete are presented.  

2.1 Review of Basic Statistics 

This section summarizes the basic statistics theory that is employed in this thesis.  It is intended to 

refresh the reader on some of the terms and concepts that are required to interpret the inputs and 

results of a stochastic simulation.  Note that this section is only a summary of statistics.  For a 

complete review of statistical concepts, or for any further clarification on the concepts presented 

in this section, the reader is encouraged to consult the references provided.  

2.1.1 Normal Distribution 

The normal distribution, also referred to as the Gaussian distribution, is the most common form of 

distribution used for describing the statistics of a large sample.   The distribution was developed 

independently by De Moivre in 1733 and Gauss approximately 100 years later (Montgomery and 

Runger, 2011).  The distribution is characterized by its symmetry around the average of the sample.  

The shape of the normal distribution is governed by the standard deviation.  A normal distribution 

is mathematically described by Equation 2.1.  

 ���� =
1√2�� 	�
 �−(� − �)�

2��  (2.1) 

 

The expected value of a normal distribution is equal to the mean (μ) and the variance is equal to 

the square of the standard deviation (σ).  The normal distribution is often standardized into a 

normal distribution with a mean of 0.0 and a standard deviation of 1.0.  This is referred to as the Z 

statistic and is shown in Equation 2.2.  
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 � =
� − ��  (2.2) 

2.1.2 Lognormal Distribution 

The lognormal distribution is used to represent random variables with exponential relationships.  

In the case of a lognormal distribution, a variable Y is related to a variable X through the relation 

X = eY.   If Y has a mean of θ and a standard deviation of ω and the variable Y is normally 

distributed, we can represent the distribution of X by Equation 2.3.  

 ���� =
1��√2� 	�
 �−(ln (�) − �)�

2��  (2.3) 

The mean and variance of X are described in Equation 2.4 and Equation 2.5 respectively. 

 

 ���� = 	���
�

�  (2.4) 

 ���� = 	�����

(	��

− 1) (2.5) 

 

A lognormal distribution is often used on random variables that can obtain values close to zero but 

cannot be negative.   

2.1.3 Beta Distribution 

A beta distribution can be assumed to describe a continuous random variable that has a finite range.  

The parameters of the beta distribution allow it to take on multiple shapes.   The beta distribution 

can be described with two parameters: α and β.  Equation 2.6 describes the beta distribution.  

 ���;  �,�� =  
1

B(�,�)
�����1 − �����,��� 0 ≤ � ≤ 1 (2.6) 
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where, 

 � > 0 (2.6a) 

 � > 0 (2.6b) 

                                                   B�α, β� = �����(1 − �)������

	
                                                        (2.6c) 

Additionally, the beta distribution can be transformed to be bounded by values A, and B.  This is 

done using the transformation described in Equation 2.7, where A is referred to as the lower bound 

and (B-A) is referred to as the range.  

 ���;  �,�,�,�� =  � + �� − ���(�;�,�) (2.7) 

2.1.4 Statistical Inference 

There are many tools available for statistical inference, this section focuses on two tests that are 

used to evaluate the performance of the random variable generators (described later in Section 4.1) 

and the distributions inferred from the stochastic simulation results.  

2.1.4.1 Chi-squared Goodness of Fit Test 

The chi-squared goodness of fit test is a statistical tool used for the evaluation of a fit distribution 

when compared to a population of data. This test is widely employed to statistically determine the 

strength of a given fit to a set of experimental data.  The chi-squared goodness of fit test determines 

if the aggregate difference between the observed frequency and the theoretical frequency is 

significant.  The hypothesis is expressed as follows: 

H0:  The data follow the selected distribution 

H1:  The data do not follow the selected distribution. 

The test statistic, X2, is calculated using Equation 2.8, where Oi is the observed frequency, and Ei 

is the estimated frequency.   
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 �� = �� 
 − �
���


�


��
 (2.8) 

As the number of samples, i, approaches infinity, the test statistic approaches a chi-squared 

distribution. To evaluate the hypothesis, the test statistic is compared to a one-sided chi-squared 

distribution at a given confidence. If the calculated test statistic is greater than the chi-squared 

statistic, the null hypothesis is rejected and therefore the proposed distribution is rejected.  

The chi-squared goodness of fit test can be a useful tool for the evaluation of a fit distribution, 

however, it requires the analyst to select the bin size.  This can induce bias in the test and can result 

in accepting the hypothesis for one set of bin sizes, and rejecting it for another set.  

2.1.4.2 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (KS) test compares the calculated maximum difference between the 

empirical cumulative distribution and analytical cumulative distribution functions.  This maximum 

absolute difference forms the test statistic which is compared to a tabulated value to determine if 

the data follow the distribution.  The null and rejection hypotheses are defined as, 

H0:  The data follow the selected distribution. 

H1:  The distribution do not follow the distribution. 

 The empirical distribution is calculated as the number of values less than a given value in a set of 

ordered observations.  Equation 2.9 is used to calculate the test statistic.   

 

!" = #$%
 − &'
# ! = #$%
 − &'
��# � =  √( max)#!"#, |!|+ 
(2.9a) 

(2.9b) 

(2.9c) 

 

where $%
 is the analytical estimate for the standard CDF at each point xi, and &'
 is the observed 

or empirical CDF. This is then compared with a Smirnov formula (Corder and Foreman, 2014) 
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which is computed using Equation 2.10. If the p-value calculated from the Smirnov formula is 

greater than the selected level of confidence, the distribution fits the analytical cumulative 

distribution.  

 ,� 0 ≤ � < 0.27, �ℎ	( 
 = 1 (2.10a) 

 ,� 0.27 ≤ � < 1, �ℎ	( 
 = 1 −
2.506628� �- + -� + -��� (2.10b) 

 .ℎ	�	 - =  	��.����	����

 (2.10c) 

 ,� 1 ≤ � < 3.1 �ℎ	( 
 = 2�- − -� + -� − -��� (2.10d) 

 .ℎ	�	 - =  	�����

 (2.10e) 

 ,� � > 3.1, �ℎ	( 
 = 0 (2.10f) 

2.2 Basics of Reliability Analysis 

The following section is intended to be an introduction to structural reliability as it pertains to the 

scope of this thesis.  Multiple topics are introduced and discussed at a qualitative level.  For 

derivations and additional information, the reader is referred to the references provided.  

Reliability analysis is the mathematical basis for the limit state design method.  In a limit state 

design, the load that will act on the structure is predicted and factored by a prescribed value.  

Additionally, the resistance of each structural element is factored by either material resistance 

factors (CSA A23.3) or member resistance factors (ACI-318).  The derivation of these factors, 

both for loading and resistance, are the result of reliability methods.  Adequate structural safety is 

determined by reducing the probability of failure of the structure.  In the simplest definition of 

reliability, the load effect (denoted as S) and the resistance (denoted as R) are assumed to be 

random variables with a given distribution.  A structure will fail if R ≤ S. So, it follows that the 

probability of failure for a structure can be defined as: 

 
� = /�0 ≤ &� (2.11a) 
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� = /�0 − & ≤ 0� (2.11b) 

 
� = /(1 ≤ 0) (2.11c) 

where G is defined as the limit state function, in this case G = R – S. If R and S are normally 

distributed, and independent random variables, the mean and standard deviation of G is calculated 

as, 

 �� = �� − �� (2.12a) 

 ��� = ��� − ��� (2.12b) 

where μ represents the mean value of G, R, and S, and σ2 represents the variance for G, R and S. 

The probability of failure for the structural system is then defined as,  

 
� = Φ 20 − ���� 3 = Φ�−�� (2.13) 

where 

 � =  
����  (2.14) 

The term β is defined as the reliability index. The reliability index describes how far away the limit 

state function is away from zero (or failure). A higher reliability index means a lower probability 

of failure.  Thus it is a useful metric in assessing the safety of a structure. This concept is illustrated 

in Fig. 2.1. 

For a normal distribution, the reliability index can be calculated as: 

 � =  
�� − ��4��� − ��� (2.15) 

 



LITERATURE REVIEW 
 

12 

 

 

Fig. 2.1: Illustration of basic reliability function. Reproduced from Melchers (1999).  

Similarly, for a lognormal distribution, the structural reliability can be calculated as: 

 � �	 ln	���/��	
��� � ���  (2.16) 

In general, the reliability functions for a structure can be more complicated than the simple case 

described above.  To address complicated reliability functions, the second-moment assumption is 

used.  The second-moment assumption uses only the first and second moments resulting from the 

method of maximum likelihood.  The second-moment assumption was first published by Cornell 

(1969).  As shown above, the reliability index can be directly calculated for a normal and 

lognormal distribution.  However when the function deviates from normality, the variables are not 

independent, or the failure function is nonlinear, different methods to determine the reliability 

index are required.   

One such method is the first order second-moment theory which employs the Hasofer-Lind 

transformation (Hasofer and Lind, 1974).  Consider a failure function G(x) that is nonlinear.  The 

failure function can be linearized through the use of a Taylor series expansion.  The linearization 

of the failure function is called a first order method.  Consider the joint probability of two random 

variables X1 and X2.  There exists a nonlinear failure function G(x) that describes the failure of the 

structure.  When determining the reliability factor, it is important that the reliability is an invariant. 

To obtain this, all variables of the failure function are transformed into a standard normalized space 

through the use of Equation 2.17. 

fG(g) 

G 

β σG 

μG 

pf 
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 � � ��� � ���� � (2.17) 

This transformation is known as a transformation to y-space.  Additionally, the same 

transformation must be applied to the failure function to create the y-space failure function, 

denoted GY(y).  Note that if any of the variables within X are correlated, additional steps are 

required.  The invariant reliability index, β, is then determined as the minimum length line between 

the origin and the nonlinear failure function.  This concept is illustrated in Fig. 2.2.  

               

Fig. 2.2: Illustration of first order second-moment concept.  

Reproduced from Melchers (1999). 

If the random variables deviate from the normal distribution, the first order reliability methods 

must be used. For the purpose of this thesis, the structural reliability of a single structural element 

is most often considered.  Thus a single resistance curve will be determined through stochastic 

simulation, and a single load effect curve will be assumed.  Thus the equations 2.15 and 2.16 will 

be most readily employed in the reliability analysis.  

2.3 Concrete Material Property Statistics 

This section reviews the variability of concrete material properties as presented in the literature.  

The parameters reviewed include the concrete compressive strength, the tensile strength, and the 

modulus of elasticity.  

Y1 

Y2 

GY(y) [nonlinear] 

GY(y) [linear] 

fY(y1,y2) 

β 

Y2 

Y1 

fY(y1,y2) 

0 
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2.3.1 Mirza et al. – 1979 

In order to determine and calibrate the material resistance factors used in limit state design of 

concrete, the distribution and statistical parameters of material properties must be identified. Mirza 

et al. (1979) determined the statistical parameters for concrete compressive strength, tensile 

strength, and modulus of elasticity.  Data were compiled from many published and unpublished 

studies to determine these parameters.  

Concrete in compression exhibits large variability from multiple sources: material properties and 

proportions of the mix; variations in mixing, placing and curing; variations in test procedures; and 

variations between test specimens and in-situ data.  Equation 2.18 is the relationship between the 

strength of concrete within structures and the specified strength assumed by Mirza et al. (1979). 

 ��,
�,�� = ���)��,�����
���
 !�� + (2.18) 

where rc,real relates the cylinder strength to the specified design strength, rin-situ relates the in-situ 

compressive strength to the cylinder strength, and rR considers the rate of loading. Using 

relationships described in the literature, Equation 2.19 and Equation 2.20 are proposed to 

determine the mean in-situ compressive strength for a loading rate of R.  

 ��,
�,�� = ��,
�� �0.89�1 + 0.085�60�� (2.19) 

where 

 ��,
�� = 0.675��� + 1100 ≤ 1.15���  (
7,) (2.20a) 

 ��,
�� = 0.675��� + 7.584 ≤ 1.15���  (8/9) (2.20b) 

In addition, the coefficient of variation for a specified concrete strength (��,
�,�) is calculated using 

Equation 2.21.  

 ��,
�,�� = ��,�"�� + 0.0084 (2.21) 

The coefficient of variation for the cylinder strength (��,�"�) was determined from a literature 

review. It was reported that the coefficient of variation for field-cast laboratory-cured cylinders 
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with strengths less than 4000 psi [28 MPa] can be taken as 0.10, 0.15, and 0.20 for excellent, 

average, and poor quality concrete.  Above 4000 psi [28 MPa], the standard deviation remains 

constant at 400 psi [2.8 MPa], 600 psi [4.2 MPa], and 800 psi [5.6 MPa] for excellent, average, 

and poor quality concrete respectively (Mirza et al., 1979).  It was recommended by Mirza et al. 

(1979) to assume a normal distribution for concrete compressive strength.  

It is well established that a relation exists between the strength of concrete in tension and the 

concrete compressive strength. Several relations were established from regression analysis for the 

determination of concrete tensile strength as a function of the compressive strength.  Data were 

collected for the splitting strength and modulus of rupture and regression was then conducted for 

each set of data.   The tensile strength of concrete is effected by the size and type of aggregate, air 

entrainment, curing conditions, water to cement ratio, cement content, and the age of the specimen 

at loading.  However it is most common and convenient to relate the compressive strength to the 

tensile strength.   

The variability from the regression trends was modelled as a random variable described by 

Equation 2.22.  

  � =
� (�:7	�;	�)9�����  (2.22) 

where the coefficients a, and n are determined from regression analysis.  The distributions of A for 

splitting strength and modulus of rupture are shown in Fig.2.3.  The parameter A has a mean of 1.0 

for both the splitting and modulus of rupture. The coefficients of variation for splitting and 

modulus of rupture are 0.13 and 0.20 respectively.  

Mirza et al (1979) identified three main areas contributing to the variation of the tensile strength 

of concrete: the effect of volume, the speed of loading, and the effect of being in-situ.  The effect 

of volume was considered insignificant to the work of Mirza et al. (1979) and thus neglected for 

the analysis.  Insufficient data were available to capture the effect of in-situ versus controlled 

specimens and thus the in-situ mean compressive strength was used.  Lastly, previously determined 

rate effects were incorporated to establish an expression for the mean tensile strength.  Equation 

2.23 represents the general form of the statistical relationship.  Equation 2.24 and Equation 2.25 
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 (a) (b) 

Fig.2.3: Histogram and assumed distributions for (a) splitting strength and (b) modulus of 

rupture.  Taken from Mirza et al. (1979) 

are the forms derived from the data present in the study for splitting tests and modulus of rupture 

respectively.  

 ��,��,�	 � �����
,��	 ����� (2.23) 

 ���,��,�	 � �6.4��
,��	 �.�� �0.96�1  0.11!"#$	%			�&'(	 (2.24a) 

 ���,��,�	 � �0.5314��
,��	 �.�� �0.96�1  0.11!"#$	%			�+,�	 (2.24b) 

 ��,��,�	 � �8.3��
,��	 �.�� �0.96�1  0.11!"#$	%			�&'(	 (2.25a) 

 ��,��,�	 � �0.6892��
,��	 �.�� �0.96�1  0.11!"#$	%			�+,�	 (2.25b) 

The coefficients of variation were derived for splitting strength and modulus of rupture. Equation 

2.26 and Equation 2.27 represent the coefficients of variation for splitting strength and modulus 

of rupture respectively.  
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 ��#,
�,�� =
��,�"��

4
+ 0.019 ≥ ��,
�,��  (2.26) 

 � ,
�,�� =
��,�"��

4
+ 0.0421 ≥ ��,
�,��  (2.27) 

The statistical properties of the modulus of elasticity of concrete were also studied.  A similar 

approach used to generate the tensile strength statistics was adopted for the modulus of elasticity.  

The regression analysis considered the initial tangent modulus, and the secant modulus.  

Regression of test data resulted in Equation 2.28, which is used to predict the mean tangent 

modulus. The compressive strength of cylinders in the study ranged from 6.9 MPa (1000 psi) to 

48.3 MPa (7000 psi).  Mirza et al. (1979) recommended a coefficient of variation for the initial 

tangent modulus of 0.08.  It is noted that multiple regression relationships were conducted, 

however the square root is most widely used and thus presented. 

 �<�,
 = 604004��   (
7,) (2.28a) 

 �<�,
 = 5015.34��   (8/9) (2.28b) 

Similarly, for the secant modulus, Equation 2.29 was derived and a coefficient of variation of 0.12 

was recommended (Mirza et al., 1979).  

 �<�,� = 554004��  �
7,� (2.29a) 

 

 �<�,� = 4600.14��  �8/9� (2.29b) 

Incorporating the effects of loading rate, Equation 2.30 was proposed to predict the mean initial 

tangent modulus of elasticity. 

 �<�,
 = 604004���1.16 − 0.08 log0�  (
7,) (2.30a) 

 �<�,
 = 5015.34���1.16 − 0.08 log0�  (8/9) (2.30b) 
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It was noted by the authors, that the mean secant modulus could be predicted using Hognestad's 

parabola for pre-peak compressive strength.  The coefficients of variation for the initial tangent 

modulus and the secant modulus can be calculated using Equation 2.31 and Equation 2.32 

respectively.  

 �$�
,
�,�� =
��,�"��

4
+ 0.0085 (2.31) 

 �$��,
�,�� =
��,�"��

4
+ 0.0165 (2.32) 

In summary, all of the parameters investigated by Mirza et al. (1979) were assumed to follow a 

normal distribution.  In the case of tensile strength and modulus of elasticity, regression equations 

were presented to calculate the mean of the distribution. Lastly, the coefficient of variation for 

each parameter are calculated based on the coefficients of variation for the quality of concrete.  

2.3.2 Nessim et al. – 1993 

The work done by Nessim et al. (1993) was focused on verification of the material resistance 

factors for the CSA-S474 code for the design of offshore structures in Canadian waters.  The 

material resistance factors for the code were taken directly from the CAN3-A23.3 code; however, 

the nature of offshore structures requires generally higher concrete strengths and larger bar sizes 

for steel reinforcement.  The material resistance factors were thus investigated to determine if an 

adjustment was required.  

The study focused on the difference in design procedures in three areas:  the variability of concrete 

strength, the variability of steel yield strength, and the variability in loading.   The approach 

adopted by the study was to design the structures based on the CSA Code, the Det norske Veritas 

(DnV) rules, and then determine the reliability of the structural elements and compare it with the 

accepted reliability in the CSA Code. 

The variation of concrete strength was determined based on a review of the literature.  The results 

of several studies were compiled and used to determine the relationship between specified concrete 
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strength and actual concrete strength in the structure. The relationship between actual compressive 

strength and specified compressive strength is described by Equation 2.33. 

 ��,
�� = ���� (2.33) 

The mean and variance of the above relation are described by Equation 2.34 and Equation 2.35 

respectively.  

 ��,%�<<<<< = �<��=  (2.34) 

 ��,
�� = ��� + ��� + ������ (2.35) 

The CSA Code uses two expressions to relate the mean compressive strength to the specified 

compressive strength. These equations were used by Nessim et al (1993) to determine the specified 

compressive strength for the strength data obtained from the literature.  The expressions from the 

CSA Code are shown in Equation 2.36 and Equation 2.37. 

 ��� = ���= − 1.4��      �� < 3.5 8/9 (2.36) 

 ��� = ���= − 2.4�� + 3.5       �� > 3.5 8/9 (2.37) 

Regression analysis on the pairs of specified compressive strength and mean compressive strength 

yielded Equation 2.38. The regression analysis is presented in Fig. 2.4.  

 ��,%�<<<<< = 6.1 + 0.82��� (2.38) 

In addition to the compressive strength predictions, the coefficient of variation was examined. A 

scatter plot of coefficient of variation versus compressive strength reveals that there is no 

discernible relationship and thus the coefficient of variation was concluded to be independent of 

the compressive strength.  Fig. 2.5 shows the scatter plot of coefficient of variation and mean 

cylinder strength.  

2.3.3 Stephens et al. – 1995 

Stephens et al. (1995) conducted a reliability assessment for CANDU concrete containment 
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Fig.2.4: Results of regression analysis conducted by Nessim et al (1993) (Taken from Nessim et 

al., 1993). 

 

Fig.2.5: Scatter plot of coefficient of variation versus mean cylinder strength. Taken from 

Nessim et al. (1993). 

structures.  As a part of the assessment, it was desirable to use newly derived material resistance 

factors that might reflect a reduced variability for the concrete present within a containment 

structure.  A combination of code equations were recalibrated to reflect the local distribution of 

concrete.  The data collected from Pickering-A and Gentilly-2 containment structures is presented 

in Table 2.1.  
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The CAN3-A23.3-M84 Code calculates material resistance factors by scaling the specified 

compressive strength up to the mean compressive strength, and then scaling back the mean 

compressive strength to achieve a specified level of probability.  This results in Equation 2.39, 

which is used to calculate the material resistance factors.  

 /
 � �
�1 � 0
1
	 (2.39) 

In Equation 2.39, ac relates the specified strength to the in-situ mean strength, bc reflects the desired 

probability of non-exceedence, and υc is the material's coefficient of variation.  The average 

standard deviation from Table 2.1 was used along with code acceptance criteria to determine an 

expression for the 28-day strength given the specified strength.  This can be used in the 

determination of ac.   

Table 2.1: Raw data used by Stephens et al. (1995) in the determination of material resistance 

factors (Taken from Stephens et al., 1995). 

 

The average coefficient of variation reported in Table 2.1 is calculated to be 0.11 (Stephens et al., 

1995).  This is slightly more than the coefficient of variations reported by Mirza et al. (1979) which 
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is 0.1 for excellent construction.  Stephens et al. (1995) also notes that the coefficient of variation 

of 0.11 was reported in previously published data.  

2.3.4 Bartlett and MacGregor – 1996 

Concrete compressive strength typically refers to the 28-day cylinder strength of a concrete sample 

that is specified by the designer.  However, it is common and expected that the actual in-situ 

strength will be greater than the specified compressive strength.  The cylinder strength is routinely 

tested in the construction of any structure to ensure quality in the material properties.   A 

relationship exists between the specified strength from a designer and the actual compressive 

strength of concrete within a structure.  Bartlett and MacGregor (1996) investigated the 

relationship between specified strength of concrete and the actual in-structure strength of concrete.   

The variation between specified and actual compressive strength was disaggregated into two 

factors:  the variation between specified concrete strength and concrete cylinder strength, and the 

variation between cylinder strength and actual strength within the structure (Bartlett and 

MacGregor, 1996).    The in-structure strength is then calculated as the product of the two factors 

with the specified compressive strength.   The in-structure strength is calculated using Equation 

2.40 through Equation 2.42.   

 f&,'(  =  F�F�(f&�) (2.40) 

where: 

 F� = (f&)*/f&�) (2.41) 

 F� = (f&,'(/f&)*) (2.42) 

The results of statistical regression yielded that F1 could be modelled as a normal or lognormal 

distribution. Similarly, F2 is modelled as a normal or lognormal distribution and is a function of 

the age in days (a), the cement and fly ash content per cubic metre of concrete (faF), the cement 

content (c), and a Heaviside variable set to 1 if the depth of the member is greater than or equal to 

450 mm, and zero otherwise (Zh).   The results of the F1 and F2 statistical calibrations are presented 

in Table 2.2.  Equation 2.43 is used to predict the mean value of F2. 
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 $%� = 0.948 + 0.084�+ + 0.100 ln>? 9
28
@ �1 + 0.090A�9,B CD (2.43) 

Table 2.2: Summary of statistical results from Bartlett and MacGregor (1996) 

Parameter Cast-in-Place Concrete Precast Concrete 

Mean COV Mean COV 

F1 1.25 0.104 1.19 0.05 

F2 - 0.14 - 0.14 

The regression was repeated assuming that the mean F2 value had a lognormal distribution which 

yielded Equation 2.44. 

 5(E$%�F = 5( G0.936 + 0.085�+ + 0.097ln ? 9
28
@  �1 + 0.88A�9,B CH (2.44) 

Using the assumption that both F1 and F2 follow a lognormal distribution, an expression could be 

derived for the expected value of the product of F1 and F2.  The expected value of the product of 

F1 and F2 is described by Equation 2.45. 

 ��$�$�� = 1.205 + 0.105�+ + 0.125ln ? 9
28
@ (2.45) 

The product of F1 and F2 can be modelled as a lognormal random variable with a coefficient of 

variation of 0.186 (Bartlett and Macgregor, 1996).  Combining Equation 2.40 and Equation 2.45 

yields Equation 2.46 which represents an expression for the mean compressive strength within the 

structure given the specified compressive strength.  

 ��̅,
� = J1.205 + 0.105�+ + 0.125ln ? 9
28
@K ��� (2.46) 

It is noted that this study considers all construction to be of average quality with the exception of 

precast concrete. 
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2.3.5 Nowak and Szerszen – 2003 

Nowak and Szerszen (2003) compiled a large database of concrete compressive strength for 

calibration of the ACI-318 building code.  In a similar approach to Bartlett and MacGregor (1996), 

Nowak and Szerszen (2003) assumed that a bias factor was applied to the specified strength of 

concrete to determine the actual sample mean for a given compressive strength.  It was identified 

that all categories of concrete (low density, high strength, normal) follow a normal distribution 

(Nowak and Szerszen, 2003).  Deviation from the normal distribution at the lower end of the 

distribution tails were attributed to outliers in the sample data (Nowak and Szerszen, 2003).  

Equation 2.47 was developed by Nowak and Szerszen (2003) and is used for calculating the bias 

factor for all categories of concrete.   

 λ =  −0.0081(f&�)� + 0.1509(f&�)� − 0.9338�f&��+ 3.0649  (ksi) (2.47) 

The mean strength is obtained as the product of the bias factor and the specified strength.   It was 

noted by Nowak and Szerszen that the coefficient of variation for concrete compressive strength 

was fairly constant across all types of concrete investigated.  The average coefficient of variation 

was 0.101 and the coefficient of variation used in the calibration of the ACI-318 material resistance 

factors is 0.1. 

2.3.6 Bartlett – 2007 

For the calibration of the CSA A23.3-04 code, Bartlett (2007) re-examined the F1 and F2 factored 

presented by Bartlett and MagGregor (1996).  The results from the 1996 study were compared to 

the results obtained from Nowak and Szerszen (2003).  It was observed that F1 factor for each 

study were similar: 1.25 for Bartlett and MacGregor (1996) and 1.24 for Nowak and Szerszen 

(2003).   

Two additional factors were added to Equation 2.40 to account for the variability of in-place 

strength.  The first, Fi-p, is used to capture the variability of in-place strength. Fi-p has a mean value 

of 1.0 and a coefficient of variation of 0.130 (Bartlett, 2007). Additionally, the parameter Fr was 

added from the Mirza et al. (1979) study to capture loading rate effects.  Equation 2.48 was used 

for the CSA A23.3-04 Code calibration. 
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 f&,'(  =  F�F�F'�-F.(f&�) (2.48) 

2.3.7 Vincent et al. – 2011 

An experimental program was conducted by Vincent et al. (2011) to determine the distributions 

for variability of concrete compressive strength, modulus of elasticity, and tensile strength.  The 

two sources of variation considered were the variability from batching, and the variability from 

transport to site.  The variability from in-situ placement, compaction, temperature history, and 

curing conditions were outside of the scope of the study defined by Vincent et al. (2011).  

Samples were collected in a laboratory, and at various construction sites throughout the city of 

Adelaide, Australia.  Two common strengths were selected for the study: N32 and N40 concrete. 

The "N" indicates that the mixes are normal concrete, and the numerals indicate the specified 

strength in MPa. Each set of samples was tested to determine the compressive strength, the 

modulus of elasticity, and the splitting strength at 7 and 28 days. It was noted by the author that 

the modulus of elasticity testing is non-destructive and therefore the reported values are the average 

of three consecutive tests.  

The overall amount of data was limited. The number of 7 day samples for each site cured cylinder 

measurement type ranged from 1 to 6 samples for each parameter with a total of 26 samples.  The 

28 day samples ranged from 3 to 11 samples for each parameter with a total of 38 samples. The 

laboratory compressive strength tests for 7 and 28 days consisted of 95 and 116 samples 

respectively.  However the modulus of elasticity for 7 and 28 day tests consisted of a total of 8 

samples, and the splitting test a total of 6 samples.  

The splitting strength of the samples was converted to the modulus of rupture using relationships 

established in the literature.  This was done because the modulus of rupture was considered 

important for the prediction of cracking for flexural elements.  The results of the experimental 

program are presented in Table 2.3. 

The average coefficient of variation for the 28-day compressive strength tests was 0.12.  This is 

consistent with the results of Mirza et al. (1979), Stephens (1995), and Nowak and Szerszen 

(2003).  Bartlett and MacGregor (1996) suggested a much higher coefficient of variation of 0.186. 
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Table 2.3: Experimental program results from Vincent et al. (2011). 

Parameter 
Curing 

Program 

7-day material properties 28-day material properties 

Mean COV Mean COV 

N32 N40 N32 N40 N32 N40 N32 N40 

Compressive 

Strength 

Laboratory 24.96 32.27 0.09 0.11 37.23 47.01 0.07 0.08 

Site 21.02 26.15 0.07 0.08 28.7 31.92 0.13 0.16 

Modulus of 

Elasticity 

Laboratory 29120 35290 0.10 0.07 35709 38350 0.10 0.10 

Site 25750 29390 0.11 0.07 29750 33320 0.13 0.08 

Tensile 

Strength 

Laboratory 2.68 3.17 N/A 0.07 3.61 4.27 N/A 0.07 

Site 2.13 2.82 N/A 0.06 3.14 3.48 0.04 0.09 

The difference between this study and Bartlett and MacGregor (1996) may be a result of  the small 

sample sizes in Vincent et al. (2011) and Stephens (1995). The variation captured by the Bartlett 

and MacGregor encompasses more samples, and more factors that influence variability.  It is noted 

that the site cured cylinders exhibit a coefficient of variation of 0.16 which is closer to Bartlett and 

MacGregor (1996).  

Vincent et al. (2011) conducted a linear regression analysis to determine the relationship between 

the root compressive strength and the modulus of elasticity as well as the root compressive strength 

and the splitting strength. The following regression model in Equation 2.49 was assumed for both 

analyses.  

 L = ��√� + �� + M (2.49) 

where θ1 and θ2 are the regression parameters, and δ is a random variable with a mean of zero and 

a standard deviation from the regression model residuals.  Y represents the parameter of interest, 

either modulus of elasticity or splitting strength, and X represents the 28-day cylinder strength. 

The results of each regression analysis are presented in Table 2.4.  

2.3.8 Wisniewski et al. - 2012 

Wisniewski et al. (2012) summarized their work done on the probabilistic descriptions of concrete 

material properties aggregated from previous studies in Europe and North America.  The authors 
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Table 2.4: Regression analysis results from Vincent et al (2011). 

Y θ1 θ2 Residual Standard 

Deviation 

Modulus of 

Elasticity 

5850.6 0 2846.8 

Splitting Strength 0.845 -1.415 0.270 

proposed distribution equations for concrete compressive strength based on a total of 534 samples 

of site cast concrete, and 158 samples of plant cast concrete.  These equations were proposed from 

an exhaustive review of concrete material property statistics, as well as collected experimental 

data. The model proposed by Bartlett and MacGregor was used, however the parameters F1 and F2 

were aggregated into a bias factor similar to that of Nowak and Szerszen (2003). The statistical 

parameters determined by Wisniewski et al. (2012) are presented in Table 2.5 

Table 2.5: Statistical parameters reproduced from Wisniewski et al. (2012). 

Concrete Type Nominal ��� 
[MPa] 

Bias Factor 

λc 

Standard 

Deviation σc 

[MPa] 

COV 

Vc [%] 

Site Cast 

Concrete 

25 1.26 2.9 7.7 

30 1.18 3.3 7.5 

40 1.18 3.4 5.8 

Plant Cast 

Concrete 

25 1.23 4.0 8.8 

30 1.08 2.3 4.7 

40 1.08 2.4 4.45 

45 1.00-1.02 2.2-2.9 3.9-5.2 

The authors noted that these statistical models were in agreement with other researchers, however 

the coefficients of variation differed.  The work by Wisniewski et al. (2012) showed a fairly 

constant standard deviation which resulted in a changing coefficient of variation. Additionally, the 

coefficient of variation tended to decrease with increased strength. It is unclear whether the 

variability observed by other reviewed works is indicative of North American concrete, and that 

the work by Wisniewski et al. (2012) is applicable to European concrete.  
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2.3.9 Unanwa and Mahan – 2014 

A large numerical study was conducted by Unanwa and Mahan (2014) to assess the statistical 

properties of concrete compressive strength in California highway bridges.  Cylinder data were 

obtained from the Caltrans Transportation Laboratory.  A total of 3269 data points were collected 

for compressive strengths of 25, 28, and 35 MPa specified concrete strengths from bridges built 

between 2007 and 2011.   

The age of samples at testing, t, ranged from 1 to 100 days.  Regression analysis on the samples 

was conducted to establish a relationship between the cylinder strength and the age of the cylinder.  

Equation 2.50 through Equation 2.52 represent the results of the regression for 25, 28, and 35 MPa 

concrete respectively.  

 ��,�"� = 8.763 ln���+  6.731 (2.50) 

 ��,�"� = 12.021 ln���− 0.309 (2.51) 

 ��,�"� = 13.0333 ln��� +  3.248 (2.52) 

Equation 2.50 through Equation 2.52 were then evaluated at set intervals and normalized based on 

the specified 28-day strength.  Regression of this data resulted in Equation 2.53, which is used to 

predict the cylinder strength at a time t given the 28-day cylinder strength.   

 ��,�"� = �0.2752 ln���+  0.083���,�"��/  (2.53) 

Equation 2.53 was then rearranged to produce Equation 2.54. This can be used as a tool to assess 

the quality of concrete at early tests by using early test results to predict 28-day cylinder strength.  

 ��,�"��/ =
1�0.2752 ln���+  0.083� ��,�"�  (2.54) 

It is noted by Unanwa and Mahan (2014) that there exists significant dispersion in the 28-day 

cylinder strengths.  The authors attributed this dispersion to batch-to-batch variability, and within-

batch variability.  The statistical parameters of the 28-day strengths are presented in Table 2.6.  
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Table 2.6: Normalized statistics for 28-day cylinder strengths. Taken from Unanwa and Mahan 

(2014). 

 

In order to determine the distribution of in-place compressive strength for California highway 

bridges, Unanwa and Mahan (2014) proposed a model for relating the mean in-place compressive 

strength to the specified compressive strength.  This model is shown in Equation 2.55 through 

Equation 2.58.  

 �
̅,������
�� � �������
	 (2.55) 

where: 

 �� � �
̅,
��/�
	 (2.56) 

 �� � �
̅,����,������/�
̅,
�� (2.57) 

 �� � �
̅,����� /�
̅,����,������ (2.58) 

The parameter f1 relates the specified 28-day strength to the mean cylinder strength.  Unanwa and 

Mahan (2014) used the data presented in Table 2.6 as the values of f1 for each of the specified 

compressive strengths.  The parameter f2 relates the cylinder strength to the in-structure strength 

at 28 days.  Various values were obtained from literature and the average of 0.81 was used.  The 

parameter f3 is added to convert the 28-day in-structure strength to the strength at any time t.  Data 

from experimental studies in the literature was compiled and a regression analysis yielded 

Equation 2.59.  

 �� � 3�.������� �� � 
 

(2.59) 
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The model proposed by Unanwa and Mahan (2014) was compared against the model proposed by 

Bartlett and MacGregor (1996).   Predictions from both models were found to be in agreement for 

compressive strengths of 25 MPa and 28 MPa.  However the prediction for 35 MPa by Unanwa 

and Mahan (2014) was lower than that by Bartlett and MacGregor (1996).   The authors attribute 

this to the fact that Bartlett and MacGregor (1996) assumed that the ratio of cylinder strength to 

specified strength (f1) is independent of the specified strength.  Literature reviewed by Unanwa 

and Mahan (2014) suggest that this relationship decreases as the specified strength increases.  This 

assumptions is suggested as the major contributor to the discrepancies observed between models 

(Unanwa and Mahan, 2014).  

Unanwa and Mahan (2014) tested their model against actual experimental data collected from a 

28 year-old bridge in California.  The results of the experimental data concluded that the mean in-

place strength of the bridge was 1.57 ���.  This was close to the predicted relationship which was 

calculated to be 1.56 ���.  Unanwa and Mahan (2014) note that this excellent agreement must be 

validated with additional experimental data from varying ages and structures. 

2.4 Steel Material Property Statistics 

This section reviews literature that investigates the statistical models of steel material properties 

as presented in the literature.  The parameters reviewed include the steel yield strength, ultimate 

strength, and modulus of elasticity.  

2.4.1 Mirza and MacGregor – 1979 

As part of the studies conducted in the late 1970s to determine material resistance factors for limit 

state design, Mirza and MacGregor (1979) conducted a study of the mechanical properties of 

reinforcing bars used in reinforced concrete structures.  Mirza and MacGregor identified five 

sources that contribute to the variability of the yield strength of reinforcing bars: 

1. variation in yield strength of the material, 

2. variation in reinforcing bar cross-sectional area, 

3. effect of loading rate,  

4. effect of bar size on mechanical properties,  

5. and effect of strain at which yielding is defined. 
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A review of the literature showed that variability within a single bar was minimal, variability 

within a batch of bars was small, and the variability within a group of bars from different batches 

may be large. The study conducted by Mirza and MacGregor (1979) was limited to deformed 

reinforcing bars of Grade 40 and Grade 60 steel. 

A number of distributions were fit to the test data for the static yield strength based on nominal 

cross-sectional area. Basing the variability yield strength on the nominal cross-sectional area is 

advantageous because the nominal area is used in design and has a strain rate that is closer to the 

rates observed in actual structural loading (Mirza and MacGregor, 1979). Mirza and MacGregor 

(1979) noted that a normal distribution was initially selected however it does not accurately capture 

the behaviour of either tails.  A beta distribution was found to be more representative of the data.  

The beta distribution for Grade 40 and Grade 60 steel are presented in Equation 2.60 and Equation 

2.61 respectively. The parameter fys is the static yield strength in ksi based on the nominal cross-

sectional area.  

  /!$ = 4.106A�"� − 33

29
C�.�� A62 − �"�

29
C�./�

 (2.60) 

  /!$ = 7.587A�"� − 54

48
C�.�� A102 − �"�

48
C�.��

 (2.61) 

A distribution for the ultimate strength of steel was also derived.  Similar to the yield strength, the 

ultimate strength was found to be described by a beta distribution. Equation 2.62 and Equation 

2.63 describe the distributions for the ultimate strength of steel based on the nominal cross-

sectional area for Grade 40 and Grade 60 steel.  The parameter fus is the static ultimate strength in 

ksi based on the nominal cross-sectional area. 

 /!$ = 2.646 2�!� − 51

45
3�.�� 296 − �!�

45
3�./�

 (2.62) 

 /!$ = 4.922 2�!� − 84

74
3�.�� 2158 − �!�

74
3�.��

 (2.63) 
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The modulus of elasticity was determined to be normally distributed with a mean of 201 000 MPa 

and a coefficient of variation of 0.033.   

The selection of beta distributions artificially confines the yield strength and ultimate strength of 

reinforcing steel to definite lower and upper bounds.  This means that the models are not 

transferable to other grades of reinforcing steel.   If other grades of reinforcing steel are selected, 

it may be reasonable to scale the distributions and range by the ratio of the yield strengths to the 

actual strengths.  However, the accuracy of this procedure is untested and more work is required 

to assess the viability of the proposed transformation. For now, this author recommends that the 

reader use these distributions only with 40 ksi and 60 ksi steel.  

2.4.2 Nessim et al. – 1993 

Nessim et al. (1993) compiled an updated set of data for reinforcing steel bars from a Canadian 

steel manufacturer.  A summary of the data is reproduced in Table 2.7.  Steel reinforcement with 

a nominal yield strength of 400 MPa was tested for bar sizes ranging from 20M to 35M.  

Table 2.7: Yield strength data reported by Nessim et al. (1993). 

Grade 

(MPa) 
Bar Size 

No. of 

Specimens 

Mean yield 

strength, fs 

Standard 

Deviation, 

σs 

Bias 

Factor 
Coefficient of 

Variation, Vs 

400 20M 98 481 19 1.20 0.040 

400 25M 84 470 44 1.18 0.094 

400 30M 52 446 22 1.12 0.049 

400 35M 40 473 27 1.18 0.057 

Nessim et al. (1993) concluded that there is no significant effect due to bar size on the yield 

strength of a material.  It is noted that the yield strength in Table 2.7 is calculated by dividing the 

yield force by the nominal area.  This captures both the variation in actual yield stress and 

variations in bar cross-sectional area.  Additionally, the data are from one manufacturer and thus 

may contain less variability than reported in the literature.  Nessim et al. (1993) concluded that the 

yield strength could be modelled as a lognormal distribution with mean of 470 MPa and a 

coefficient of variation of 0.06.   
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2.4.3 Nowak and Szerszen – 2003 

Nowak and Szerszen (2003) compiled an updated set of test data for 60 ksi (420 MPa) steel 

reinforcement.  Data were collected for bar sizes ranging from No. 3 to No. 11.  Analysis of the 

data reviled that no trends existed between the bar diameter and the mean strength.  Additionally, 

Nowak and Szerszen (2003) report that all reinforcement yield strengths can be modelled with a 

normal distribution that has a bias factor of 1.145 (or a mean of 481 MPa) and a coefficient of 

variation of 0.05. A summary of the collected data has been reproduced in Table 2.8.  

Table 2.8: Yield strength statistical parameters for 420 MPa steel taken from Nowak and 

Szerszen (2003).  

Bar Size No. of Samples 

Mean yield  fy 

[MPa] 

Bias 

λ 

COV 

V [%] 

9.5 mm (No. 3) 72 496.1 1.200 4.0 

12.5 mm (No. 4) 79 473.3 1.145 6.5 

15.5 mm (No. 5) 116 465.1 1.125 4.0 

19 mm (No. 6) 38 476.1 1.150 5.0 

22 mm (No. 7) 29 481.6 1.165 5.0 

25 mm (No. 8) 36 473.7 1.145 5.0 

28 mm (No. 9) 28 475.7 1.150 5.0 

31 mm (No. 10) 5 470.2 1.140 4.0 

34.5 mm (No. 11) 13 473.7 1.145 3.5 

2.4.4 Wisniewski et al. - 2012 

Wisniewski et al. collected approximately 500 test results for reinforcing steel from various 

European manufacturers and distributers in order to assess the modern day variability of steel 

reinforcement.  The reinforcing bar diameters ranged from 10 mm to 25 mm.  The results of the 

study are presented in Table 2.9 

Table 2.9: Experimental results of Wisniewski et al. (2012) for steel reinforcement.  

Parameter Nominal Value 

Bias 

λ 

COV 

V [%] ��" 500 [MPa] 1.21 6.0 ��! 550 [MPa] 1.28 5.9 �� 200000 [MPa] 1.01-1.03 1.0-4.9 N� 5% 2.7 24.5 �� 70 – 726 mm2 0.92-0.94 4.3-4.4 
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Wisniewski et al. (2012) noted that the distributions of all parameters in this study were consistent 

with other statistical models presented in the literature. Based on the data presented in the 

literature, and the current study, Wisniewski et al. (2012) recommended the following statistical 

parameters for steel reinforcement. The bias factor is disaggregated for old and new steel to be 

1.20 and 1.15 respectively. A strict definition of new and old steel is not provided by the authors. 

The coefficient of variation for old and new steel should be 10% and 5% respectively.  The ultimate 

strain at failure can be modelled with a lognormal or normal distribution with a mean of 0.1 

mm/mm and a coefficient of variation of 15%.  The modulus of elasticity for steel can be modelled 

as a normally distributed random variable with a mean of 202000 MPa and a coefficient of 

variation of 4%. Lastly the area of steel can be modelled as a normal distribution with a mean of 

1.0 and a coefficient of variation of 2%.  Wisniewski also identified the correlation matrix between 

various steel parameters.  A strong correlation exists between the yield strength and ultimate 

strength of steel.  Additionally, a negative correlation exists between the area of steel and the yield 

strength of steel.  The correlation matrix is shown in Equation 2.64.  

 � =

OPP
PPP
Q �" �! �� N� ���" 1.00 0.850 0.00 0.00 −0.407�! 0.850 1.00 0.00 0.00 0.00�� 0.00 0.00 1.00 0.00 0.00N� 0.00 0.00 0.00 1.00 0.00�� −0.407 0.00 0.00 0.00 1.00 RSS

SSS
T
 (2.64) 

Wisniewski et al. (2012) also studied the variability of prestressing steel properties.  Similar to the 

reinforcing steel study, based on a review of the literature and a set of experimental results, the 

following statistical models for prestressing steel were proposed.  The ultimate strength can be 

modelled as a normal or a lognormal distribution with a bias factor of 1.04 and a coefficient of 

variation of 2.5%.  The stochastic properties of prestressing steel is outside of the scope of this 

study and thus for more information, the reader is referred to Wisniewski et al. (2012).  

2.5 Monte Carlo Simulation of Reinforced Concrete 

This section outlines the Monte Carlo methods and simulations that are relevant to this thesis.  

Monte Carlo simulation is a method for generating random simulation results such that the 

simulation results possess similar statistical properties as an experiment.  This is particularly useful 
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when sufficient information is available to describe the input uncertainties in a physical 

experiment, when a model of the physical phenomena of the experiment is readily available, and 

when conducting the experiment is limited by available resources (i.e. cost and time).  In order to 

capture the full extremes of an experiment, a large number of experiments are often required.   

The Monte Carlo simulations work by generating statistically independent samples that follow the 

distributions of each of the input parameters.  The mathematical relationship describing the 

variable of interests is then computed for each set of generated samples.  This produces a set of 

outputs that can be statistically analyzed.  

Reinforced concrete structural elements are excellent candidates for investigative Monte Carlo 

simulations.  Large scale experimental procedures for reinforced concrete structural elements may 

not be financially feasible to conduct.  Furthermore, reinforced concrete members cannot be 

reliably mass produced.  The aggregate variability of concrete and steel material properties and the 

immense financial and labour costs associated with testing suggest that experimental studies aimed 

at evaluating the resistance distributions for reinforced concrete structural elements are infeasible.  

Thus Monte Carlo simulation is readily used in the reliability analysis of reinforced concrete 

structures.   Several of these Monte Carlo simulations are described in this section.  

2.5.1 Ramsay et al. – 1979 

Ramsay et al. (1979) studied the short time deflection of reinforced concrete beams under service 

load conditions using a series of Monte Carlo simulations.  A total of 10 T-beams and 10 one-way 

slabs were analyzed.  The simulations did not consider variability in dead and live loading or the 

long-term effects due to sustained loading.   

The theoretical model used in the Monte Carlo simulation determined deflections for the curvature 

along the length of the beam.  The effective moment of inertia presented in Equation 2.65 was 

used in the study.   

 U��� = U0 28��8� 3� + U�� A1 + 28��8� 3�C ≤ U0 (2.65) 
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The cracked moment of inertia was assumed to be equal to the moment of inertia of the section 

when the tension steel began to yield.  It was assumed that two regions exist in a fixed-fixed 

reinforced concrete beam: a region of negative moment, and a region of positive moment.  Within 

these regions, the effective moment of inertia was considered constant.   

When the load is applied and the beam begins to crack, moment redistribution is observed.  The 

redistributed moment was computed based on an iterative approach where the elastic moment 

distribution was assumed, and then the effective moment of inertia was calculated.  The moment 

distribution was then recalculated using the effective moment of inertia in each of the two regions.  

This was repeated until the moment distribution converged.  The curvature was calculated based 

on the redistributed moment, and subsequently, the deflection was obtained.  

The model was verified based on experiments from the literature; however, all of the experiments 

were simply supported and thus the moment redistribution could not be confirmed with 

experimental results.   

The concrete material properties, the steel material properties, and the variability in member 

dimension were considered as stochastic inputs to the model.  The distributions for these properties 

were obtained from previous studies.  The Monte Carlo simulation was conducted for four load 

stages and a total of 500 random samples.  The results of the Monte Carlo simulation indicated 

that there is a large increase in coefficient of variation when the applied load is close to the cracking 

load.  As the load increases, the coefficient of variation for the deflection decreases as the section 

trends towards the cracked moment of inertia.  A plot of the coefficient of variation for the 

deflection is reproduced in Fig. 2.6.  This study concludes that the majority of the variability in the 

stiffness of the beam is due to concrete cracking.  It was however noted that in smaller members, 

the variability in the placement of the bars contributed significantly to the response, and in some 

cases, the slab reinforcement yielded under service loads.  

2.5.2 Mirza and MacGregor – 1982 

Mirza and MacGregor (1982) conducted a series of Monte Carlo simulations to determine 

appropriate material resistance factors for reinforced concrete elements in the CSA A23.3 Code.  

The study was aimed at incorporating the load combination factors developed by the NBCC at the 
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time.  The authors outline the probabilistic approach to safety as a basic reliability random variable 

shown in Equation 2.66, 

  � $ � 4 (2.66) 

where R is the distribution of resistance, Q is the distribution of load, and Y is the failure function.   

 

Fig. 2.6: Coefficient of Variation for the deflection of T-beams determined from the Monte Carlo 

simulations. (Taken from Ramsay et al 1979) 

If Y is greater than zero, failure has not occurred.  If Y is less than zero, the structure has failed 

and thus is considered not safe.   The mean and the standard deviation are calculated using Equation 

2.67 and Equation 2.68 respectively.  

 5 � 	$5 �	45 (2.67) 

 �! � 6���  �"� (2.68) 
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The random variable R was generated by selecting a series of common member sizes and 

dimensions and conducting a Monte Carlo simulation on each.  The structural elements considered 

included flexural elements, combined flexure and axial elements (both slender and short), and 

prestressed flexural elements.  The random inputs to the Monte Carlo simulation included: 

concrete strength, modulus of elasticity, and tensile strength;  steel yield strength, modulus of 

elasticity, and bar cross-sectional area; and overall member size variation due to fabrication errors.  

This produced a distribution of R for each of the common members sizes.  The input distributions 

for concrete and steel material properties were taken from Mirza and MacGregor (1979a) and 

Mirza and MacGregor (1979) respectively.  The statistical properties for the prestressing 

reinforcement were obtained from a private company.  The statistical properties for the dimension 

of the specimens were obtained from Allen (1970) and Ellingwood (1977).   

There were three main assumptions in the Monte Carlo simulations for calculating resistance.  The 

first was that the statistical properties corresponded with average construction and thus were 

representative of actual structures throughout Canada. Pretensioned prestressed concrete structures 

are most commonly plant-cast and thus are exempt from this assumption and excellent construction 

was assumed.   Secondly, the effect of strain rates was ignored.  Lastly, the statistical properties of 

reinforced concrete were assumed to be the 28-day cylinder strength.  Long-term strength increases 

and creep effects were not considered in this study.  

The resistance for each member was calculated using moment curvature relationships.  In the case 

of a beam-column, the axial load was incrementally increased and the maximum moment from the 

moment curvature analysis was recorded in order to determine the interaction effects. When 

analyzing beams, the axial load was simply set to zero.  Hognestad’s parabola was assumed for 

the concrete stress-strain response, and the steel was assumed to be linear elastic, perfectly plastic.  

Tension stiffening effects were not considered and the concrete was assumed to be linear elastic 

with a brittle failure in tension. The shear resistance for concrete beams and columns was predicted 

by empirical equations obtained from literature. In the case of a slender column, the moment 

curvature relationship was used to predict the lateral deflection and second order effects were thus 

considered.  
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The Monte Carlo simulation results were normalized based on the nominal resistance. This 

generated a distribution of the strength ratio between the simulation results and the nominal 

resistance.  The results of the Monte Carlo simulations were then utilized in the computation of 

the strength reduction factors for the CSA A23.3 Code.  The reader is referred to the original paper 

for a description of how these factors are calculated.  

2.5.3 Mirza – 1998 

Mirza (1998) studies the distribution present in strength interaction diagrams for composite steel 

concrete columns.  A composite reinforced concrete column consists of a structural steel section 

encased in a shell of concrete with or without reinforcing steel.  This study investigated four short 

columns and six slender columns all of which were composite steel concrete columns. Each of the 

columns studied had unique combinations of concrete compressive strength, structural steel ratios, 

and slenderness ratios.  The purpose of this study was to investigate the effect of these parameters 

on the interaction diagrams, and compare the predicted results with the CSA A23.3-M84 Code.  

The slenderness ratios for the short columns were defined as zero, which represented cross-

sectional analysis, and 21.9, which was the upper limit above which slenderness had to be 

considered.  For the slender columns, the slenderness ratios were selected as 22.1, 33, and 66.  The 

slenderness ratio of 66 was considered to be the practical limit.  

The theoretical model for the concrete columns employed strain compatibility calculations of 

moment-curvature relationships with varying axial load.  For each axial load, the maximum 

eccentricity was calculated through trial and error assuming a fourth-order deflected shape for the 

column.  The largest curvature at mid-height that maintained equilibrium was used as a point on 

the interaction diagram.   The concrete in compression was modelled using a modified Park and 

Kent model that considered confinement provided by the stirrups.  The concrete tensile response 

was assumed to be brittle with no considerations for tension stiffening.  Both the reinforcing bars 

and the structural steel were assumed to be linear elastic perfectly plastic.  

The statistical properties for the steel and concrete were obtained from previous studies.  It is noted 

that the distribution for the reinforcing steel is different than that of the structural steel.  The yield 
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strength for the structural steel follows a modified lognormal distribution with a cut-off. The yield 

strength for the reinforcing steel follows a beta distribution.  

A Monte Carlo simulation was then conducted with 500 samples for each of the 10 columns.  Each 

sample produced an interaction diagram for a column.  In addition, the interaction diagram was 

calculating using the code procedure with all material resistance factors set to 1.0.    

The simulation results were plotted as interaction diagrams that show the mean interaction 

response, the maximum and minimum response, the 1st percentile response, the mean cross-

sectional strength  (for slender columns), and the CSA prediction.  In addition for a given e/h ratio, 

a histogram of the results is plotted.  Fig. 2.7 is an example of the results obtained by Mirza (1998).  

Mirza (1998) concluded that the relationship between nominal and theoretical strength is 

significantly affected by the slenderness ratio.  The author recommended that a coefficient of 

variation of 0.14 to 0.15 can be assumed for compression governed failure. Similarly, a coefficient 

of variation of 0.06 to 0.08 can be assumed for a balanced or tension failure of a reinforced concrete 

column.  The author further concluded that the CSA Code predictions are acceptable for composite 

steel concrete columns. Similar strength variability was observed when compared to regularly 

reinforced concrete columns and thus the resistance factors in the code are applicable to composite 

steel concrete columns.  

 
Fig. 2.7: Interaction diagram results from Monte Carlo simulation of a composite steel concrete 

column. Obtained from Mirza (1998). 
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2.5.4 Choi et al. – 2004 

As an extension of Ramsay et al. (1979), Choi et al (2004) studied the deflection of reinforced 

concrete slabs and beams using Monte Carlo Simulations.  The new study expanded the number 

of simulation combinations, considering six simply supported one way slabs, three fixed end one 

way slabs, and three two span continuous T-beams.  In addition, the new study used a layered 

finite element beam approach for analysis of the deflection that considered tension stiffening 

effects.  Lastly, Choi et al. (2004) considered the effects of long-term loading including two 

loading scenarios and the stochastic prediction of creep and shrinkage.  The analytical model was 

validated using experimental data reported from the literature.   

The sources of uncertainty considered by Choi et al (2004) included material properties, dimension 

properties, and two loading histories.  The statistical parameters for the material properties and 

dimension variation were taken from the literature.  The statistical properties for the long-term 

effects were taken from an ASCE publication.  The two loading histories differed in their 

consideration for construction loading.  The first loading history assumed a significant construction 

load as an instantaneous load.  The second loading history did not contain a construction load.   

Each parameter was considered independent with the exception of concrete compressive strength, 

modulus of elasticity, and modulus of rupture.  To generate these random variables, the concrete 

compressive strength was generated randomly.  This generated compressive strength was input 

into empirical equations to predict the modulus of elasticity and the modulus of rupture.  These 

calculated values were assumed to represent the mean for each parameter, and then using the 

coefficients of variation, the distribution for each parameter could be generated.  Using these 

distributions, a sample for the modulus of elasticity and the modulus of rupture were obtained.  

The results of the study were plotted as histograms.  It was observed that significant differences 

existed between various types of the structural elements.  For some of the simply supported slabs, 

the instantaneous deflections were closely grouped about the mean deflection.  This indicateed that 

the slab remained largely uncracked under service loading and thus exhibited small standard 

deviation.  However, the long-term deflection for the same slab showed the reverse trend.  A 
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bimodal distribution was observed where the majority of the slab simulations resulted in larger 

deformations indicating a cracked slab.  The deflection histograms of such a slab are illustrated in 

Fig. 2.8. 

 

Fig. 2.8: Monte Carlo simulation results for instantaneous and long-term deflection of a simply 

supported slab. Taken from Choi et al. (2004). 

Choi et al. (2004) provided recommendations for the coefficients of variation in the calculation of 

service load-deflection based on three parameters.   The first parameter was the ratio of applied 

moment to cracking moment, the second parameter was the reinforcement ratio, and the third 

parameter was the live load to dead load ratio.  In general, the coefficient of variation was found 

to decrease as the applied load exceeded the cracking load.  This confirmed the results of Ramsay 

et al. (1979).  The same trend was observed for the increasing reinforcing ratio.  This was explained 

by Choi et al. (2004) as a relationship between expected ultimate load, and increasing 

reinforcement ratio.  As the ultimate limit state design load increased, the likelihood of 

experiencing a service load that exceeds cracking increased.  Thus, structural elements designed 

with higher reinforcement ratios are more likely to crack under service loads, resulting in a 

decreased coefficient of variation.   A solid relationship was not established for the live load ratio 

however it was noted the coefficient of variation is lower in the long-term.  Choi et al. (2004) notes 

that the long-term deflection standard deviation is higher, but the mean is also increased resulting 

in a lower coefficient of variation.    
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In conclusion, the study confirmed the results observed by Ramsay et al. (1979) and provided a 

more accurate prediction of the deflections.  However Choi et al (2004) recommended that the 

work be further extended to include uncertainty in the loading history of the structures for a better 

estimate of long-term deflection distributions.   

2.5.5 Vincent et al. – 2011 

Vincent et al. (2011) studied the variability of concrete material properties for Australian concrete.  

An effort was made to differentiate between site cured concrete, and lab cured concrete.  The 

results of the material statistical distributions are presented in Section 2.3.7.  The generated 

distributions were then used to perform a Monte Carlo study on the short-time deflections of two 

reinforced concrete beams and one prestressed concrete slab.   

The theoretical model employed was a deflection equation based on elastic beam theory using an 

effective modulus of elasticity from the literature. The camber of the prestressed concrete slab was 

predicted using equations from Collins (1997).   The Monte Carlo simulations produced a series 

of deflection predictions aimed at producing confidence intervals for deflection predictions of a 

given mix type.  The authors established the confidence intervals for a cracked beam, an uncracked 

beam, and a prestressed slab.  The authors noted that the current work could be generalized into a 

program that could predict confidence intervals for reinforced concrete structures.  

2.5.6 Trends in Reinforced Concrete Monte Carlo Simulation Procedures 

There are several trends that are common when conducting a Monte Carlo simulation for 

reinforced concrete structural elements.  

Input Parameters  

The input parameters most often considered in the literature were the concrete material properties, 

the steel material properties, and the dimensional properties.  The concrete material properties 

considered include the compressive strength, the modulus of elasticity, and the tensile strength (in 

the form of direct tension or modulus of rupture).  However, in studies concerned with long-term 

effects, statistical properties were considered for the creep and shrinkage coefficient.  The assumed 

distributions for each of the concrete material properties are presented in Table 2.10. 
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Table 2.10: Assumed distributions for concrete material properties.  

Material Property Assumed Distribution 

Compressive Strength Normal / Lognormal 

Tensile Strength Normal 

Modulus of Elasticity Normal 

The statistical properties considered for reinforcing steel were most commonly the modulus of 

elasticity, the nominal area of steel, and the yield strength.  The assumed distributions for each of 

the steel material properties are presented in Table 2.11. 

Table 2.11: Assumed distributions for steel material properties.  

Material Property Assumed Distribution 

Yield Strength Normal, Beta, or Lognormal 

Nominal Steel Area Truncated Normal 

Modulus of Elasticity Normal 

The last common input property was the variation in assumed dimension for a given structural 

element.  This is less important to the current work as a finite element approach will be taken using 

two-dimensional membrane elements.  The type and scale of the structures modelled in VecTor2 

may vary widely and thus the in-plane dimensions of the membrane elements encompasses a large 

range.  It is thus difficult to incorporate the in-plane dimensions of the membrane element as a 

stochastic parameter built into the software.  It may be more realistic to allow for user inputs that 

determine the distribution of thickness of the membrane elements, and that be employed in 

stochastic simulation. User input models could include stochastic representations of construction 

tolerances. 

Validation of Theoretical Model 

In all of the Monte Carlo simulations reviewed, a theoretical model was proposed to describe the 

parameter of interest.  Despite the large range of complexity between studies, all of the studies 

verified the proposed theoretical model against deterministic results in the literature.  It is 
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recommended that for all Monte Carlo Simulations, the theoretical model be validated using results 

obtained from literature.  

 

Analytical Needs 

All of the simulations reviewed were primarily flexural elements.  In the case of considering shear 

as a failure mode, the stochastic parameters were applied to the simplified empirical shear 

equations.  Such an approach likely does not capture the transition in failure mode, and the 

interaction of shear behaviour and flexural behaviour.  Stochastic simulations of shear-critical 

members, disturbed regions, or any other structural element that deviates from the simplified 

equations require more advanced analysis tools.  Strut and tie models have been shown to represent 

a lower bound estimate of the strength of such structural elements, and thus it would not be prudent 

to use such techniques for reliability studies.  A requirement then exists to study the reliability of 

such structures with advanced and accurate finite element models.   

2.6 Corrosion in Reinforced Concrete 

Corrosion in reinforced concrete structures can have significant implications for performance at 

the service and ultimate limit states. Structures at risk of corrosion attack often take the form of 

common infrastructure (eg. reinforced concrete bridges and parking structures).  Two types of 

corrosion are reviewed in this thesis: uniform corrosion and pitting corrosion.  The former is easier 

to predict but can be unrepresentative of real structural conditions.  The latter remains a significant 

challenge as the corrosion tends to be stochastic in nature and exhibit significant spatial variation. 

This section outlines the basic principles and causes of reinforced concrete corrosion. 

Corrosion of steel reinforcement can be approached as an electrochemical process where the iron 

atoms in the steel reinforcement react with water and oxygen to form a rust by-product.  Equation 

2.69 through Equation 2.71 are the chemical reactions for the anode, cathode, and overall process 

respectively. 

 2$	 → 2$	�� + 4	� (2.69) 
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  � + 2V� + 4	� → 4 V� (2.70) 

 2$	 + 2V� +  � → 2$	� V�� (2.71) 

Due to the pH of concrete and the formation of the passive layer, corrosion does not occur 

immediately.  The time to corrosion is affected by the moisture content and resistivity of concrete, 

the temperature of the surrounding atmosphere, the availability of oxygen, and the pH of the pore 

water (Hunkler, 2005). 

The natural alkalinity of concrete typically protects the reinforcement from corrosion.  With a pH 

of 12, a passive layer forms around the reinforcement that prevents corrosion form occurring.  

There are two processes that destroy this passive layer and thus allow corrosion to occur: 

carbonation of concrete, and chloride attack (Hunkler, 2005).   

Carbonation of concrete is the reduction of pH in the concrete pore water.  This occurs when 

carbon dioxide is naturally dissolved into the pore water and reacts with the alkaline components 

of the cement paste. Additionally, water is required for this reaction to take place. The pH of the 

concrete pore water can be reduced from greater than 12 to between 6 and 9. This reduction of pH 

allows corrosion to occur. Carbonation causes uniform corrosion that leads to early cracking and 

spalling of reinforced concrete cover.  Because the corrosion is uniform, the cross-sectional area 

is typically minimally affected (Hunkler, 2005). 

Chloride attack results in a substantially different from of reinforced concrete corrosion.  Corrosion 

as a result of chloride attack can be extremely localized and may not show any exterior signs of 

deterioration. The cross-sectional area of the steel reinforcement is significantly affected.  The 

chloride ions destroy the passive layer around the steel reinforcement, reduce the pH of the pore 

water, increase the moisture content of the concrete, and increase the electrical conductivity of the 

concrete (Hunkler, 2005).  

There are two types of cells in which the galvanic corrosion reactions can occur: a macro-cell and 

a micro-cell.  A macro-cell occurs between different reinforcing bars within a reinforced concrete 

element.  Fig. 2.9 is an illustration of a macro-cell.  A micro-cell occurs along the same reinforcing 

bar.  Fig. 2.10 is an illustration of a micro-cell. 
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Fig. 2.9: Macro-cell illustrating reinforced concrete corrosion. 

 

Fig. 2.10: Micro-cell illustrating reinforced concrete corrosion. 

2.7 Experimental Behaviour of Corroded Reinforced Concrete 

This section reviews experimental studies of reinforced concrete subjected to various forms of 

corrosion.  The studies cover the mechanical behaviour of corroded reinforcing bars, bond 

strength, and the effects of cover cracking on the structural response of corroded reinforcing bars.  

2.7.1 Al-Sulaimani et al. – 1990 

Al-Sulaimani et al. (1990) conducted a series of tests to study the influence of corrosion on the 

bond of reinforcing steel. The experimental program consisted of four test series, with four stages 

of corrosion within each test series.  Series 1 consisted of pullout tests on 10, 14, and 20 mm bars 

embedded within 150 mm concrete cubes.  The embedment length to diameter ratio for each test 

was 4.0.  The average yield strength of the reinforcement was 450 MPa and the average 

compressive strength of concrete was 30 MPa.  Series 2 was identical to Series 1 except that 

polypropolene fibres were added to the concrete to control cracking during corrosion.  Series 3 
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consisted of 12 reinforced concrete beams with a span of 1000 mm and cross-sectional dimensions 

of 150 mm x 150 mm.  Each beam contained one 12 mm bar as bottom reinforcement, two 10 mm 

bars as top reinforcement and 6 mm stirrups spaced at 50 mm.  The bottom reinforcement was 

isolated from the rest of the reinforcing cage such that independent corrosion could occur. The 

Series 3 beams were detailed to have an embedment length of 144 mm which was designed to 

create a bond failure.  The Series 4 tests consisted of 12 beams identical to Series 3 with the 

exception of the development length which was detailed in accordance with the ACI building code.  

The development length for the Series 4 beams was 300 mm.  

Each test specimen was submerged in liquid and an electric current was passed through the selected 

reinforcement such that accelerated corrosion would occur.  A current density of 2mA/cm2 was 

selected based on a pilot program (Al-Sulaimani et al., 1990). The experimental setup was 

designed such that a steel plate was the cathode, and the reinforcement was an anode. This provided 

uniform corrosion throughout the reinforcement.  The accelerated corrosion setup is shown in Fig. 

2.11.  

 

Fig. 2.11: Accelerated corrosion setup. Taken from Al-Sulaimani et al. (1990). 

The pullout test specimens from Series 1 and Series 2 were tested on a general testing machine 

(Al-Sulaimani et al., 1990).  The beams from Series 3 and Series 4 were tested as four-point 
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bending test with clear span of 900 mm.  Two LVDTs were connected directly to the bottom 

reinforcement to measure free end slip.  Three additional LVDTs measured the deflection of the 

beam.  A schematic of the test apparatus is shown in Fig. 2.12.  

 

Fig. 2.12: Experimental test setup for the Series 3 and Series 4 beams. Taken from Al-Sulaimani 

et al. (1990). 

The results of the 10 mm Series 1 tests were presented by Al-Sulaimani et al. (1990).  The average 

bond stress was calculated from the external force on the reinforcement and the total bond area.  

The results of the 10 mm Series 1 tests are shown in Fig. 2.13.  

It is clear from Fig. 2.13 that the peak bond stress actually increases with pre-cracking corrosion 

and decreases significantly with post-cracking corrosion. A plot between peak bond strength and 

corrosion level is presented in Fig. 2.14.  

Fig. 2.14 shows that the bond strength initially increases up to 1 percent and then linearly decreases 

until the bond strength is negligible. Al-Sulaimani et al. (1990) postulated that the initial increases 

are a result of the corrosion products increasing the surface roughness and confinement, and the 

decreases are a results of deterioration in the lugs on the deformed bars, reduction in bar section, 

and the lubricating effect of the heavy layer of corroded material.  

The typical load-deflection curves of the Series 3 and Series 4 tests are plotted in Fig. 2.15. It can 

be seen from the figure that the Series 3 tests do in fact experience bond failure resulting in a 

reduced ultimate load.  The authors defined a force Pe as the force at which the bond breaks down 
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Fig. 2.13: Bond stress vs. free end slip for the 10 mm Series 1 pullout tests. Taken from Al-

Sulaimani et al. (1990). 

in the Series 3 tests.  A plot of the applied force versus the free end slip for the Series 3 and Series 

4 tests, shown in Fig. 2.16, illustrates that there is a large jump in free end slip at the associated Pe. 

Al-Sulaimani et al. concluded that the ultimate strength of the Series 4 beams was unaffected by 

bond degredation from reinforcement corrosion.  A 12 percent reduction was observed in the 

ultimate strength of a beam with a 4.5 corrosion percentage; however, the authors attributed this 

to a reduction in bar area.  Finally they concluded the that cover to bar diameter ratio is significant 

as the corrosion crack initiation occurs at much smaller corrosion percentages with a reduced cover 

to bar diameter ratio. 
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Fig. 2.14: Bond strength versus corrosion percentage for Series 1 pullout specimens. Taken from 

Al-Sulaimani et al. (1990). 

 

Fig. 2.15: Typical load-deflection curves for Series 3 and Series 4 specimens (Taken from Al-

Sulaimani et al. 1990). 
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Fig. 2.16: Typical load versus free end slip curves for Series 3 and Series 4 specimens (Taken 

from Al-Sulaimani et al. 1990). 

2.7.2 Almusallam et al. – 1996 

Almusallam et al. (1996) studied the relationship between corrosion and bond stress.  The authors 

reviewed several test methods for testing the bond strength of deformed reinforcing bars.  The 

most common test, a concentric pullout test, wa\s considered by the authors as unrealistic due to 

the induction of compressive forces in the concrete.  It was noted that this would increase 

confinement and therefore increase the bond strength in the test.  In order to capture the bond 

characteristics of flexural elements, a full-scale beam test was advantageous as the concrete and 

steel are both in tension.  However, the cost of the full-scale beams are prohibitive.  A cantilever 

bond test has many advantages over the concentric pullout test and the beam test.  The strains in 

the concrete and steel are similar to those actually experienced in a flexural element.  Additionally, 

the interactions between bond, shear and moment can be modified and captured.  The scale of the 

test is such that the cost is not prohibitive.  There are several arrangements of longitudinal and 

transverse reinforcement that can be tested. Lastly, the ends of the bars can be shielded and de-

bonded from the test, thereby avoiding the confinement effects induced by support conditions.  

Almusallam et al. (1996) selected the cantilever bond test as the most practical and representative 

bond test to study the bond behaviour of corroded steel reinforcement.  A schematic of the test 
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setup is shown in Fig. 2.17.  One tension bar was selected with a nominal diameter of 12 mm.  The 

bond length of the specimen was 102 mm.  Shear and compression reinforcement were provided 

to ensure that bond failure would govern the tests.   It was noted by the authors that the shear 

reinforcement was specifically designed such that the shear reinforcement did not confine the 

tensile reinforcement.  

 

Fig. 2.17: Cantilever pullout test schematic. Taken from Almusallam et al. (1996). 

Accelerated corrosion was induced using a procedure similar to that depicted by Fig. 2.11. 

Corrosion percentage was measured as a ratio of corroded mass to nominal mass.  Thus, one 

percent corrosion represented one percent of nominal mass lost.   The results of the tests showed 

that as the degree of corrosion increased, the bond stress initially increased and then decayed 

rapidly before reaching a plateau.  The experimental ultimate bond strength from the specimens 

tested by Almusallam et al (1996) are shown in Fig. 2.18.  

The results of Almusallam et al. (1996) confirmed results of similar studies that the bond stress 

increases initially before decreasing dramatically.  This is explained by the initial increased surface 

roughness and confining effects of the corroded material before the concrete has cracked.  After 

cracking begins, there is a complete loss of confinement and a large degradation of the ribs on the 

deformed bars.  At large levels of corrosion, the plateau is explained as the corrosion by-products 

produce a lubricating effect that results in a constant bond strength.  
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Fig. 2.18: Experimental results of ultimate bond strength versus degree of corrosion. Taken from 

Almusallam et al. (1996). 

The crack width of the concrete heavily influence the bond strength.  As the corrosion becomes 

more severe, the crack widths due to corrosion increase.  This causes a loss of confinement 

resulting in a significantly reduced bond stress.  The experimental results of the crack width and 

degree of corrosion, as well as the relationship between crack width and bond stress are, shown in 

Fig. 2.19a and Fig. 2.19b respectively. 

 

 (a) (b) 

Fig. 2.19: (a) Degree of corrosion versus average crack width. (b) Crack width versus ultimate 

bond strength. Taken from Almusallam et al. (1996). 
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Almusallam et al. (1996) concluded that very little corrosion cracking can result in significant 

reduction of bond strength.  Immediately after corrosion cracking occurs, the failure mode is due 

to splitting of concrete from hoop stresses and thus is not significantly different than an uncorroded 

response.  However once corrosion is significant, there is a distinct change in failure mode where 

continuous slip occurs as a result of the lubricating effects of corrosion products. 

2.7.3 Rodriguez et al. – 1996 

Rodriguez et al. (1996) tested a total of 40 reinforced concrete beams that were subject to various 

levels of corrosion.  The beams differed in reinforcement configuration. Type 11 beams contained 

a low longitudinal reinforcement ratio with stirrups spaced just below the effective depth.  Type 

31 beams contained a high reinforcement ratio with stirrups spaced at half of the effective depth.  

Testing of the beams at various levels of corrosion resulted in a majority of flexural failures.  Only 

the heavily deteriorated bars failed in shear due to pitting corrosion in the transverse reinforcement 

(Rodriguez et al., 1996).  The Type 31 beams failed at compressive strains significantly less than 

the ultimate strain of 3.5x10-3.  Rodriguez et al. (1996) concluded that this was due to deterioration 

effects of the corrosion.  In all tests, the authors concluded that bond failure was not a significant 

factor.  The load-deformation responses of the Type 11 beams are presented in Fig. 2.20.  The 

load-deformation plots of the Type 31 beams are presented in Fig. 2.21. 

 

Fig. 2.20: Load-deflection plots for Type 11 beams. Taken from Rodriguez et al. (1996). 
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Fig. 2.21: Load-deflection plots for Type 31 beams. Taken from Rodriguez et al. (1996). 

2.7.4 Amleh and Mirza – 1999 

Amleh and Mirza (1999) studied 14 tension specimens to determine the effect of corrosion on the 

bond and tension stiffening characteristics.  Each specimen consisted of a 20M bar cast in a 100 

mm diameter circular concrete section.  In total, seven different levels of corrosion were 

investigated.   Amleh and Mirza (1999) identified three ways to evaluate the level of corrosion for 

steel reinforcement embedded in concrete.  The first method considered the width and propogation 

of longitudinal concrete cracks induced by corrosion of the reinforcement.  The second considered 

a corrosion percentage as the percentage loss of metal by mass.  The third considered the minimum 

cross-sectional area as a percentage loss from the nominal cross-sectional area.  The latter was 

determined by assuming that the yield stress of the reinforcement was constant, and thus the 

reduced cross-sectional area was determined as the ratio of pre- and post-corroded yield forces 

multiplied by the nominal cross-sectional area.  The minimum cross-sectional area was calculated 

using Equation 2.72. 

 ��1�� =
$",�1��$",�12
��� ��12
��� (2.72) 
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where Acorr is the reduced cross-sectional area, Fy,corr is the yield force of the steel determined from 

experiment, Fy,nominal is the yield force of the uncorroded steel determined from experiment, and 

Anominal is the nominal cross-sectional area of the reinforcing bar. 

Initial analysis of the experimental load-deflection for the corroded (CS4, CS5, CS6), uncorroded 

(SS1), and bare bar response is shown in Fig. 2.22.   The authors note that the uncorroded specimen 

underwent free shrinkage strains and thus started with a negative strain (Amleh and Mirza, 1999). 

Fig.2.22 indicates that the tension stiffening effect is almost entirely eliminated for heavily 

corroded bars.  However in order to determine the actual load carrying capacity of the concrete, 

the stress-strain response must be generated for the steel.  This stress-strain response cannot use 

the nominal area, but instead must use the equivalent cross-sectional area.  The stress-strain 

response calculated by Amleh and Mirza (1999) are shown in Fig. 2.23. 

 

Fig. 2.22: Load-deformation response for tension testing of experimental specimens. Taken from 

Amleh and Mirza (1999). 

Fig. 2.23 reveals that the concrete is carrying some of the load; however, the tension stiffening 

effect is clearly reduced by corrosion.   Amleh and Mirza (1999) also noted that a reduction in the 

ductility of the reinforcement reduced as the level of corrosion increased.  Amleh and Mirza (1999) 
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confirmed the results of similar studies that the bond stress decays rapidly with corrosion and that 

as the bond breaks down, the tension stiffening effects are reduced. 

 

Fig. 2.23: Stress-strain response for tension testing of experimental specimens. Taken from 

Amleh and Mirza (1999). 

2.7.5 Auyeung et al. – 2000 

Auyeung et al. (2000) conducted an experimental program aimed at evaluating the effect of 

corrosion on the bond strength of reinforced concrete elements.  After a review of experimental 

procedures, a modified version of the Danish standard testing method for evaluating the bond 

strength of a reinforced concrete member was selected.  This test involves two reinforcing bars 

embedded in a concrete block.  Load is applied to each reinforcing bar in opposite directions.  The 

specimen is designed such that the concrete does not exhibit tension failure, and that the bars do 

not yield.  One of the reinforcing bars is typically longer than the other to ensure that bond failure 

occurs in the shorter bar.  Auyeung et al. (2000) determined the design development length based 

on the ACI Building code and then reduced it by 40 percent to ensure bond failure.  In all test 

specimens, a 19 mm diameter bar was used. A schematic of the test specimen is presented in Fig. 

2.24.  
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Fig. 2.24: Schematic of the test specimen. Taken from Auyeung et al. (2000). 

Uniform corrosion was applied to the short reinforcing bar through the use of two copper plates 

on either side of the bar.  This was done in an attempt to achieve perfectly uniform corrosion along 

the length of the bar.  The exposed ends of the reinforcement were coated in rubber to prevent 

corrosion. This allowed for good connection to the testing machine.  Dial gauges were attached to 

either end of the reinforcement to determine the bond slip.  A diagram of the corrosion setup and 

the universal testing machine is illustrated in Fig. 2.25. 

 

Fig. 2.25: (a) Corrosion experimental setup. (b) Specimen experimental test setup. Taken from 

Auyeung et al. (2000). 

The results of the experimental program showed that when the corrosion reached two percent by 

mass, cracking was observed in the specimens.  Measurement of the mass loss distributed along 

the length of the bar showed that uniform corrosion was achieved.  A plot of the typical mass loss 
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along the bar, and the cumulative mass loss, is shown in Fig. 2.26.  Note that if the mass loss is 

truly uniform, then the cumulative mass loss takes the form of a straight line. 

 

Fig. 2.26: (a) Mass loss along the length of the bar shown by cross-sectional area loss. (b) 

Cumulative mass loss along the length of the bar. Taken from Auyeung et al. (2000). 

Auyeung et al. (2000) described four possible failure modes for the experimental specimens.  The 

first is that pullout failure occurs without splitting of concrete. The second involves a pullout 

failure along an existing crack. The third failure modes constitutes splitting failure and pullout 

failure simultaneously. The last failure mode is governed by tension failure of the concrete.  The 

authors observed that specimens with a mass loss of less than two percent failed by the second 

failure mode, however those with a mass loss of more than two percent failed by the third failure 

mode.  Additionally, the authors noted that specimens with more than two percent of mass loss 

exhibited a more ductile failure. 

The ultimate bond strength of the specimens was determined as the maximum load divided by the 

bond area. The results confirmed previous results in the literature that a corrosion of less than one 

percent increased the ultimate bond strength.  After a corrosion of one percent, the ultimate bond 

strength deteriorated rapidly.  

When investigating the bond slip at ultimate bond strength, Auyeung et al. (2000) determined that 

the stiffness of the bond stress – bond slip relationship increased.  After a mass loss of two percent, 

the bond slip stiffness decreased.  In all cases, the slip at ultimate bond stress decreased.  

Regression of the data produced an exponential relationship between the slip at ultimate bond 

stress and the level of corrosion.   
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Auyeung et al. (2000) confirmed the experimental behaviour observed by others.  In addition, the 

authors concluded that a corrosion percentage of two percent will cause cracking and spalling of 

concrete cover.  Lastly, they observed that the bond strength is not completely destroyed at high 

levels of corrosion. 

2.7.6 Palsson and Mirza – 2002 

The Dickson bridge in Montreal, Quebec was demolished in 1999.  During the demolition, 103 

samples of steel reinforcement were randomly collected from the No. 5 bridge deck reinforcement.  

The bridge had exhibited significant signs of deterioration including large areas of spalling.  The 

length of each specimen was approximately 250 mm. The cross-sectional area of uncorroded steel 

reinforcement ranged from 193 mm2 to 195 mm2. The measured areas were found to be smaller 

than the nominal area of 200 mm2.  The collected specimens were partitioned into four groups: 

1. corrosion level of less than 10 percent, 

2. corrosion level between 10 and 20 percent, 

3. corrosion level between 20 and 30 percent, 

4. and corrosion level greater than 30 percent. 

The average uncorroded yield and ultimate strengths of the steel were determined from tension 

testing to be 346 MPa and 590 MPa respectively.  The testing apparatus used two gauge lengths.  

The longer guage length was 75 mm.  A shorter gauge length of 25 mm was placed within the 

longer guage length at the area where failure was believed to occur. This was done because it is 

suspected that the minimal section would cause localized plastic displacement (Palsson and Mirza, 

2002).   

The test results showed that the yield and ultimate strength were relatively unaffected by the level 

of corrosion.  However, a significant reduction in ductility was observed for the heavily corroded 

bars.  The average ultimate strain measured by each of the guage lengths is presented in Fig. 2.27. 

Fig. 2.27 shows that the ultimate strain is significantly affected by the degree of corrosion.  

Additionally, the strain in the smaller gauge length is always greater than the strain in the larger 

guage length.  Palsson and Mirza (2002) noted that this supports the hypothesis that localized strain  
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Fig. 2.27: Average ultimate strain for each corrosion group. Taken from Palsson and Mirza 

(2002). 

is governing the failure of the steel reinforcement.  A typical stress-strain response, shown in Fig. 

2.28, between a Group 1 and a Group 4 specimen further illustrates this point.   

 

Fig. 2.28: Stress-strain response for corroded reinforcement. Taken from Palsson and Mirza 

(2002). 

Palsson and Mirza (2002) concluded that a very significant loss of ductility is observed in the 

presence of pitting corrosion.  Fig. 2.29 shows the relationship between ultimate strain and 

percentage of area loss. This can contribute to a dramatic loss of structural toughness as the stress 

in the corroded reinforcement will increase as cross-sectional area decreases.  Thus heavily 
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corroded structures have the potential to completely collapse in a brittle manner (Palsson and 

Mirza, 2002). 

 

Fig. 2.29: Ultimate strain versus area loss for corroded steel reinforcement. Taken from Palsson 

and Mirza (2002). 

2.7.7 Cairns et al. – 2005 

Carins et al. (2005) studied the mechanical properties of reinforcing bars to determine the effects 

of pitting corrosion on the strength and ductility of steel reinforcement.  Two experimental studies 

were conducted: a simulated corrosion pit, and accelerated corrosion of reinforcement.  The 

simulated corrosion pits were created by using hemispherical drill bits to create various cross-

sectional losses. Bar diameters ranged from 12 mm to 24 mm in size and were tested in tension.  

The typical results of the mechanically deteriorated reinforcing bars are presented in Fig. 2.30. 

 

Fig. 2.30: Mechanically deteriorated reinforcing bars. Taken from Cairns et al. (2005). 
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The ductility of the steel reinforcement was significantly affected by the presence of the reduced 

cross section.  However, the actual corrosion was not being simulated and thus the full effects of 

corrosion were not captured.   

The second experimental program consisted of 25 reinforcing bars, both deformed and smooth, 

that were subjected to accelerated corrosion.  Six of the specimens were cast in concrete for the 

duration of the accelerated corrosion.   Testing of the corroded reinforcement revealed that the 

yield strength of the material was not affected by the corrosion.  A loss of ductility was observed, 

however the code limits on ultimate strain were still met.  The authors hypothesized that the bars 

were likely to fracture at the section of weakest strength.  They noted that this section is most often 

in areas where the percentage of iron is slightly higher.  Corrosion potential for iron is less than 

that of the other constituent metals and therefore the pits and the weakest section do not coincide. 

A plot of the yield stress, ultimate stress, and ultimate strain versus corrosion percentage is shown 

in Fig. 2.31. 

2.7.8 Stewart and Al-Harthy – 2008 

Stewart and Al-Harthy (2008) conducted an experimental study to determine the statistics of 

maximum pitting depth for reinforced concrete elements.  Two reinforced concrete slabs 500 mm 

x 1000 mm x 250 mm with 16 mm and 27 mm diameter steel reinforcement were subjected to 

accelerated corrosion to determine the statistics for the maximum pitting depth. 

 

Fig. 2.31: Experimental results versus sectional loss percentage: (a) Ultimate and yield strength, 

(b) Ultimate strain. Taken from Cairns et al. (2005). 
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The pitting factor was used to calculate the amount of pitting in the bar.  The pitting factor can be 

calculated using Equation 2.73, 

 $ � &,#$ (2.73) 

where p is the maximum pit depth, and PAV is the penetration based on general corrosion.  PAV is 

calculated using Equation 2.74, where icorr is the current density and t is the time of corrosion. 

 ,#$ � 0.0116�(
%��	7 (2.74) 

After the accelerated corrosion had occurred, each bar was divided into lengths of 100 mm and the 

pitting factor was determined each bar segment.  A Gumbel distribution was then selected to 

represent the maximum pitting depth.  The Gumbel distribution takes the form of Equation 2.75. 

 � � �  18 !9 � ��� (2.75) 

where A is the surface area used in prediction, A0 is the surface area of the tests and µ0 and α0 are 

statistical parameters determined from the testing. The results of the tests and the statistical 

parameters for the Gumbel distribution are shown in Table 2.12. 

Table 2.12: Results of experimental study. Taken from Steward and Al-Harthy (2008). 

 

2.8 Modelling Corroded Reinforced Concrete 

There are several factors that contributed to the deteriorated response of corroded reinforced 

concrete structures.  Coronelli and Gambarova (2004) concluded that a finite element model that 

captures the behavioural response of corroded reinforced concrete structures should incorporate 

six aspects: the reduction in steel area of longitudinal and transverse reinforcement; the changes 

in the ductility of carbon-steel as a results of pitting corrosion; the concrete area reduction resulting 
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from cover cracking and spalling; changes in concrete strength and ductility of concrete in 

compression due to micro-cracking from expanding reinforcement corrosion products; changes in 

tension stiffening due to concrete cracking and bond deterioration; and bond dependence on the 

level of corrosion in the steel reinforcement.   This section outlines the proposed models of the 

factors influencing the structural response of corroded reinforced concrete structures. 

2.8.1 Reinforced Concrete Bond Strength Models 

The failure of bond in reinforced concrete can occur by two mechanisms.  The first involves 

splitting of the concrete cover creating a total loss of confinement and delamination of the concrete 

cover.  The second mechanism involves the shearing of the concrete keys between the deformed 

ribs.  When considering concrete corrosion, the expansive corrosion by-products often result in 

cracking of the concrete cover. As a result, the bond failure models are typically concerned with 

splitting failure governing the bond strength of steel reinforcement.  Coronelli (2002) summarized 

the factors that contribute to the bond strength of reinforced concrete.  The primary factor that 

affects bond strength is the confinement provided by the concrete cover. Other factors that affect 

the bond strength of corroded reinforced concrete are a reduction in friction coefficients, a 

reduction in the adhesion between concrete and steel, a reduction in the bearing area of the 

deformed bars, and a change of rib orientation (Coronelli, 2002). This section presents various 

reinforced concrete bond models that have been proposed in the literature.  A brief discussion of 

each bond model is included as a summary to this section. 

2.8.1.1 Coronelli – 2002 

Coronelli (2002) developed an analytical model for the determination of the maximum bond 

strength of reinforcement.  The model is an modified version of an original model proposed by 

Cairns and Abdullah (1996).  The bond strength of a corroded reinforced concrete member is 

determined by Equation 2.76, 

 W3� = X��� ∙ 
345���+ W61���+ �(�) ∙ 
�1��(�) (2.76) 

where, 

X      = the level of corrosion in microns,  
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345(�)   = maximum pressure at bond failure, 


�1��(�)    = pressure due to corrosion, 

X���           = (B� tan�Y���+ M� /� 

W61���          = (�7���1+(�)�cotM + tan�Y���+ M��/(��67�) 

n       = number of transverse ribs at a section, 

sr       = rib spacing, 

ATr       = rib area in the plane at right angles to the bar axis, 

cr       = rib shape and area coefficient, 

δ       = orientation of the ribs, 

�(�)          = friction coefficient = tan�Y���� = � − Z(� − ���) 

Y���          = friction angle between steel and concrete,  

��1+(�)      = adhesion strength = ! − �(� − ���), and 

B,C,D,E     = regression coefficients. 

The model captures the effect of corrosion utilizing the empirical expression for the friction 

coefficient and the adhesion strength.  The effect of reduced rib area is accounted for by a reduction 

in rib height, which is assumed to be equal to the radial reduction in bar area.  The corrosion 

pressure is calculated by assuming that the cover acts as an elastic beam, with the transverse 

reinforcement as connecting rod elements.  Fig. 2.32 is an illustration of the elastic beam assumed 

by Coronelli (2002).  

The uniform pressure is determined by assuming the displaced shape of the beam, and back 

calculating the uniform pressure required to achieve a displaced shape.  It is assumed that the 

displacement of each node not connected to a stirrup is equal to the expansion displacement of the 
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Fig. 2.32: Concrete cover elastic beam model. Taken from Coronelli (2002). 

longitudinal bars.  Equation 2.77 is derived for the radial displacement of a corroded bar, 

 7 � �&�9 � 1	�&  : � (2.77) 

where rb is the radius of the bar, n is the ratio between virgin and corroded area, and c is the 

concrete cover.   

Cornonelli (2002) analyzed the bond strength of several experimental results and achieved 

reasonable bond strength prediction.  It was noted, however, that the analysis results are not fully 

reflective of field conditions as in most accelerated corrosion tests, only current is applied to the 

longitudinal reinforcement.  This results in differential corrosion between the longitudinal 

transverse reinforcement.  In-situ, the transverse reinforcement is closer to the surface and the 

currents experienced are the same.  Thus the transverse reinforcement may be at the same level of 

corrosion or greater when compared to the longitudinal reinforcement (Coronelli, 2002).  The 

reduction in the stirrup area is not considered, and additionally a reduced ductility (in the case of 

pitting corrosion) could result in a sudden loss of confinement and a subsequent loss of bond 

strength.  Additionally, the influence of the ratio between uncorroded and corroded area is not 
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discussed.  It has been shown by Wang and Lui (2006) that this can have a significant effect on 

the predictions of bond strength models. 

2.8.1.2 Coronelli and Gambarova – 2004 

Coronelli and Gambarova reviewed and suggested a model originally proposed by Rodriguez et 

al. (1994).  The original works of Rodriguez et al. (1994) cannot be obtained at this time and thus 

the reproduction of Coronelli and Gambarova (2004) is considered sufficient.  The model was 

generated based on regression from experimental data.  Equation 2.78 was used to describe the 

residual bond strength of corroded reinforcement: 

 W3� = 0.6 20.5 +
Z�63 �� �1 − ��8�+

X�7��"7�6  (2.78) 

where: W3�is the residual bond strength;  C is the concrete cover, db is the diameter of the 

longitudinal reinforcing bar; fct is the splitting strength of the concrete; X is the corrosion 

penetration depth in mm;  ATr is the cross-sectional area of the transverse reinforcement; fy is the 

yield strength of the transverse reinforcement; s is the spacing of the transverse reinforcement; and 

β, µ, and k are parameters determined from the regression analysis. 

The above model was derived from fitting bond test results with different combinations of concrete 

cover to bar ratio, level of corrosion, and spacing/area of stirrups.  Coronelli and Gambarova 

(2004) noted that the stirrups in the original data used for regression were not corroded.  Thus 

corrosion in the stirrups was introduced by reduction in the area of the transverse reinforcement, 

ATr (Coronelli and Gambarova, 2004). 

2.8.1.3 Maaddawy et al. – 2005 

Maaddawy et al. (2005) presented an empirical model for bond strength of corroded reinforced 

concrete.  The model was developed by Saifullah and Clark (1994), however the original work is 

not available at this time.  The model was based on regression of experimental work by the original 

authors in which a reduction factor was applied to a bond model originally proposed by Kemp and 

Wilhelm (1979).  The reduction factor was a function of the mass loss of reinforcement, and the 
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current density.  Equation 2.79 was used to calculate the maximum bond stress of corroded 

reinforcement.  

 ;'�( � ���  ��<�	 �0.55  0.24 =>&�
�
	  0.191�)���'>&  (2.79) 

where A1 and A2 are parameters dependent on the current density, and ml is the mass loss.  The 

values taken for A1 and A2 are presented in Table 2.13.  

2.8.1.4 Val et al. – 2006 

Val et al. (2006) developed a model for bond strength based on regression analysis of compiled 

data from the literature.  The model aimed to capture the initial increase in strength due to corrosion 

expansion observed in various experimental studies (Al-Sulaimani et al., 1990; Almusallam et 

al.,1996).  The model was based on a ratio of the maximum bond strength to the uncorroded bond 

Table 2.13: Parameters for A1 and A2. Reproduced from Maaddawy et al. (2005). 

 

strength.  The model proposed by Val et al. (2006) is presented in Equation 2.80: 

 
;'�(;'�(, � ?1  �@� � 1	 &&
� 																																		& A &
�max�@� � @��& � &
�	; 0.15% 											& F &
� (2.80) 

where:  ;'�( is the residual bond strength; ;'�(, is the initial bond strength; k1 represents the 

original increase in bond strength; k2 represents the slope of the bond deterioration curve; p is the 
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depth of corrosion attach, or reduction in bar radius; and Xcr is the depth of corrosion attack 

required to cause concrete cracking.  The depth of corrosion required to cause concrete cracking 

was obtained from the literature by Val et al. (2006) and is calculated using Equation 2.81: 

 ��� = 9� + 9�
Z�6 + 9���  (2.81) 

where:  a1, a2, and a3 are constants obtained from regression; C is the concrete cover; db is the 

longitudinal bar diameter; and fct is the concrete splitting strength.  The parameter k1 was obtained 

from regression analysis of experimental results. The parameter is affected by the confinement of 

the reinforcement, which is affected by the cover to bar diameter ratio, and the reinforcement ratio 

of the transverse reinforcement. Val et al. (2006) noted that there is insufficient experimental data 

with a significant amount of transverse reinforcement affecting bond strength. Thus the effect of 

confinement due to transverse reinforcement was not considered in the k1 parameter.  This was 

considered conservative because the effect of confinement would increase the bond strength (Val 

et al., 2006).  The parameter k1 can be calculated using Equation 2.82. 

 X� = [\
]1                                        

Z�6 ≤ 1

1 + 0.085 2 Z�6 − 13       
Z�6 > 1

 (2.82) 

The parameter k2 represents the rate of decrease of the bond strength.  Similar to the parameter k1, 

k2 was considered to be influenced by the confinement; however, unlike k1, the influence of cover 

to bar diameter ratio was found to be statistically insignificant and was thus excluded from the 

regression model of k2.  Equation 2.83 is used to calculate the k2 parameter, where ρtr is the 

transverse reinforcement ratio.  

 X� = ^ 0.005                                       � � > 0.25

0.005 −
� � − 0.25

300
          0.25 < � � ≤ 1

0.0025                                           � � > 1

 (2.83) 

The model proposed by Val et al. (2006) was validated against beam tests conducted by Rodriguez 

et al. (1996).  The finite element model seemed to overpredict the initial stiffness of the specimens 
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as well as overpredict the strength of the specimens.  Val et al. (2006) concluded that the stiffness 

was overpredicted because of the corrosion induced cracking that was not considered in the model 

and that the strength was overpredicted because pitting corrosion was not considered in the 

analysis and thus failure of the section due to pitting corrosion was not captured.  Fig. 2.33 depicts 

the analytical results obtained by Val et al. (2006) compared with the experimental results of 

Rodriguez et al (1996). 

 

Fig. 2.33: Comparison of analytical results obtained by Val et al. (2006) versus Rodriguez et al 

(1996).  Taken from Val et al. (2006). 

2.8.1.5 Wang and Lui – 2006 

Wang and Lui (2006) presented a theoretical model for the prediction of bond strength that 

incorporated the effects of corrosion.  The theoretical model determines the pressure due to 

corrosion effects and the shear stress required to pullout the specimen, and then determines the 

ultimate shear stress including corrosion effects using Equation 2.84. 

 ;*��	 � ;
�(  tan8 ∙ &
%�� (2.84) 

where: ;*��	 is the ultimate strength of the bond for a corrosion depth X; ;
�( is the splitting bond 

strength; pcorr is the radial stress due to corrosion pressure; and α is the angle of the bond failure 

plane. 
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The model takes into account corrosion via the direct inclusion of the confining pressure from 

corrosion expansion.  The calculation of this pressure is achieved by idealizing the problem as a 

circular reinforced concrete section of radius Rc.  The cracking point is defined by a radius of Ri 

below which the radial strain exceeds the cracking strain of the concrete. The bar radius is defined 

as R0 and the corrosion penetration depth is defined as X. The radial model is shown in Fig. 2.34. 

 

Fig. 2.34: Assumed corrosion expansion model. Reproduced from Wang and Lui (2006). 

 Using elastic theory, Equation 2.85 was derived and can be solved to calculate the value of Ri for 

a given corrosion depth X.  

 
�( − 1�(20	� − ��)0
 + 0	 =

� �	 ∙ 0	 ∙
�0�/0	�� + 1�0�/0
�� + 1

 (2.85) 

where: n is the volumetric ratio between corrosion products and virgin steel; ft is the tensile strength 

of the concrete; and E0 is the initial tangent modulus of elasticity. The corrosion pressure is then 

calculated based on equilibrium conditions using Equation 2.86. 

 
�1�� ∙ 0	 = 

 ∙ 0
 +� ���������

��

 (2.86) 

where: pi is the pressure due to the elastic contribution of the uncracked concrete; and ����� is the 

hoop stress within the cracked concrete. 

Various solutions to the integral in Equation 2.86 were presented by Wang and Lui (2006). A 

variable XCR was defined as the critical corrosion penetration depth that causes the entire cover to 

be cracked, or Ri = Rc (Wang and Lui, 2006). Depending on the level of corrosion, different 
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integration solutions were presented.   The critical corrosion penetration depth could then be 

calculated from Equation 2.85 by assuming that Ri = Rc (Wang and Lui, 2006). 

The splitting bond strength was determined by assuming a failure plane at a depth of two times the 

rib height away from the reinforcement ribs.  The failure criterion proposed by Ottosen (1977) was 

used to solve for the strength of the bond.  The maximum bond stress was then calculated based 

on Equation 2.84.  

The model proposed by Wang and Lui (2006) represents an entirely analytical model that does not 

rely on regression from test results.  The model was demonstrated to be in good agreement with 

experimental results. However dependence is identified by Wang and Lui (2006) on the parameter 

n, which dictates the ratio of material expansion between virgin material and corroded material. In 

addition, the model does not account for confinement provided by transverse reinforcement which 

has been shown by other researchers to significantly contribute to corroded bond strength.  

2.8.2 Modelling Effects of Pitting Corrosion 

Pitting corrosion has been documented to have an effect on the yield strength, ultimate strength, 

and ductility of steel reinforcement.  Cairns et al. (2005) presented a model to predict the effects 

of pitting corrosion on reinforced concrete.  Equation 2.87 through Equation 2.89 were proposed 

to model the effects of pitting corrosion on steel reinforcement. 

 �" = )1 − �" ∙ -�1��+�"	 (2.87) 

 �! = �1 − �! ∙ -�1����!	 (2.88) 

 N! = �1 − �� ∙ -�1���N!	 (2.89) 

In each case, the mechanical properties deteriorate linearly as a function of two factors: α which 

controls the rate of deterioration, and Qcorr, which is ratio of the average sectional loss and the 

original cross section.  

The values taken for each of the α coefficients in Equation 2.87 through Equation 2.89 vary widely 

in the literature.   Cairns et al. (2005) noted that a review of the literature reveals that a value of αy 

and αu of 0.01 can be used for uniform corrosion and a value greater than 0.01 represents non-
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uniform corrosion.  Other researchers (Stewart and Mullard, 2007; Sewart and Suo, 2009; Stewart, 

2012) consistently uses the value of 0.005, originally recommended by Du et al. (2005), for the αy 

coefficient to represent the loss of yield strength due to pitting corrosion.   The summary of studies 

compiled by Cairns et al. (2005) show a coefficient of variation of 69 percent for αy and 65 percent 

αu.  Additionally, a loss of ductility due to pitting corrosion, α1 ,was observed to vary greatly 

between studies from no loss of ductility, (α1 = 0) to a large loss of ductility (α1 = 0.039).   Stewart 

(2009) noted that the corrosion percentage in which a significant loss of ductility is observed is 

not well-established in the literature.  Stewart (2009) defined a transition corrosion percentage of 

20 percent, between which ductile and non-ductile behaviour is observed.  

Due to the complexity of the corrosion cells, and the variation in material properties, the location 

of pitting corrosion is not easy to identify on a structure.  As a result, two approaches are adapted 

to model pitting corrosion.  In the former approach, the pitting corrosion is assumed to occur in 

the worst possible area.  For example, in a simply supported beam, an engineer may choose to 

model the pitting corrosion at a location of maximum moment.  However, in the case of a reliability 

analysis, the probability of failure for a structure would greatly be affected by the location of the 

maximum pitting depth.  Thus the location of maximum pitting depth must be a stochastic variable.   

Stewart (2009) considers this by defining lengths of equal strength which are determined 

stochastically.  In the case of a beam for example, the beam would be split into segments of a 

length lu and a corrosion pitting depth is generated as a sample of a probability distribution for the 

maximum pitting depth.  The associated loss in cross-sectional area and yield strength are then 

assumed constant over the segment.  An illustration of this concept is presented in Fig. 2.35. 

 

Fig. 2.35: Uniform capacity segments. Taken from Stewart (2009).  
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One main statistical assumption of the methodology proposed by Stewart (2009) is that each of 

the uniform capacity length lu are statistically independent.  While this provides the ability to 

consider the spatial effects of pitting corrosion, the uniform capacity length is at the discretion of 

the engineer.  It would be advantageous to develop a random field approach to the modelling of 

pitting corrosion along the length of steel reinforcement.  Such an approach was adopted by 

Teixeira et al. (2013) for the modelling pitting corrosion in two-dimensional ship plates.  The 

pitting corrosion was modelled as a two-dimensional lognormal random field.  The applicability 

of such an approach to the corrosion of reinforced concrete requires further investigation.  

2.8.3 Corrosion Induced Strain 

The expansion of reinforced concrete causes concrete to crack and as a result introduces a strain 

on the reinforced concrete.  Two of the recommended aspects required to capture the response of 

corroded reinforced concrete can be considered by the resulting tensile strains induced by 

corrosion cracking.  It is important then to determine the induced strains that contribute to 

compression softening, and reduction in tension stiffening of corroded reinforced concrete.   

Coronelli and Gambarova (2004) captured the effects of out-of-plane tensile strains by modelling 

the cover elements with a reduced compressive strength. The model for the reduced compressive 

strength was adapted from Vecchio and Collins (1986) and is presented in Equation 2.90. 

 �� =
���

1 + _N�/N� (2.90) 

where K = 0.1 is recommended. The average tensile strain is computed by assuming that the change 

in length due to corrosion is equal to the product of the number of bars and the crack width induced 

by corrosion.  The crack width is calculated using an equation originally prosented by Molina et 

al. (1993). Equation 2.91 was recommended by Coronelli and Gambarova (2004) to calculate the 

crack widths associated with corrosion.  

 N� =
(9����2��( − 1���:	  (2.91) 
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In the development of a model for bond stress, Wang and Lui (2006) proposed a method for 

calculating the hoop strains caused by expansion of corrosion products.  Using Equation 2.85 to 

first calculate the crack front for a given corrosion penetration depth, Wang and Lui (2006) 

proposed an equation for the hoop strain at any position r from the center of a reinforcing bar.  

Equation 2.92 can be used to estimate the strain at any radius r. 

 N���� =
� �	 ∙

�0�/��� + 1�0�/0
�� + 1
 (2.92) 

The hoop strains could be converted into crack widths by making assumptions about the radial 

crack spacing. Alternatively, the equations proposed by Li et al. (2006) could be used to convert 

the hoop strains predicted by Wang and Lui (2006) into crack widths.  The methods proposed by 

Li et al. (2006) are presented below.  

Li et al. (2006) derived Equation 2.93 to calculate the average hoop strain between the cover and 

the reinforcement.  

 N� =
10� − 0	 − � � N��������

��� 
=
`�0��√� − �0	 + ��√�a bB� +

��
;��<��� =>√�c√��0� − �0	 + ���  (2.93)

where: α is a stiffness reduction factor to account for the cracked concrete; and c5 and c6 are 

constants obtained from boundary conditions.  Simultaneous solution of three equations can be 

used to calculate c5, c6 and α.  An expression was also developed to predict the crack width at the 

surface of the concrete cover.   Equation 2.94 can be used to calculate the crack width at the 

concrete cover surface.   

 .� = 2�0�`N��0��− N��,2�0��a (2.94a) 

 .� =
4��� + ���1 − d����0	 + ��/0��√� + �1 + d����0	 + ��/0���√� −

2�0�� ����  (2.94b) 

For consistency in notation, the parameter ds(t) originally proposed by Li et al. (2006) was replaced 

with (X + t).  This is because it is convenient to express the corrosion penetration in reference to 

the original bar diameter.  It is assumed that Equation 2.77, proposed by Coronelli (2002), can be 
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used to determine the parameter t and thus keep consistent notation between proposed models.   

Similar to Coronelli and Gambarova (2004), the strain due to concrete cracking could be estimated 

by assuming that the change in width of a concrete specimen is equal to the product of the number 

of bars and the crack widths.   

The effect that transverse reinforcement has on the crack widths and corrosion induced strain is 

unclear from the discussion of the models presented by Wang and Lui (2006) and Li et al. (2006).  

Theoretically, it is logical to assume transverse reinforcement would result in a reduction in crack 

widths, and an associated reduction in compression softening effects.  However, transverse and 

longitudinal reinforcement will corrode simultaneously and, as a result, may cause an increase the 

crack width.  Further investigation into the effect of transverse reinforcement on longitudinal 

corrosion cracks should be undertaken. 

In modelling the effects of tension stiffening and compression softening, two approaches can be 

taken.  The first approach involves reducing the material parameters of the concrete to simulate 

damage.  The second approach involves predicting the strains induced by corrosion products, and 

applying those strains as pre-strains in a finite element model.  The latter approach could be taken 

when adopting the corrosion modelling of reinforced concrete using MCFT/DSFM.  Using models 

to predict the width of cracks, and the subsequent strain induced in the finite elements, the ability 

of the implicit formulations implemented in MCFT/DSFM, the ability to capture the effects of 

corrosion could be investigated. 

2.8.4 Research Needs 

Of the five requirements for modelling of corrosion of reinforcement, the one most heavily 

addressed in the literature is the modelling of bond strength of corroded reinforcement. The 

extensive amount of experimental work regarding the effect of corrosion on the bond strength of 

steel reinforcement has been used by multiple researchers to develop empirical bond models.  

However the range of applicability to the empirical models is difficult to discern when applying 

the models to actual structures that may differ dramatically from experimental conditions.  

Analytical bond models have been developed for the case of unconfined concrete; however a 

theoretically rigorous analytical model for the bond strength of corroded reinforced concrete in the 

presence of confining pressures has not been developed.   
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There were two types of analytical studies encountered during the literature review.  The first 

involves two-dimensional (cross-sectional) or three-dimensional analysis of the concrete sections 

to determine the effect of corrosion products (concrete cracking, bond strength, etc.).  The second 

involves the modelling of the strength of deteriorated structural elements.  There are few examples 

of models that model both the deterioration effects and the strength, with Sanchez et al. (2010) 

being an example.  Such models likely require very fine meshing with detailed contact elements 

between steel reinforcement and concrete elements that can represent the expansion and bond 

properties required to capture the behaviour of corroded reinforced concrete.  A need exists then, 

for a simplified tool that captures the deterioration effects of corrosion and has the ability to 

determine the strength of such structural members.  

The stochastic parameters involved in pitting corrosion are approached by defining lengths of 

equal strength, and then modelling them as statistically independent random variables.  It may be 

advantageous to develop a method for generating random fields that model pitting corrosion of 

steel reinforcement.   

 



 

80 

 

CHAPTER 3: EXPERIMENTAL PROGRAM 

A large deep reinforced concrete slab strip specimen (PLS4000) was constructed and tested at the 

University of Toronto by Quach (2016).  In a subsidiary experimental program, undertaken by this 

author, a set of ultrasonic pulse velocity measurements was taken from a grid of points on the 

Quach specimen to assess the spatial variability of the concrete.  The spatial variability was 

incorporated into the finite element models and the results are discussed. This chapter describes 

the procedure, results, and analysis of the subsidiary experimental program.   

3.1 PLS4000 Specimen Details 

The specimen considered herein was a large reinforced concrete slab strip denoted PLS4000.  The 

slab strip was constructed and tested by Quach (2016) as part of an investigation to assess the shear 

strength of very large unreinforced concrete slabs. For more information on the construction and 

experimental data for PLS4000, the reader is referred to Quach (2016) and Collins et al. (2015).  

The slab strip was segregated into two spans labeled east and west.  The west span was 7 metres 

in length, containing vertical 20M T-headed shear reinforcement spaced at 1500 mm.  The east 

span was 12 metres in length and contained no transverse shear reinforcement.  The slab strip 

contained nine 30M reinforcing bars of Grade 500W steel as longitudinal reinforcement.  This 

equates to a longitudinal reinforcement ratio of 0.656 percent. Three 20M bars were used for crack-

control at the top of the slab strip.  The specified thickness of the slab strip was 250 mm. Fig. 3.1 

shows an elevation of the slab strip. Fig. 3.2 shows the sections of the slab strip for both spans.  

 

Fig.3.1:Elevation of specimen PLS4000 tested by Quach (2016). 
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 (a) (b) 

Fig. 3.2: Section properties of slab strip specimen PLS 4000, tested by Quach (2016). 

(a) West span. (b) East span. 
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3.2 Data Collection Procedure 

The objective of the subsidiary study was to determine if statistically significant spatial variability 

existed between concrete within the same large specimen, and to spatially map the compressive 

strength using the nondestructive test data. The experimental program involved the collection of 

ultrasonic pulse velocity (UPV) measurements from the slab strip and from five sets of cylinders.  

Each set of cylinders contained two cylinders from each batch of concrete (three trucks were used 

in casting) for a total of six cylinders per set.  The cylinders were tested at 7, 14, 22, 28, and 42 

days after the cast. For a given set of cylinders, the cylinders were demolded and ground in 

preparation for compressive strength testing. Ultrasonic pulse velocity measurements were then 

collected from each cylinder.  The experimental setup for the cylinder UPV measurements is 

shown in Fig. 3.3. 

 

Fig. 3.3: Experimental test setup for compressive strength test cylinders. 

For the UPV tests on the main slab strip, a set of grid points was established.  Measurements were 

taken at increments of 500 mm in the vertical direction and between 610 mm and 533 mm in the 

horizontal direction.  The variable spacing of the horizontal coordinates was selected such that the 

measurements would fall directly between surface seams caused by the formwork.  The forms 

were constructed using prefabricated panels with either a width of 610 mm (24 in) or 457 mm (18 

in). At the joints between the panels, vertical and horizontal surface seams were created.  Thus in 

order to avoid the surface seams, the vertical gridlines were centered between adjacent defects. 

The horizontal gridlines were labeled A through G while the vertical grid lines were labeled 1 

through 19. Thus each measurement is spatially referenced by a letter-number pairing (e.g. B3). 

The grid layout is shown in Fig. 3.4.  The grid was measured using a ruler that was suspended 

from the top of the slab strip. Thus all vertical dimensions are in reference to the top of the slab 



EXPERIMENTAL PROGRAM 
 

83 

 

strip. The ruler was leveled vertically and each grid point was centered between seams. Horizontal 

and vertical grid points were then checked with a level and a tape measure.  

 

Fig. 3.4: Grid layout of ultrasonic pulse velocity testing. 

In addition to the large grid, a smaller grid was established in order to capture a small section of 

the slab strip at a higher resolution.  The smaller grid added two vertical gridlines between each 

major vertical gridline, and one horizontal gridline between each major horizontal gridline. This 

created a vertical gridline spacing of approximately 200 mm and a horizontal gridline spacing of 

approximately 250 mm. The vertical gridlines were designated as M.1 and M.2 where M is the 

number of the previous major gridlines.  For example, the two minor gridlines between major 

gridlines 4 and 5 are designated 4.1 and 4.2.  The horizontal minor gridlines were designated M.5 

where M is the letter of the previous gridline.  For example, the small gridline between E and F is 

labeled "E.5". The smaller grid spanned from vertical gridlines 3 to 7 and from horizontal gridlines 

D.5 to G.   The small grid is illustrated in Fig. 3.5. 

The UPV instrument only measures the travel time of the ultrasonic pulse.  In order to determine 

the velocity, the thickness of the slab strip must be assessed.  The original form work required a 

series of ties passing through the width of the slab strip in order to hold the forms together.  This 
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left a set of holes though the slab strip that were used to measure the width of the slab strip.  The 

location of the holes and surface seams are shown in Fig. 3.6. 

 

(a) 

 

(b) 

Fig. 3.5: (a) Global position of small grid. (b) Small grid layout and dimensions. 
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Fig. 3.6: Location of holes and surface seams. 

3.3 Experimental Results 

This section summarizes the observed experimental data for concrete cylinder tests, the UPV 

measurements, and the measured widths.   Two concrete cylinders from each of the three trucks 

were tested at 7, 14, 22, 28, 35, and 49 days.  The 28-day compressive strength of the concrete 

cylinders had an average value of 39.4 MPa, which was significantly higher than the specified 

strength of 25 MPa. Table 3.1 summarizes the compressive strength values for each truck.  For 

each cylinder, UPV measurements were taken. Due to scheduling issues, the UPV measurements 

were not collected for the 35-day cylinders.  In addition, the UPV measurements for the 49-day 

cylinders were taken at 42 days.  The UPV measurements are summarized in Table 3.2.  A scatter 

plot of the measured UPV and compressive strength is shown in Fig. 3.7.  It is clear from this plot 

that a correlation exists between the UPV and the compressive strength of the concrete.  These 

correlations are described in Section 3.4.2. 

From the PLS4000 specimen, two grids of UPV measurements were obtained.  The main grid was 

measured at a concrete age of 14 days, and the small grid was measured at a concrete age of 15 

days. At each grid point, five UPV measurements were recorded and averaged. To aid in the 

visualization of the data, a cubic spline interpolation of the main grid is shown in Fig. 3.8. From 

the figure, it is observed that there was distinct stratification in the vertical direction.  The concrete  

Formwork 

Seams 

Holes 
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Table 3.1: Compressive Strength Values for Concrete Cylinders 

Test Date 
Compressive Strengths [MPa] 

Truck 1 Truck 2 Truck 3 Average 

7 Day 
A 27.0 31.8 31.6 

30.0 
B 26.8 32.2 30.3 

14 Day 
A 32.7 34.9 37.3 

35.7 
B 33.9 38.5 37.0 

22 Day 
A 37.3 36.9 38.0 

37.2 
B 38.0 38.1 35.3 

28 Day 
A 38.5 35.6 42.6 

39.4 
B 42.0 42.2 35.4 

35 Day 
A 37.5 42.1 38.9 

41.5 
B 39.1 44.5 46.7 

49 Day 
A 42.8 44.7 45.6 

43.4 
B 40.6 42.6 44.2 

 

Table 3.2: Ultrasonic Pulse Velocities for Concrete Cylinders 

Test Date 
Ultrasonic Pulse Velocity [m/s] Length [mm] 

T1/T2/T3 Truck 1 Truck 2 Truck 3 Average 

7 Day 
A 4638 4735 4698 

4662 
301/298/294 

B 4609 4727 4566 296/299/297 

14 Day 
A 4842 4844 4754 

4814 
299/295/299 

B 4793 4851 4801 296/293/299 

22 Day 
A 4888 4860 4879 

4873 
304/296/304 

B 4900 4875 4834 303/297/304 

28 Day 
A 4928 4935 4968 

4932 
300/303/302 

B 4860 4992 4910 301/301/304 

42 Day 
A 4944 4981 5033 

5002 
301/303/301 

B 5018 5012 5022 303/301/305 
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Fig.3.7: Measured ultrasonic pulse velocity versus cylinder compressive strength. 

was cast using three trucks each with a lift height of approximately 1 to 1.5 metres. The UPV 

measurements therefore are consistent with concrete placement.  Additionally, the cylinders from 

the second truck, at 14-day strength, were consistently stronger than those from the other two 

trucks.  This is reflected in the shorter travel time for the ultrasound wave that was observed.   The 

travel time measurements ranged from 50.9 and 54.5 microseconds. 

The small grid visualization is shown in Fig. 3.9. The smaller gird also reflects the stratification 

observed in the main grid; however, it only includes the bottom two lifts.  

The stratification boundary in both the main grid and the small grid appears to be at an elevation 

of approximately 1200 mm.  

The thickness of the slab strip was measured at a series of holes that were present in the slab strip 

(see Fig. 3.6).  The slab strip thickness at each grid point was then determined by linear 

interpolation.  The variation of thickness in the slab strip was found to be between 244 and 259 

mm for the minimum and maximum measured thickness respectively.  A contour of the measured 

thickness of the slab strip is shown in Fig. 3.10. 

20

25

30

35

40

45

50

4400 4600 4800 5000 5200

C
o
m

p
re

ss
iv

e 
S

tr
en

g
th

 [
M

P
a]

Measured UPV [m/s]

7 Day

14 Day

22 Day

28 Day

49 Day



E
X

P
E

R
IM

E
N

T
A

L
 P

R
O

G
R

A
M

  

8
8

 

 

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
500

1000

1500

2000

2500

3000

3500

X [mm]

Y
 [
m

m
]

 

 

Time [µs]

51 51.5 52 52.5 53 53.5 54
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(a) 

 

(b) 

Fig. 3.9: UVP time measurements for small grid. (a) Collected data (b) Interpolated data. 
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The ultrasonic pulse velocity was calculated using the measured times and the interpolated 

thickness.  The UPV measurement is calculated using Equation 3.1 where Δx is the measured 

thickness and Δt is the measured travel time.   

 e/� = ∆�/∆� (3.1) 

Fig. 3.11shows the interpolated UPV measurements corrected for thickness variations for the large 

grid. Similarly, Fig. 3.12shows the UPV measurements for the small grid.  

 

Fig. 3.10: Interpolated plot of measured thickness. 

 

Fig. 3.11: Calculated UPV for large grid with cubic spline interpolation. 
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Fig. 3.12: Calculated UPV for small grid with cubic spline interpolation. 

3.4 Analysis of Collected Data 

In this section, the collected data are analyzed to assess the spatial properties of the concrete.  

Geospatial statistical methods are employed to determine the spatial characteristics of the slab 

strip.  Kriging maps are developed to interpolate the material properties between the collected data.  

The thickness of the slab strip, the ultrasonic pulse velocity data, and the concrete compressive 

strength datasets are addressed.  

3.4.1 Slab Strip Thickness 

The thickness of the slab strip showed little variation, ranging between 244 mm and 259 mm.  The 

variation of thickness is assumed to be a random variable. The distribution of thickness observed 

in the slab strip was found to be normally distributed with a mean value of 251.0 mm and a 

coefficient of variation of 1.0 pecent.  The fitted distributions are shown in Fig.3.13. Due to the 

nature of the thickness variation, changes in thickness occur due to changes in the formwork, and 

thus one might expect some spatial correlation to exist.  However, the experimental 

semivariogram, plotted in Fig.3.14, reveals that no such spatial correlation exists in the thickness. 

(For more information on experimental semivariograms, the reader is referred to Section 3.4.3.)  

This is in part due to the difficulty of measuring the thickness.  The thickness was only measured 

through holes in the slab strip left from the formwork.  Thus data could not be collected at small 

enough lag distances, and the spatial statistical properties of the random field could not be properly 
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assessed. Thus no statistically significant conclusion can be drawn about the spatial statistics of 

the slab strip thickness.   

 

 (a) (b) 

Fig.3.13: (a) Histogram and fitted PDF of thickness data. (b) Empurical and fitted CDF of 

thickness data. 

 

Fig.3.14: Semi-variogram of slab strip thickness. 
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3.4.2 Concrete Cylinder Data 

Concrete cylinders were tested at the ages of 7, 14, 22, 28, 35, and 49 days.  For most of the 

cylinders, the ultrasonic pulse velocity of the concrete was measured.  This section discusses the 

observed trends in the cylinder data.  A regression model is developed to relate the ultrasonic pulse 

velocity to the compressive strength. Additionally, temporal regression models are developed for 

the compressive strength and ultrasonic pulse velocity.  

The regression model adapted from Unwahan and Mahan (2013) was used to evaluate the change 

in concrete strength versus time.  A linear relationship was assumed between the compressive 

strength, normalized from its 28-day strength, and the natural logarithm of the concrete age in 

days.  Equation 3.2 was developed to describe the compressive strength of concrete.  

 ��,�
� � �0.1632 ln �  0.4564���,��

�  (3.2) 

The regression provided an R2 value of 0.796. This was considered acceptable as the concrete 

contained both within-batch variation and batch-batch variation.  A scatter plot of the collected 

data and the fitted regression is shown in Fig. 3.15.   The regression is also compared against the 

average of the concrete properties at each test date, shown in Fig. 3.16.  This plot reveals good 

agreement between the test data and the selected regression model. 

 

Fig. 3.15:  Scatter plot of collected compressive strength data and fitted regression. 
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Fig. 3.16: Average daily compressive strength compared against fitted regression. 

The same relationship was assumed to relate the evolution of ultrasonic pulse velocity with time. 

This regression produced a better fit.  The R2 value was calculated to be 0.884.   Equation 3.3 

relates the ultrasonic pulse velocity with time.  

 ���� � �0.038 ln �  0.8728������ (3.3) 

The scatter plot of the UVP versus time is shown in Fig. 3.17.  Similar to the compressive strength, 

when the average of the UPV measurements is compared against the fitted trend, a good agreement 

is observed.  

A third regression model was developed to relate the ultrasonic pulse velocity to the compressive 

strength of concrete.  Panesar and Chidiac (2007) suggested that a linear relationship exists 

between the fourth root of the concrete strength and the ultrasonic pulse velocity.   This relationship 

was assumed for the regression of the test data.  Equation 3.4 is the resulting regression equation.  

 ���
���.�	 �

���

1640
� 0.4968 (3.4) 

A plot of the test data and the fitted regression is shown in Fig. 3.19. The regression yielded an R2 

value of 0.801. Although this is considered reasonable, it is believed that the regression would be 
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Fig. 3.17: Ultrasonic pulse velocity data versus time and regression model.  

 

Fig. 3.18: Average ultrasonic pulse velocity compared against regression model.  

improved by including 1-Day and 3-Day test data.  However only a limited number of cylinders 

were available for testing.  A plot of the fitted regression model with the average UVP and average 

compressive strengths is shown in Fig. 3.20.  This plot reveals that the average values are in good 

agreement with the predicted model.  
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Fig. 3.19:  Measured UVP versus compressive strength and fitted regression model.  

The residuals from the regression model were analyzed as a random variable.  The residuals have 

a mean of 0.051 MPa and a standard deviation of 2.24 MPa. Least squares regression is based on 

the assumption of a normally distributed error term.   A comparison of the empirical cumulative 

distribution function for the residuals and a fitted normal distribution confirms this assumption.  A 

KS test on the residuals confirmed the goodness of fit. Thus a normal distribution is considered a 

good fit for the error parameter in the regression model. A plot of the residuals is shown in Fig. 

3.21. A plot of the residuals does not show any positive or negative bias. The empirical and 

assumed cumulative distribution functions are plotted in Fig. 3.22. 

 

Fig. 3.20: Average UVP versus average compressive strength and regression model.  
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Fig. 3.21: Residuals from regression model. 

 

Fig. 3.22: Empirical cumulative distribution function and fitted distribution for residuals.  
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found to be normally distributed with a mean of 4793 m/s and a standard deviation of 82.9 m/s.  A 

KS test and a chi-squared goodness of fit test provided p-values of 0.211 and 0.505 respectively.  

The histogram and empirical CDF as well as the fitted distribution are shown in Fig. 3.23.  

 

 (a) (b) 

Fig. 3.23: Experimental UPV data and fitted distributions. (a) Histogram and PDF. (b) Empirical 

and fitted CDF. 

The spatial variability of the UPV measurements is first assessed using ANOVA testing to 

determine if the variability between points is greater than the variability at a given point due to 

measurement error.  This is done with a replicated two-way ANOVA test where the independent 

variables are the horizontal and vertical grid positions and the dependent replicated variable is the 

measured UPV.   The null hypothesis assumes that the concrete has uniform material properties 

everywhere regardless of concrete batch or location.  The results of the ANOVA test are shown in 

Table 3.3.  

The ANOVA test reveals that there is statistically significant variability between grid points.  Both 

the X and Y directions have small p-values, suggesting that there is significant variability.  In 

addition, there is no interaction between the X and Y variables.  This implies that the variations in 
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Table 3.3: Replicated two-way ANOVA analysis results. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F Test-ratio p-value 

X-Direction 47.65 18 2.65 3.56 1.2x10-6 

Y-Direction 42.52 6 7.04 9.48 6.6 x10-10 

Interaction 14.599 108 0.13 0.18 1.00 

Error 395.4 532 0.74   

Total 499.9 664    

The data collected are assumed to be part of a random field.  The collected data are thus assumed 

to be sampled from that random field.  In order to interpolate between the sampled points, spatial 

statistical tools are required. An approach similar to Nguyen et al. (2013) is adopted for this thesis. 

An empirical semivariogram was constructed from the data set.  A semivariogram determines how 

the data are correlated with distance.  In order to predict random fields from collected spatial data, 

a semivariogram is required (Stein, 1999).   An empirical construction of the semivariogram is 

achieved by employing Equation 3.5. 

 fg��� =
1

2((�)
� E���
�− �)�?+F�

����
 (3.5) 

where the lag distance, x, is defined as the distance between two points xi and xj, fg��� is the 

empirical semivariance for a lag distance x, n(x) is the number of pairs of the lag distance x within 

the data set, and Z(xi) and Z(xj) are the measured values of the random field Z for points xi and xj 

respectively. In the case of this study, the random field Z is defined as the variation of ultrasonic 

pulse velocity within the concrete slab strip.  Note that the assumed random field is two-

dimensional. Thus the value x =xi - xj is generalized in two dimensions to be the actual distance 

between two points and is calculated as x = √∆�� + ∆L�. Stein (1999) notes that sets of x are not 

entirely equal in value.  Thus they are usually grouped into bins of similar lag distances. The 

empirical semivariogram is shown in Fig. 3.24  
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Fig. 3.24: Empirical semivariogram of UPV data.  

For the random fields assumed in this thesis, the random field is assumed to have an autocorrelation 

function.  An autocorrelation function is a function that describes the covariance of a random field 

by the distance between two points within the field (Stein, 1999).  This is formally described by 

Equation 3.6, 

 B�;h����,��i�j = _�� − i� (3.6) 

where B�;h����,��i�j is the covariance between any two points x and y in the random field Z.  

K(x-y) is the autocorrelation function that can describe the covariance for any two points x and y 

based on their difference.  Again note that if the random field is higher than one-dimensional, then 

the quantity x-y is the vector length between vectors x and y.  The commonly used isotropic 

autocorrelation function is the spherical model shown in Equation 3.7, 

 _��� = kZ �1 −
3�
29 +

��
29�  � ≤ 9

0 � > 9  (3.7) 
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where the variance of the random field is described by C + C0, the parameter C0 is equal to the 

nugget effect, r is the lag distance equal to x-y, and a is the range of the random field.  The nugget 

effect describes the phenomenon where points at a very close (or the same) distance still exhibit 

stochastic variability. This is also referred to as the micro-scale variation.  The range of a random 

field is the distance at which two points are no longer correlated.  The parameter C is the amount 

of variance in the random field that is not attributed to spatial variation.  The analytical 

semivariagram can be determined from Equation 3.8. 

 f��� = ;9�h�j −_(�) (3.8) 

Substituting the variance of the random field with C + C0 yields Equation 3.9. 

  f��� = kZ	 + Z �3�
29 −

��
29� � ≤ 9Z	 + Z � > 9  (3.9) 

The spherical model was assumed to represent the data.  A regression was done to determine the 

range, sill, and nugget effect.  The regression model is plotted with the empirical semivariogram 

in Fig. 3.25. The semivariogram was found to have no nugget effect; the sill of the semivariogram 

was calculated to be 6811.3 [m2/s2], and the range was calculated to be 1190 mm. 

Using the properties of an assumed semivariogram, an ordinary kriging map can be generated from 

the collected data points.  Kriging maps are heavily employed in geospatial interpolation problems 

and were developed by a mining engineer by the name of D. G. Krige (Stein, 1999).  A kriging 

map is also called the best linear unbiased prediction. Stein (1999) presents a summary on how the 

kriging maps are calculated. The collected data are assumed to be part of a realization of a random 

field Z which takes the form shown in Equation 3.10, 

 ���� = l(�)7� + N(�) (3.10) 

where m(x) is the mean function, ε(x) is a random field with a mean of zero with a known 

covariance structure, and β is a vector of unknown coefficients. Kriging maps can be referred to 

as universal or ordinary. In the case of an ordinary kriging map, the parameter m(x) is assumed to 
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Fig.3.25: Fitted spherical semivariogram for experimental data. 

be equal to 1.0 and thus the mean is an unknown constant. In the case of a universal kriging map, 

the mean function is variable with position. The spatial variation in the point loaded strip is 

assumed to be an ordinary kriging and thus the mean is constant. Kriging maps are also referred 

to as the best unbiased linear predictor. The best unbiased linear predictor assumes that the 

prediction Z(x0), for a vector of points, x0, that lie between collected observations, can be 

represented by the form, 

 ���	� = m	 + m7� (3.11) 

where � =  h�(��), … ,�(��)j is a set of observed values of the random field at points x1 to xn. 

This predictor is subject to two constraints: 

 ��m	 + m7�� = �����	�� (3.12) 

and m	 + m78� = l���7�  (3.13) 

where the measured values of the mean function x1 to xn is87 = hl(��), … ,l(��)j. Thus it 

is concluded that, 
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 m	 = 0 (3.14) 

and l��	� =  87m (3.15) 

The solution of λ that solves this constrained minimization problem is then considered the best 

unbiased linear predictor for Z(x0), calculated as 

 ���	� =  m7� (3.16) 

If we select a vector v such that, 

 ���	� =  �m + ;�7� (3.17) 

we can show that, 

 l��� =  87�m + ;� = 87m +87;  (3.18) 

Because m(x)=M Tλ, we can see that M Tv = 0. In addition, Stein (1999) shows that the best linear 

prediction for the weighting function is given by, 

 m = _��X (3.19) 

where K = cov{Z,ZT} and k = cov{Z,Z(x0)} .  Thus if a vector μ is selected such that M μ = 0, it 

follows that, 

 _m − X = 8μ (3.20) 

In matrix form these two conditions take the form 

 b _ 887  c nm�o = n Xl��	�o (3.21) 

Where O is a matrix of zeros. This can be rearranged to, 

 nm�o = b _ 887  c�� n Xl��	�o (3.22) 
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Solving for λ yields: 

 m = h_�� − _��8�87_��8���87_��jX + _��8�87_��8���l(�	) (3.23) 

Thus using the calculated data, unbiased estimates for values between collected data is estimated.  

However, the covariance values between the measured values Z and the locations of prediction 

Z(x0) need to be known.  Thus the autocorrelation function calculated from the fitted 

semivariogram is used to produce the k matrix.  This method was used to produce kriging maps 

for the ultrasonic pulse velocity at the centre of each of the finite elements in the mesh. The 

calculated kriging map for the ultrasonic pulse velocity is shown in Fig. 3.26. The conversion of 

ultrasonic pulse velocity to compressive strength is discussed in Section 3.4.4. 

 

Fig.3.26: Kriging map used for finite element analysis.  

3.4.4 UPV Variable Transformation 

In order to convert the measured UPV data from the kriging map of the ultrasonic pulse velocity, 

two transformations were required.  The UPV data is transformed from the measured 14-day values 

to the test day values.  Then this UPV is transformed from the 28-day values to the test day (46-

day) values, the ratio between the UPV predicted between 14 and 46 days was used as a multiplier 

to all UPV values uniformly. Then Equation 3.4 was used to calculate the corresponding 

compressive strength. In order to assess the accuracy of this transformation, Equation 3.3 and 
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Equation 3.4 were used and compared against Equation 3.2.  Fig. 3.27 shows the comparison 

between measured compressive strength versus time, the prediction from Equation 3.2, and the 

prediction from Equation 3.3 and Equation 3.4.  Equation 3.3 and Equation 3.4 were based on data 

from 7 to 49 days.  Equation 3.2 was based on data up to 80 days. From Fig. 3.27, it can be seen 

that the error in the collected data for interpolating between 0 and 49 days is reasonably low.  

However the trend does start to deviate from the Equation 3.2 when extrapolating past 49 days.  

Testing of PLS4000 ended on day 46, thus the interpolation is considered reasonably accurate.  

Fig. 3.28 shows the finite element model inputs after the kriging map and variable transformation 

was applied.  The compressive strength for each element is an input variable. The tensile strength 

and modulus of elasticity were calculated using the equations recommended in the CSA A23.3 

code.  

 

Fig.3.27: Comparison of fitted and calculated compressive strength trend. 

3.4.5 Within Member Strength Variation and Spatial Variability 

In order to assess the spatial variability, the variability attributed to batch to batch variation must 

be disaggregated from the variability of the test. It has been shown in the literature that the within-

member variation is inflated when the number of batches of concrete cast within a member 

increases (Bartlett and MacGregor, 1994). 
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The variability due to multiple batches cast in the same member was assessed using the cylinder 

data. The statistics for each of the cylinders is presented in Table 3.4.  

Table 3.4: Statistical parameters for concrete cylinder test data.  

Test Date 

[days] 

Mean ��� 
[MPa] 

Standard 

Deviation 

[MPa] 

COV 

[%] 

7 29.96 2.45 8.18% 

14 35.74 2.23 6.24% 

22 37.23 1.08 2.91% 

28 39.39 3.35 8.51% 

35 41.46 3.59 8.66% 

49 43.42 1.79 4.11% 

80 45.47 2.71 5.95% 

  Mean COV 6.37% 

The total coefficient of variation of the UPV test data after regression, VEXP, was calculated to be 

0.0784.  This coefficient of variation includes the variability due to spatial variation, and due to 

batch to batch variation. Using the mean coefficient of variation from Table 3.4 as the batch to 

batch coefficient of variation (VBatch-to-Batch), the coefficient of variation due to spatial variability 

(VS) can be calculated using Equation 3.24.   

 �� = p�$5@� − �9� �+� 1�9� �+�  (3.24a) 

 �� = 4(0.0784)� − (0.0637)� (3.24b) 

 ��  = 0.0457 (3.24c) 

Bartlett and MacGregor (1994) analyzed the spatial variation within a set of girders originally 

tested by Scanlon and Mikhailovsky (1987).  They report that the average coefficient of variation 

for variation due to within-girder spatial variation is 0.043.  Thus the coefficient of variation due 

to spatial variability in this study can be considered reasonable.  It should be noted, however, that 

the influenced of variability due to UPV measurement error is not included and should be 

addressed in a future study.  
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3.5 Modelling of Experimental Response 

This section describes the observed experimental response of PLS4000 and the finite element 

models of the structure. The slab strip was modelled both with and without the collected data. A 

comparison of each model is provided.  For more details on the experimental results, the reader is 

referred to Quach (2016).  

3.5.1 Experimental Response 

The slab strip was first loaded to fail the unreinforced side. A single point load was applied along 

grid line two until failure occurred.  The testing took place from June 10, 2015 to June 12, 2015.  

The observed failure mode was a large diagonal crack at a location of approximately five metres 

from the point of loading on the unreinforced span.  A representation of the crack pattern at failure 

is shown in Fig. 3.29. The experimental response is plotted in Fig. 3.30.   

 

Fig.3.29: Experimental crack pattern at failure. 

The slab strip had a self-weight deflection of approximately 1.0 mm and remained uncracked under 

its self-weight. The structure cracked at an applied load of 200 kN.  The response was 

approximately bilinear until a large shear crack appeared and failed the structure at an ultimate 

load and deflection of 685 kN and 12 mm respectively. 
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Fig.3.30: Experimental load-deflection plot for PLS4000.  

Fig. 3.31 shows an overlay of the experimental crack pattern and the collected UPV data. An 

overlay of the traced crack pattern and the UPV data reveals some interesting trends.  Cracking in 

reinforced concrete is influenced by the stress field and the local strength variations.   

 

Fig.3.31: Experimental crack pattern and kriging map of collected UPV data. 
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material properties might play a role in the crack pattern.  In Fig. 3.31, we see that the two main 

shear cracks pass between the zones of weakness in the middle layer.  This suggests that the 

variation in tensile strength in the middle layer contributed to the location of cracks and ultimately 

to the location of the failure crack.  

3.5.2 Finite Element Model with Uniform Material Properties 

A finite element model was constructed to model the observed experimental properties. The failure 

of the unreinforced side is particularly sensitive to the assumed crack spacing and tension softening 

models. A very fine mesh of 8033 elements was used to model the structure. The selected mesh is 

shown in Fig. 3.32.  

 

Fig. 3.32: Finite element mesh. 

A total of 41 elements were utilized through the depth of the beam.  The east and west spans of 

the beam were modelled using different material types due to the assumed maximum crack 

spacing. Collins and Mitchel (1997) recommend that for crack spacing in the shear area, the CEB-

FIP Code equations be modified for the shear region.  These modified equations were used to 

produce predictions for the crack spacing on either side. Note that for the unreinforced side, the 

vertical and horizontal crack spacing was assumed to be equal to 4035 mm.  The bottom and top 

flexural reinforcement were grouped into one set of truss bars with total areas acting through the 

geometric centroid of each bar group.  A summary of the model inputs is shown in Table 3.4.  

A comparison of the finite element and experimental load-deflection is shown in Fig. 3.33. The 

finite element model predicted a failure load of 715 kN and a deflection at ultimate of 12.3 mm. 

The finite element model appears to capture the initial and post-cracking stiffness of the structure; 
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Table 3.5: Finite Element Model Material Properties 

Color 

/Material 

Material 

# 

f’c/fy 

[MPa] 

Ec/Es 

[MPa] 

ε'c/ εu 

x10-3 

f’t/fu 

[MPa] 

t/As 

[mm/mm2] 

Description 

Concrete 1 40 28772 2.13 2.17 250 Concrete West Span 

Concrete 2 40 28772 2.13 2.17 250 Concrete East Span 

Steel 3 500 200000 5.00 600 250 Bearing Plate Steel 

Bearing 4 N/A 28772 N/A N/A 250 Bearing Material 

Steel 5 573 200000 14 685 6300 Bottom Bars 

Steel 6 522 200000 17 629 900 Top Bars 

Steel 7 522 200000 17 629 300 Vertical T-headed 

Bars 

however, the cracking load predicted by the FE model is about twice that of the experiment.  This 

could contribute to the offset observed in the post-cracking stiffness. This is considered a 

reasonable prediction of the load-deflection behaviour.  Collins et al. (2015) organized a prediction 

competition where load-deformation predictions were collected before the test. This uniform 

analysis was submitted as an entry for the prediction competition before the physical testing began.  

Thus it is a true prediction of the load-deformation behaviour.   

 

Fig. 3.33: Load-deflection for FE model with uniform properties versus experimental results. 
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The crack pattern is captured reasonably well by the finite element model. In both cases, a large 

diagonal crack precipitates the failure; however, in the experiment, two large diagonal cracks were 

observed. In the finite element model, only one diagonal crack formed and is ultimately 

responsible for the failure. Fig. 3.34 shows the experimental crack pattern overlaid with the 

predicted crack pattern.  

 

Fig. 3.34: Overlay of FE crack pattern (black) and experimental crack pattern (red) for FEM with 

uniform material properties. 

3.5.3 Finite Element Mode with Spatially Variable Material Properties 

The initial finite element model was updated to include the spatially variable properties shown in 

Fig. 3.28. An additional input file read in scaling factors that changed the compressive strength, 

tensile strength, and modulus of elasticity of the original model to match that of the measured test 

data. The FE model predicted a maximum load of 725 kN and a deflection at ultimate of 12.7 mm. 

Fig. 3.35 compares the FE and experimental crack patterns.  Fig 3.36 compares the spatially 

variable load-deflection to the experimental load-deflection. 

 

Fig. 3.35: Overlay of FE crack pattern (black) and experimental crack pattern (red) for FEM with 

spatially variable material properties. 



EXPERIMENTAL PROGRAM 
 

113 

 

 

Fig. 3.36: Load-deflection for FE model with spatial variation versus experimental results.  

3.5.4 Discussion on the Effect of Spatial Variability on Modelling Large 
Unreinforced Concrete Structures 

In the current formulation of VecTor2, modelling the spatial variations did not have a significant 

effect on the analysis results.  In this study, all model inputs were identical except for the 

assumption of uniform material properties in the first model. The resulting crack pattern and load-

deflection between each analysis were also almost identical deviating only after the peak load.  

This deviation is considered insignificant as the model tends to become numerically unstable in 

the post-peak regime.  Most likely the minimal difference between modelling techniques can be 

attributed to the underlying assumptions of the selected software. VecTor2 is most applicable to 

reinforced concrete structures, where the smeared cracked assumptions govern structural 

behaviour.  Large unreinforced concrete beams are a fracture dominated problem and deviate from 

the assumptions of the MCFT/DSFM.  As a result, the models are sensitive to the calculation of 

the crack width.   

Additionally, the modelling of such a structure with nonlinear finite element analysis is sensitive 

to the selection of the tension softening model.  In the case of the analysis above, a bilinear tension 

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18

A
p

p
li

e
d

 L
o

a
d

 [
k

N
]

Displacement [mm]

Experimental Data

FE Analysis



EXPERIMENTAL PROGRAM 
 

114 

 

softening model was selected.  When the Hodjik model is chosen, the post-cracking stiffness is 

better captured in the load-deflection, but the ultimate load and deflection are not.  This suggests 

that the selection of the tension softening model is not the underlying issue. The maximum crack 

width check limits the compressive strength of the elements after the crack width passes a given 

threshold.  This is intended to simulate the loss in aggregate interlock when the crack widths 

become large.  It the current formulation, it does a good job of capturing failure of concrete sections 

with no transverse reinforcement; however, it results in a model where the peak load is extremely 

sensitive to the maximum crack spacing.   

3.5.5 Concluding Remarks on Spatial Variability in Reinforced Concrete 

Cracking in reinforced concrete is inherently stochastic.  The cracks will form at a lowest energy 

state as a combination of applied tensile stress and material weakness. This study measured the 

spatial variation present within a large unreinforced concrete specimen.  The study succeeded in 

identifying statistical properties of the reinforced concrete. The collected data provide evidence 

that the failure mode of the unreinforced span is partially affected by the material variability.  Both 

of the large shear cracks occurred between local planes of weakness observed within the middle 

layer of the concrete.  This suggests that shear cracks will propagate through areas of weakness.  

However, more experimental evidence is required to confirm such assertions. UPV measurements 

have been identified as an adequate means of measuring material properties within the specimen 

and should be used on future unreinforced concrete specimens to provide insight into how spatial 

variation affects a population of structures.   

A model with uniform material properties may not currently capture the exact crack pattern, 

however a reasonable estimate of the load-deflection can be obtained with careful selection of 

model parameters. In the current formulations of the nonlinear finite element software, VecTor2, 

the inclusion of spatial variation did not affect the failure mode significantly for the one specimen 

examined.  It is not clear from this study how spatial variation will affect the failure of a structure 

with symmetric loading. The current test forced the failure to occur on the east side of the 

specimen, thus the failure location was predetermined.  In a symmetrically loaded unreinforced 

concrete beam, spatial variation may have a significant effect on the location and propagation of 

the failure crack.   In a uniform analysis, a large shear crack will form on both sides of the structure 
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simultaneously.  This deviates from experimental results, in which typically a single crack will 

form on one side of the specimen.  Thus this study cannot confirm with certainty that spatial 

variation in large unreinforced concrete structures is not significant in the modelling process.  

3.6 Stochastic Simulation of PLS4000 

Stochastic simulation was conducted on PLS4000 in order to assess the senstitivty of the load-

deformation response to the material input parameters. A total of 175 simulations were conducted 

for the specimen.  For more information on the stochastic model parameters, mesh, and geometry, 

the reader is referred to Chapter 5.  This section compares the stochastic simulation with the 

experimental response and discusses the parameters that influence the stochastic simulation 

results.  

Three stochastic input parameters were compared against four load-deformation response metrics.  

The selected metrics were the ultimate load, the deflection at ultimate loading, the initial uncracked 

stiffness, and the cracked stiffness.  The ultimate load and corresponding displacement were 

determined by finding a local maximum that results in a change in tangent slope and a drop from 

the local peak load of greater than 10 percent. The uncracked and cracked stiffness coefficients 

were determined by linear regression.  For the cracked portion of the load-deformation response, 

the cracked portion was isolated by removing all data with a deflection of less than 4 mm and all 

data above 75% of the ultimate deflection.   An example of the auomated retrival of the four metric 

is shown in Fig. 3.37.   

The three main stochastic parameters included in the simulations were the compressive strength, 

the tensile strength, and the modulus of elasticity.  Each of these parameters was assumed to be an 

independent random variable for the simulation; however, the mean tensile strength and mean 

modulus of elasticity were calculated based on the compressive strength.  The correlation 

coefficients for these three paremeters with the four selected metrics were calculated. The 

corellation coefficients are a usefull tool to determine which input parameters influence the load-

deformation predictions. The corellation coefficients are shown in Fig. 3.38. 

It can be seen from the results that the ultimate load and corresponding displacement are heavily 

influenced by the distribution of the tensile strength.  The correlation coefficient for tensile strength  
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Fig. 3.37: Automated retrival of simulation metrics. 

 

 Fig. 3.38: Correlation coefficients for PLS4000 simulation results. 

and ultimate load is 0.92.  This suggests that the tensile strength is the main contributer to the 

stochastic variation in member strength. The failure of an unreinforced section in VecTor2 is 

heavily influenced by the maximum crack spacing and the tension softening response.  The 
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maximum crack spacing is constant for this analysis and thus the tension response, which is 

directly related to the tensile strength, governs the variability. As previously mentioned, the 

compressive strength is generated independently of the tensile strength. The correlation coefficient 

between the compressive strength and the tensile strength is -0.052 which confirms the 

independence of the sampling. In reality, a correlation exists between the tensile strength and the 

compressive strength, and the corelation coefficients for the compressive strength would not be as 

low as shown in Fig. 3.38.   

The initial stiffness is highly correlated with the modulus of elasticity. This is expected as the finite 

element model is essentially linear elastic until significant cracking occurs. The tensile strength is 

also correlated with the initial stiffness, with a correlation coefficient of 0.47. When cracking 

begins in VecTor2, cracks are smeared initially and thus the structure will retain stiffness until 

larger, wider cracks are able to form.  These larger cracks are what result in the cracked stiffness 

observed in the load-deformation response. However, the smeared cracks influence the initial 

stiffness of the load deformation response and thus a corroleation is observed.  The post-cracking 

stiffness appears to be independent of the input parameters.   It likely is a function of the location 

of the wide cracks and the longitudinal reinforcement, which is only partially influenced by the 

spatially variable input parameters. 

A plot of the experimental results with the stochastic simulation is shown in Fig. 3.39.  This chart 

illustrates a few trends in the simulation.  The initial stiffness and cracked stiffness of the 

experimental results are well captured by the stochastic simulations.  The experimental specimen 

had a concrete cylinder strength of 43.4 MPa at the test date.  The simulation mean compressive 

strength is 38.5 MPa. Thus it is reasonable that the mean simulated peak load is 652 kN.  This is 

close to, but below, the experimental peak load of 685 kN.  The cracking load is not captured by 

the stochastic simulations and is generally over-predicted.  This is likely a result of the smeared 

crack assumption in VecTor2.  In reality, a large beam with small reinforcement ratios is governed 

by fracture mechanics. Thus the smearing of cracks near the tensile reinforcement results in a 

consistent over-prediction of the cracking load. As well, initial tensile stresses due to restrained 

shrinkage of the concrete were not taken into account in the analyses.  
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Fig. 3.39: Stochastic simulation results versus experimental load-deflection response.  

The peak load and peak deflection were both found to be normally distributed random variables. 

Confidence intervals at a 99 percent confidence level for peak load and associated deflection were 

calculated as: 

 509 Xq ≤ /A� . ≤ 795 Xq (3.25) 

 8.15 ll ≤ M@@���.
≤ 12.43 ll (3.26) 

The stochastic simulation reveals the large variability in load-deflection response that may be 

present in this structure, were it designed and built in the field. When performing stochastic 

simulations with VecTor2, the full interaction between stochastic inputs and simulation outputs 

can be analyzed.  Multiple failure modes can be identified and disaggregated.  Lower bound 

estimates for deflection or resistance can be established. These estimates are useful for designing 

capacity protected elements or structural elements with stringent deflection tolerances. 

Additionally, the results of a stochastic simulation can be used in a reliability analysis, as discussed 

in Chapter 5.  
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CHAPTER 4: STOCASTIC SIMULATION – SOFTWARE 

FORMULATION 

This chapter describes the implementation and validation of the software used for stochastic 

analysis in VecTor2.  The stochastic analysis tools added include: random variable generation with 

default and custom distributions; correlated sampling of random variables; Latin hypercube 

sampling of independent random variables; and, the generation of random fields.  The techniques 

used for validation of the implementations are discussed.  

4.1 Selected Statistical Models for Implementation in VecTor2 

The statistical models used in a stochastic simulation of reinforced concrete must be selected by 

the engineer such that the distributions are representative of in-situ variability.   Consideration 

must be given to the age and location of the structure as both factors can influence the statistical 

distributions of the material parameters.   A plot of each of the considered compressive strength 

bias factors reveals that the models of Bartlett and MacGregor (1996), Nowak and Szerszen 

(2003), and Unanwah and Mahan (2013) are in reasonable agreement above 28 MPa (Fig. 4.1).  

When the statistical variation is considered, all three models are essentially sampling from the 

same space. The model proposed by Nowak and Szerszen (2003) predicts a larger bias for lower 

strength concrete.  This likely reflects the large database used for their prediction.  The recent 

results presented by Wisniewski et al. (2012) are in good agreement with Nowak and Szerszen 

(2003).  The distributions proposed by Mirza et al. (1979) are significantly lower than other 

researchers, however these distributions are likely more representative of older concrete structures 

constructed before 1990.  It is however, at the discretion of the user to select an appropriate 

distribution for the structure being analyzed.  

Four statistical models were selected for concrete material properties and two for steel.  The models 

proposed by Mirza et al. (1979) [for concrete] and Mirza and MacGregor (1979) [for steel] have 

been widely employed in stochastic simulation and in the calibration of building codes (Ramsay 

et al., 1979; Mirza and MacGregor, 1982; Mirza 1998; Choi et al. 2004).  Further work by the 

Bartlett and MacGregor (1996) provided more detailed models which were subsequently used in 

building code calibration.  Nowak and Szerszen (2003) provided an updated and improved 

database for the statistical properties of steel and concrete that was used in the calibration of the  
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Fig. 4.1: Comparison of mean bias factor for compressive strength of concrete. 

ACI-318 Code.  Most recently, a study by Unanwa and Mahan (2014) provides results that agree 

with previous literature and offer updated models for temporal effects on the strength of concrete.   

A summary of the statistical models implemented in VecTor2 is presented in Table 4.1. 

Table 4.1:  Selected statistical models implemented in VecTor2 

Parameter Selected Statistical Models 

Concrete  

Compressive Strength Mirza et al., 1979; Bartlett and MacGregor, 1996; Nowak and Szerszen, 2003; 

Unanwa and Mahan, 2014 

Modulus of Elasticity Mirza et al., 1979 

Tensile Strength Mirza et al., 1979 

Steel  

Yield Strength Mirza and MacGregor, 1979;  Nowak and Szerszen, 2003 

Ultimate Strength Mirza and MacGregor, 1979 

Modulus of Elasticity Mirza and MacGregor, 1979 

Much work has been conducted into developing statistical models for the strength of reinforced 

concrete.  However due to the nature of a limit state design, focus is placed on the distributions of 

the yield strength of steel and the compressive strength of concrete.   Stochastic simulation of 
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reinforced concrete can evaluate the service limit state in addition to the structural reliability.  In 

the stochastic simulation of service limit states (i.e. deflections), the tensile strength of concrete 

may have a significant effect on the results of the simulations (Ramsay et al., 1979; Choi et al., 

2004).  Wisniewski et al. (2012) offered updated statistical models for European steel and concrete 

properties.    Although outside of the current scope, it would be advantageous to develop updated 

and rigorous statistical models for the modulus of elasticity and tensile strength of concrete, and 

the ultimate strength and modulus of elasticity of steel for North American materials. Furthermore, 

in a limit state design, strain hardening effects are neglected.  However, in structural reliability 

analysis, particularly in the investigation of deteriorated structures, strain hardening strength and 

ductility can be considerable factors that contribute to the reliability of a reinforced concrete 

structure.  

4.2 Random Variable Generator 

A stochastic variable generator was created that uses the implicit function RANDOM_NUMBER 

in the Fortran Library and generates random samples of normal, lognormal, gamma, and beta 

distributions.  These distributions are then used to generate random samples for the concrete and 

steel material properties.  The user selects which distribution to utilize for stochastic analysis.  A 

variety of statistical models from the literature are implemented, as well as the ability to consider 

user defined statistical properties.   The subroutine then builds a matrix that stores the statistical 

parameters for each selected distribution, and an identifier that indicates which sampling function 

to call.  Once a sample is generated for each distribution, the ratio between the specified value and 

the sampled value is taken and assigned as a modification factor to each material property. 

4.2.1 Uniform Variable Sampling 

There are many algorithms designed to generate uniform random variables.  A uniform random 

variable exists within the domain 0 to 1 such that the probability for any value within that range is 

equal.  The most common and widely used algorithm is the congruential method (Graham and 

Talay, 2013). This method chooses three integers and then computes pseudo-random numbers in 

a sequence.  The samples are generated from Equation 4.1.  



STOCHASTIC SIMULATION – SOFTWARE FORMULATION 
 

122 

 

 ;B = 9;B�� = 9B;	�l�� l�,   rB =
;Bl  (4.1) 

In this case, the selection of the integers in the uniform pseudo-random variable generation is 

considered outside of the scope of this thesis.  The default random number generators in 

FORTRAN 90 implicit function RANDOM_NUMBER in the Fortran Library will be used.  For 

more information on pseudo-random variable generation, the reader is referred to L’Ecuyer (2012). 

4.2.2 Non-Uniform Random Variable Sampling 

It is often useful to generate samples of non-uniform random variables.  This is most commonly 

done by inverting the cumulative distribution function (CDF).  The CDF represents the area under 

the probability distribution function (PDF) and is bounded by zero and one.  Thus, if the CDF can 

be inverted such that the independent variable becomes the dependent variable, then the pseudo-

random uniform numbers can be directly used to compute a random sample of a non-uniform 

random variable. 

4.2.2.1 Normal and Lognormal Random Variable Sampling 

In the case of the normal distribution, the distribution cannot be readily inverted.  Thus an 

expression is required to generate a sample of a normally distributed random variable.  This is 

completed using the Box-Muller Method (Graham and Talay, 2013).  Two normally distributed 

random variables are generated based on two independent uniformly distributed random variables.  

Equation 4.2a and Equation 4.2b are used to generate samples of normally distributed random 

variables with a mean of 0 and a standard deviation of 1.  

 � = 4−2 log�e� sin�2��� (4.2a) 

 L = 4−2 log�e� cos�2��� (4.2b) 

The variables X and Y are statistically independent and can be converted to a distribution with a 

mean of µ and a standard deviation of σ by using Equation 4.3. 

 � = �� + � (4.3) 
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Note that in Equation 4.3, the independent variable X can be interchanged with Y to generate a 

statistically independent sample of Z.   

In order to generate lognormal distributions, the natural logarithm of the Z variable is taken to 

generate a sample of W = ln(Z).  For more information on lognormal distributions refer to Section 

2.1.2. 

4.2.2.2 Gamma and Beta Distribution Sampling 

The gamma random variable gererator implementation is based on the Marsaglia and Tsang (2000) 

method.  This method works as a selective rejection of a normal random variable and a uniform 

random variable until the condition in Equation 4.4 is met. 

 ln�e� < 0.5�� + � − �; + � ln (;) (4.4) 

where U is a uniformly distributed random sample, and x is a normally distributed random sample 

with a mean of zero and a standard deviation of one.  The variables d and v are given by Equation 

4.5a and Equation 4.5b. 

 � = � −
1

3
 (4.5a) 

 ; = )1 + �/√9�+� (4.5b) 

The random sample is then calculated using Equation 4.6. 

 � =
�;�  (4.6) 

where α and β are the gamma distribution parameters. Marsagila and Tsang (2000) note that 

performance can be improved if an additional condition is met such that x > -1/v. The beta 

distribution can be sampled by generating two gamma distribution samples and employing 

Equation 4.7. 

 1 =  
ee + � �� − ��+ � (4.7) 
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where U and V are gamma random samples distributed on U ~Gamma(α,1) and V ~ Gamma(β,1). 

4.2.3 Random Variable Generator Validation 

The random variable generator was validated using the Kolmogorov-Smirnov (KS) test for 

goodness of fit and the chi-squared goodness of fit test for each generator.  The KS test was 

selected because of its independence with distribution and sample size.  The chi-squared goodness 

of fit test requires the user to select bin sizes and the selection of bin size can change the null 

hypothesis. Thus the inclusion of both tests ensures that the generators are working properly. 

The results showed that for a general distribution, each of the generators passed the KS test for 

10000 random samples.  Thus the generators are considered sufficient for use in stochastic 

simulation.  The uniform pseudorandom number generator implemented in FORTRAN has a 

period of 2123 or 1.0634 x 1037.  The maximum number of elements in VecTor2 is 10 000 elements, 

thus the maximum number of trials for spatially uncorrelated random sampling (each element for 

a given simulation requires a random sample) before exceeding the period of the generator is 

approximately 1.0634 x 1033 simulations.  The likely number of simulations done with VecTor 2 

will not exceed 10000, and thus the simple congruential method is sufficient for pseudorandom 

number generation.   

4.2.4 Verification of Implemented Distributions 

Each implemented distribution was verified using a single element to ensure that they were 

accurately sampling the distributions. The model configurations are shown in Fig. 4.2.   Chi-

squared goodness of fit test and the KS test were used to test sampled distributions.  Stochastic 

simulations with 1000 samples were used to verify the implementation of the stochastic models.  

 

 

 

 

 

Fig.4.2: Meshes used for testing material property distributions. 
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4.2.4.1 Concrete Material Properties 

Concrete compressive strength, tensile strength, and modulus of elasticity were tested using a 

single element with the equivalent dimensions of a concrete cylinder.  For each distribution test, a 

set of 1000 simulations were conducted, and the input samples compared.  A chi-squared goodness 

of fit test revealed that all of the sampled distributions matched their theoretical distributions. 

Additionally, a KS test further confirmed the implementation within VecTor2. A comparison of 

the load-deflection curves revealed that independence between the compressive strength and the 

initial tangent modulus was correctly implemented.  Fig. 4.3 illustrates this for a subset sample of 

the verification study.  The maximum and minimum sampled compressive strengths are plotted in 

red, while the maximum and minimum initial tangent modulus are plotted in blue.  It is clear that 

the generated data points, which are assumed independent, are correctly implemented in the 

software.  An example comparison between the sampled and theoretical CFDs is provided in Fig. 

4.4. Details on the statistical testing can be found in Appendix C. 

 

Fig.4.3: Sample of cylinder load-deflection curves showing independence between compressive 

strength and modulus of elasticity. 
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Fig.4.4: Concrete tensile strength distribution verification for Mirza et al. 1979. 

4.2.4.2 Steel Material Properties 

The steel material properties were tested using a single simply supported truss element.  The 

implemented models tested included Mirza et al. (1979) for yield strength, ultimate strength, and 

modulus of elasticity; and Nowak and Szerszen (2003) for yield strength. All distributions were 

tested with a chi-squared goodness of fit test and a KS test.  The details on the statistical testing 

can be found in Appendix A. An example of the generated and theoretical cumulative distributions 

are presented in Fig. 4.5.  

4.3 Latin Hypercube Sampling 

Various sampling techniques have been proposed in the literature for use in stochastic simulation.  

Latin hypercube sampling has been widely employed for stochastic simulation with finite elements 

(Olsson, 2003). This section introduces and discusses the Latin hypercube sampling technique.  
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Fig.4.5: Steel yield strength distribution verification for Mirza and MacGregor 1979.  

In order to capture the entire range of a statistical distribution, typically a large number of random 

samples are required when using standard Monte Carlo methods.  When there are a large number 

of stochastic inputs, this often requires an exceedingly large number of samples in order to capture 

the full range of each input distribution.  This can create a simulation scheme that is impractical 

for analysis and is inherently computationally expensive.  

One method to reduce the number of random samples is called stratification.  If each of the random 

variables are stratified such that they are broken up into sections of equal area, a sample can be 

taken from each of the strata.  However, in order to capture the full range of possibilities, a large 

number of strata are required.  Additionally, in a Monte Carlo simulation, there are often multiple 

random variables.  For example, if a Monte Carlo simulation requires five random variables, and 

each one is partitioned into six strata,  the combinations of random samples required to capture a 

full factorial simulation is 56 (or 15 625).  This is unrealistic if the Monte Carlo simulation requires 

considerable computational effort.   
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A method for reducing the number of required simulations was first proposed by MaKay et al. 

(1979).  This method is able to produce samples that cover the entire distribution range, however 

reduce the computational effort when compared to full factorial design.  In Latin hypercube 

sampling, a set of random variables (Xi) is defined (where  i = 1 to K).  Each distribution is then 

divided into N strata based on equal probability within a given interval (Fig.4.6(a) and (b)).  A 

random sample is then generated within each interval for each of the random variables.  Each 

interval sample is then randomly paired with other interval samples of another random variable 

(Fig.4.6c).  This has been shown to provide increased accuracy in stochastic simulation for 

determining the mean and standard deviation of a simulation output.   Fig.4.6 illustrates the process 

of Latin hypercube sampling for a set of two random variables. 

 

Fig.4.6: Illustration of Latin hypercube sampling. 

Olsson et al. (2003) summarized a procedure for generating samples using the Latin hypercube 

sampling for a set of K random variables.  The following procedure is used to generate N 

realizations of random variables that can be used in a deterministic simulation to generate output 

distributions. 
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First an N x K permutation matrix, designated P, is defined with random permutations in each 

column from 1 to N.  Next an N x K matrix, designated R, is defined and populated with uniform 

random numbers ranging from 0 to 1. The sampling matrix, S, is then calculated using Equation 

4.8.   

 & =
1q (/ − 0) (4.8) 

The sampling matrix contains random values between 0 and 1 that are evenly distributed among 

the stratified regions of the cumulative distribution function.  Because the columns of the P matrix 

are each independent permutations, each row represents a random pairing of variables.  The actual 

sample values are determined from the inverse of the cumulative distribution function F(x).  The 

sample values are calculated using Equation 4.9.  

 �
? = $5�?��)7
?+ (4.9) 

where xij is the ith sample for the jth random variable in the resulting sample matrix X, and $5�?��)7
?+ 
is the inverse of the cumulative distribution function evaluated at the ith and jth value from the 

sampling matrix, S.  Each row of X corresponds to one set of random variable inputs that can be 

used in a deterministic simulation.  Completing the deterministic simulation of all rows in the 

sample matrix will produce output data that can be analyzed as a statistical sample. 

4.3.1 Correlation Reduction 

Although the realizations of a Latin hypercube sample are randomly paired, it is still possible for 

undesired correlation to occur between random variable pairings.  Fig.4.7 illustrates an example 

of undesired correlation and the associated correlation reduction.  

Olsson et al. (2003) summarized a procedure for correlation reduction that has been shown to work 

effectively.  The spurious correlation is reduced by dividing each element in the P matrix by N+1. 

The resulting values are assumed to be normally distributed with a mean of 0 and a standard 

deviation of 1. Each value of the P matrix is used to generate a matrix Y by employing Equation 

4.10. 
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Fig. 4.7: (a) Undesired correlation in random paring of samples. (b) Pairing after correlation 

reduction.  

 ��� � Φ��,��
�� � ���

� � 1	 (4.10) 

The covariance matrix of Y is then estimated. A Cholesky decomposition is then calculated from 

the covariance matrix of Y to produce Equation 4.11.  

 
�
�	 � ����� (4.11) 

A new matrix Y* is then defined using Equation 4.12, where 
� is a lower triangle matrix computed 

from Equation 4.11.  

 �∗ � ��
����	 (4.12) 

The P matrix is then regenerated, and designated P*, using the Y* matrix to generate the 

permutations.  The resulting sampling matrix S has been shown to have a significantly reduced 

amount of undesired correlation (Olsson et al., 2003).  Olsson et al. (2003) notes that the Cholesky 

decomposition requires that the number of realizations (N) must be greater than the number of 

X1 

X2 

X1 

X2 

(a) (b) 
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random variables (K).  Additionally, the correlation reduction means that the resulting samples are 

no longer unbiased estimators. 

4.3.2 Implementation in VecTor2 

When performing a normal Monte Carlo analysis, the random variables are generated at the start 

of each analysis.  However, when implementing Latin hypercube sampling, the random variables 

are generated based on stratifications and paired.  Each pairing forms the basis of a single analysis.  

Thus it is required to generate and store the samples for all analyses at the start of the simulation. 

This section describes the implementation of the Latin hypercube sampling (LHS) technique.  

4.3.2.1 Inverse Random Variables 

In order to employ LHS, the inverse of random variables are required to be computationally 

evaluated.  The Newton-Raphson nonlinear solution scheme was used to compute the inverse of 

the CDF.   The implemented scheme follows Equation 4.13: 

 �
 = �
�� −
1(�)1��(�)

= �
�� −
Z!$)�
��+− $(�)/!$(�
��)

 (4.13) 

where F(x) is the value of the CDF for which x is to be determined. Thus functions for the PDF 

and CDF of x were required.  These functions were implemented for normal, lognormal, and beta 

distributions.  The error function was used to evaluate the inverse of any CDF by transforming X 

into a standard random variable Z and employing Equation 4.14. 

 Z!$��� =
1

2
>1 + erf 2 �√2

3D (4.14) 

The variable Z is calculated using Equation 4.15. 

 � =
� − ��  (4.15) 

When evaluating the CDF of a lognormal distribution, the lognormal variable is converted into its 

normal mean and standard deviation and Equation 4.16 is employed. 



STOCHASTIC SIMULATION – SOFTWARE FORMULATION 
 

132 

 

 � =
log���− ��  (4.16a) 

where: 

 � = sln 21 +
��0[�]��[�]��3 (4.16b) 

 � = ln������−
1

2
�� (4.16c) 

For the beta distribution, the CDF was calculated using the incomplete beta function.  The 

incomplete beta function is calculated using Equation 4.17.  

 ���;�,�� =  � ����(1 − �)�����
	

 (4.17) 

The incomplete beta function requires that x be normalized between zero and one.  This is 

computed using the bounds of the beta function: a and b.  Thus x is computed using  

Equation 4.18 

 � =
(� − 9)

(: − 9)
 (4.18) 

 

The inverse of the CDF function is then computed using Equation 4.19. 

 � =
���;�,����1;�,�� (4.19) 

The computed value is then transformed back into the original distribution by applying the inverse 

of Equation 4.18 which yields Equation 4.20. 

 � = �: − 9�� + 9 (4.20) 
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4.3.2.2 Fisher-Yates Shuffle 

With the development of a function that can compute the inverse of random variables, a sampling 

matrix is then constructed using the process described in Section 4.2. The generation of a random 

permutation matrix is done using the Fisher-Yates shuffle.  The pseudocode for the Fisher-Yates 

shuffle is presented below: 

Generate ordered P matrix of size n x 1 

FOR i = n-1 TO 1 STEP -1 

  Generate U ~N[0,1] 

  K = Floor(i*U)+1 

  Swap row K with row I 

END FOR 

Generate U~N[0,1] 

K = Floor((n-1)*U)+1 

Swap row K with row n 

This code is used to generate the P and S matrices required to enable LHS.  Each entry of the S 

matrix is then converted into a sample using the distribution parameters of each column and the 

inverse CDF function.  This X matrix is then stored and used for all of the analyses for the 

simulation.  

4.3.3 Verification of Implementation 

In order to test the implementation of the method, 5000 simulations were conducted to assess the 

maximum error.  Each simulation sampled 25 to 1000 samples using straight Monte Carlo 

sampling (MCS) and Latin hypercube sampling (LHS).  An example of a realization is provided 

in Fig. 4.8. 

The simulation comparing MCS and LHS illustrates the effectiveness of using Latin hypercube 

sampling for stochastic simulations with a small number of analyses.  The prediction of the mean 

and the standard deviation show significant improvement, even for the maximum error. As shown 

on Fig. 4.9 and Fig. 4.10, a simulation size of 200 results in a maximum error on the sampled mean 

and the sampled standard deviation of 1% and 5%, respectively.  This is a significant improvement  
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Fig. 4.8:  Realization of 50 Latin Hypercube samples.  

when compared to the Monte Carlo simulation samples which exhibit a maximum error for the 

mean and standard deviation of 25% and 20% respectively.  The simulation both verifies the 

implementation and exhibits its usefulness in small sample stochastic simulations. 

4.4 Correlated Sampling 

Multiple empirical functions have been developed to express the relationships between the 

compressive strength of concrete and its tensile strength or elastic modulus.  These relationships 

are based on regression analysis of experimental data.  If concrete compressive strength exhibits 

variability for a given specified strength, it is thus reasonable to assume that a correlation exists 

between the tensile strength and modulus of elasticity for a given compressive strength.   

Correlated sampling can thus be a useful tool for the sampling of reinforced concrete material 

properties.  
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Fig. 4.9: Maximum error for estimate of mean.  

 

Fig. 4.10:  Maximum error for estimate of standard deviation. 
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In order to achieve correlated sampling for a non-Gaussian distribution, or for a set of data where 

correlation exists but each random variable follows a unique distribution, a multivariate 

distributional transform is used.   In this case, a vector Z is generated on a multivariate Gaussian 

distribution with a mean of h�
 = 0j and a standard deviation (or dispersion matrix) of  �Σ] = [ρ�.  
Ripley (1987) presents a method for generating samples from a P-dimensional multivariate 

distribution. A set of uniform independent random variables are transformed to a set of dependent 

random variables through the use of Equation 4.21. 

 h�j = h�j+ �&�h�j (4.21a) 

where: 

 �Σ� = �&��&�7 (4.21b) 

 h�
j~q[0,1] (4.21c) 

The transformation matrix [S] is derived from the original dispersion matrix.  A Cholesky 

decomposition of the dispersion matrix is used to calculate the transformation matrix.  For each 

value of Z,  the inverse of the sample is used to generate a set of data points bounded by [0,1] that 

have the desired correlation.  This is done using Equation 4.22. 

 hej = tΦ����⋮

Φ��@�u (4.22) 

The sample is then transformed into the desired distribution through use of the inverse method.  

Equation 4.23 illustrates the calculation of a sample.  

 h�j = tG��e��
⋮

GC�e@�u (4.23a) 

where: 

 1
(e) = Φ
��(e) = F
��(e) (4.23b) 
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This method is used to generate correlated samples within VecTor2.  It should be noted that the 

selection of the dispersion matrix, or in this case the correlation matrix, requires statistical data 

that are not available.  Thus no default correlation coefficients are recommended for reinforced 

concrete material properties.   

4.4.1 Implementation in VecTor2 

Correlated sampling in VecTor2 is sampled during individual simulations. This is the same 

approach taken for the basic Monte Carlo sampling method.  The generation of correlated samples 

is illustrated by the following pseudocode. 

Step 1:   Compute S matrix from Σ matrix. 

Step 2:   Calculate the Z matrix where Vi~N[0,1] 

Step 3:   Calculate the U matrix  

Step 4: For each required distribution, evaluate the inverse cumulative distribution 

function Gi(U) to obtain the X matrix. 

The selection of correlation coefficients is at the discretion of the user.   The user is able to input 

the correlation coefficients between concrete compressive strength, tensile strength, and modulus 

of elasticity.   Note however, that the method of sampling requires that the matrix be positive 

definite.  This requirement means that the user cannot specify contradictory correlations between 

random variables.  For example, if a strong positive correlation exists between a random variable 

X1 and X2, and a strong correlation exists between random variable X2 and X3, then the current 

method does not allow for a strong negative correlation to exist between X2 and X3.  These negative 

correlations can be achieved by processes such as simulated annealing (Vorechovsky and Novak, 

2009); however, this is considered beyond the scope of the current work.  

4.4.2 Verification of Implementation 

The implementation of correlated sampling was verified by comparing the theoretical and the 

generated covariance matrix. The covariance matrix was evaluated comparing the norm of the 

difference between the sampled and actual covariance matrix.  This is calculated mathematically 
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using Equation 4.24, where S is the sampled covariance matrix and C is the desired covariance 

matrix.   

  N =
‖& − Z‖‖Z‖  (4.24) 

The error statistic should be as minimal as possible. A simulation was conducted to assess the error 

in the sampling of the correlation matrix. In this simulation, random samples with samples sizes 

25 to 1000 at increments of 5 were taken.  This process was repeated 1000 times to develop 

statistics on the sampling error.  Due to the computational limitations of VecTor2, conducting a 

large number of samples may not be feasible.  Thus it is important to understand the mean sampling 

error expected at various levels of correlation.  

4.4.3 Correlated Latin Hypercube Samples 

The method described above can be extended to induce correlation into Latin hypercube samples.   

This is achieved by substituting the vector {V} with a set of Latin hypercube samples that are 

normally distributed with a mean of zero and a variance of one.  The implementation of this 

technique allows the user to take advantage of the accuracy of LHS for small sample size 

simulations without forcing the input parameters to be independent random variables.   The 

following pseudocode illustrates how to generate correlated Latin hypercube samples.  

Step 1: Compute S matrix from Σ matrix.  

Step 2: Generate V* as an N x R Latin Hypercube sample matrix where Rj~N[0,1] 

Step 3: Each row of the LHS matrix is used to generate Z such that: 

h�j = h�j+ �&�E�
,?�� 1�∗ F7 

Step 4:   Calculate the U matrix  

Step 5: For each required distribution, evaluate the inverse cumulative distribution 

function Gi(U) to obtain the X matrix. 
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When compared against correlated Monte Carlo samples, the correlated Latin hypercube (CLH) 

samples provide a marginal improvement on the estimate of the correlation matrix, and a large 

improvement on the estimate of the mean and standard deviation.   The generation of CLH samples 

was evaluated by simulation.  One thousand simulations were conducted to evaluate the ability to 

estimate the covariance matrix, the mean of each random variable, and the variance of each random 

variable.  Each simulation consisted of the generation of a set of samples with sample sizes ranging 

from 25 to 1000 at an interval of 5.  The covariance matrix was evaluated by using the sum of 

squared difference of the upper triangular portion of the matrix using Equation 4.24.  

The difference between the CLH samples and MC samples is shown in Fig. 4.11.  The CLH 

samples appear to provide a marginal improvement over basic Monte Carlo sampling, however 

the real advantage of the method is illustrated by comparing the estimation of the mean and 

variance. The comparison of each method is illustrated in Fig. 4.12, Fig. 4:13, and Fig. 4.14. 

 

 (a) (b) 

 &DE� = b 1 0.08

0.08 1
c           &FDE� = b 1 0.67

0.67 1
c (4.25) 

 ZDE� = b 1 0.00

0.00 1
c          ZFDE� = b 1 0.70

0.70 1
c (4.26) 

Fig. 4.11: (a) Uncorrelated Latin hypercube realization (b) Correlated Latin hypercube 

realization. 
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Fig. 4.12:  Estimation of Covariance Matrix; CLH sampling versus MC sampling. 

 

Fig. 4.13: Max Error estimate of the mean value for correlated Latin hypercube sampling versus 

correlated Monte Carlo sampling. 
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Fig. 4.14: Max Error estimate of the standard deviation for correlated Latin hypercube sampling 

versus correlated Monte Carlo sampling. 

4.5 Random Field Generation 

Random variations of material properties do not only occur from structure to structure, but also 

within a structure.  In the case of a finite element simulation, each element can be assumed to take 

on a random value of a material property.  However, the elements cannot be assigned a truly 

random value. Independent random sampling of individual finite elements would produce 

unrealistic conditions as maximum and minimum values could be assigned to adjacent elements.  

It is logical to assume that a correlation exists between adjacent elements, creating gradient-like 

transitions.  Thus a method is required to generate stochastic samples of spatially distributed 

randomness that captures the spatial correlation between adjacent finite elements.  This can be 

done using random fields.   

Random fields are spatially correlated stochastic samples which follow a specified distribution. A 

common type of random field is called a Gaussian random field.  It takes its name from the spatial 

correlation function, which takes on a Gaussian shape. Random fields can be N-dimensional, 

however, for the purpose of this thesis, only one-dimensional and two-dimensional random fields 
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are discussed.  A one-dimensional random field might be used to describe spatial variations in the 

corroded area of steel reinforcement.  A two-dimensional random field could describe spatial 

variation in concrete compressive strength within a large structural element.  A comparison 

between independently generated element values and spatially correlated random values is shown 

in Fig. 4.15. 

4.5.1 Covariance Functions 

Random fields are defined by their covariance function.  This function describes the spatial change 

in covariance. For application to finite elements, it is convenient to descretize the covariance 

functions into a covariance matrix.  Choi et al (2006) summarized three popular covariance 

functions that can be used in the generation of random fields.  The first function is the exponential 

covariance function.  The covariance is modelled as an exponential decay and is calculated using 

Equation 4.27, 

 Z
? = Z1 	�
 n− wΔ�
?x wo (4.27) 

where, Cij is the calculated covariance between the ith and jth element, Co is the desired variance of 

the random field, L is the correlation length of the random field (after a length of L, elements are 

statistically independent), and Δ�
? is the linear distance between the ith and jth element. Similarly 

to the exponential form, a Gaussian covariance model can be described by Equation 4.28. 

 

 Z
? = Z1 	�
 �− 2Δ�
?x 3� (4.28) 

The Gaussian covariance model has a slope of zero when Δ�
? is equal to zero.  This produces a 

smoother gradient between adjacent elements (Choi et al., 2006). 

Lastly, for spatial processes that are characterized by discontinuities in the random field, a nugget-

effect model can be used (Choi et al., 2006).  The nugget-effect model is described by Equation 

4.29. 
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 Z
? = GZ1
0

,� #Δ�
?# = 0,� #Δ�
?# > 0
 (4.29) 

Each of the presented covariance functions are plotted in Fig. 4.16. 

 

 (a) (b) 

Fig. 4.15: Illustration of (a) spatially independent random samples and (b) spatially correlated 

random samples.  

 

Fig. 4.16: Covariance models for random field generation. 
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4.5.2 The Karhunen - Loeve Transform 

The Karhunen - Loeve transform (KL transform), also called the orthogonal transform, is a method 

for generating random fields (Choi et al, 2006).  The KL transform can be used for both the 

continuous and discrete problems, however because finite elements produce a discrete set of 

elements (with constant properties within elements) only the discrete formation of the KL 

transform is discussed.  

The KL transform transitions the random variables in correlated space to a set of random variables 

in uncorrelated space.  Thus, the transformation takes the form of an eigenvalue problem where 

each of the transformed random variables are independent and thus can be generated 

independently.  

In correlated space, each random variable is assigned a designation of Xi where i ranges from 1 to 

Nv. Nv represents the total number of random variables (and in a finite element simulation would 

be equal to the number of elements).  A set of random variables in uncorrelated space are 

designated Yi where i ranges again from 1 to Nv. 

Each element in the discretization is used to derive a correlation matrix using the equations 

presented in Section 4.4.1.  This correlation matrix is then decomposed using Equation 4.30, 

 Z55 = ΦΛΦG (4.30) 

where CXX is the discretized covariance matrix, Φ is the eigenvector matrix, and Λ is the diagonal 

Eigen value matrix with eigenvalues λ1 to λNv (Vorechovsky and Novak, 2005). 

A set of independent random variables can now be generated.  Each random variable corresponds 

to one of the eigenvalues and has a mean of zero and a standard deviation of 4mHI. 

Once the independent random variable samples are generated, they can be converted back into 

correlated space using Equation 4.31 (Vorechovsky and Novak, 2005).  

 � = ΦL (4.31) 
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In the case of a two-dimensional random field, the X values are mapped to their corresponding 

element numbers. 

It is noted by Vorechovsky and Novak (2005) that not all of the eigenvalues and corresponding 

eigenvectors need to be calculated.  A plot of the percentage of sum of eigenvalues against the 

number of random variables reveals that a large number of the eigenvalues do not contribute to 

correlated space.  Thus only partial computation of the eigenvalues and eigenvectors is required. 

This concept is illustrated in Fig. 4.16. Note that as the correlation length (represented as d in Fig 

4.17) gets longer, the required number of eigenvalues decreases.   

 

Fig. 4.17: Reduction in random variables in uncorrelated space. Taken from Vorechovsky and 

Novak (2005). 

Due to the large number of independent random variables used in the generation of random fields, 

Latin hypercube sampling has been shown to be advantageous when employing random fields in 

stochastic simulations (Vorechovsky and Novak, 2005).  

The number of independent random variables that contribute to the random field generation can 

be arbitrarily selected by the user.  However, the generation of random fields can also be treated 

as an optimization problem where the quality of a random field is assessed, and the optimal number 

of eigenvalues that contribute to correlated space is determined.  This optimization serves 

primarily to improve computational efficiency and is thus excluded from the scope of this thesis. 
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4.5.3 Implementation in VecTor2 

The implementation of random field generation into VecTor2 is done through the use of the Intel 

Eigen Solver DSYEVX.  The Intel Eigen Solver is based on the FEAST algorithm originally 

developed by Polizzi (2009).  The user selects the number of eigenvalues that they wish to 

compute.  The following pseudocode illustrates how random fields are generated in VecTor2.  

Step 1: Compute covariance matrix for finite element mesh. 

Step 2: Calculate eigenvalues and eigenvectors.  

Step 3: Generate samples in uncorrelated space each with a mean of zero and a standard 

deviation of 4m
. 
Step 4: Convert the samples back into correlated space.  

Step 5:  Scale the distribution to match selected statistical models.  

Step 6: Calculate tensile strength and modulus of elasticity based on compressive strength 

random field. 

Note that the current implementation in VecTor2 requires that the user select a normal distribution 

for the concrete compressive strength.  If a non-Gaussian random field is desired, a future 

implementation could include a method similar to the generation of non-Gaussian correlated 

samples.  The Gaussian random field could be transformed to a non-Gaussian random field through 

use of the inverse method.  Additionally, the current method assumes a correlation coefficient of 

1.0 between concrete compressive strength, concrete tensile strength, and modulus of elasticity.  It 

may be advantageous in the future to implement independent realizations of concrete material 

properties. However, assuming complete independence deviates from known statistical 

correlations between the compressive strength of concrete and the tensile strength or modulus of 

elasticity. It would be thus advantageous to expand the generation techniques to include generation 

of cross-correlated random fields.   
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4.5.4 Verification of Implementation 

The implementation was verified by creating a 2000 mm by 2000 mm square mesh with 1600 

elements. A random field realization was then generated for a total of 1000 samples.  The mesh 

used for validation is shown in Fig. 4.18 along with a realization of the generated random field.  

  

 (a) (b) 

Fig. 4.18:  (a) Random field test mesh and (b) Generated random field realization. 

A histogram of the collected scaling factors confirms that both at each point, and overall, the 

selected distribution is being captured. The histograms are shown in Fig. 4.19.  

The mean and standard deviation for each element exhibits small spatial variability in the 

simulated values.   However, the amount of variation is minimal and thus considered acceptable.  

Fig. 4.20 shows the spatial variability of the coefficient of variation, which captures the spatial 

variability of the mean and standard deviation.  

The implementation of the covariance function was tested by calculation of empirical 

semivariograms for the generated data. The average of the empirical covariance matches the 

theoretical covariance as shown in Fig. 4.21. 

4.5.5 Latin Hypercube Sampling and Random Field Generation 

The inclusion of LHS in the random field generation has shown to produce a better representation 

for random fields when employed in small number stochastic simulations (Vorechovsky and 

Novak, 2005).  The procedure for generation of random field was augmented such that the samples 
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 (a) (b) 

Fig. 4.19:  (a) Histogram for a single element (b) Histogram for all elements. 

 

 Fig. 4.20:  Spatial variation of simulated coefficient of variation.  
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Fig. 4.21:  Theoretical and mean simulated covariance function for generated random field 

samples.  

in uncorrelated space are generated with the LHS technique. The following pseudocode illustrates 

the implementation in VecTor2.  

Step 1: Compute covariance matrix for finite element mesh. 

Step 2: Calculate eigenvalues and eigenvectors. 

Step 3: Generate Latin hypercube samples in uncorrelated space each with a mean of zero 

and a standard deviation of 4m
. 
Step 4: Convert the samples back into correlated space.  

Step 5:  Scale the distribution to match selected statistical models.  

Step 6: Calculate tensile strength and modulus of elasticity based on compressive strength 

random field. 

The implementation was tested using the techniques illustrated in Section 4.4.4.  For detailed test 

results the reader is referred to Appendix C.  
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4.5.6 Alternate Sampling Technique for Random Fields 

In the previous formulation, the random field statistics are assumed to be the same as the material 

variability statistics.  However, it has been observed in the literature (Bartlett and MacGregor, 

1995) that the variability attributed to spatial variation is much lower than the global variability.  

The same conclusion was drawn from the experimental study in Chapter 3.  Thus a sampling 

technique that will sample from the global distribution and capture the local variability is required.  

An alternate sampling technique is thus proposed wherein the local mean of the random field is 

sampled from the global distribution, and then the random field is generated that reflects the local 

variability.  The following pseudocode is used in the alternate sampling implementation.  

Step 1: Generate local mean for random field simulation, ��1���. 
Step 2:  Generate realization of a random field, 0H[	,�]. 

Step 3: Scale the random field as 04� !�� = ��1��� + �0�16����# × 0H[	,�]. 

04� !�� is the realization of the random field applied to each simulation trial, ��1��� is the sampled 

random variable from the global concrete distribution, �0�16�� is the mean of the global concrete 

distribution, and ��# is the coefficient of variation due to spatial variability.   

Initially, the local mean was used with the coefficient of variation for spatial variability to 

determine the local standard deviation.  However, this was found to be unrepresentative of the 

global distribution.  Consider a local sample that is much smaller than the mean, an extreme value 

on the lower tail. If this local value is used for the variability, it artificially increases the density of 

samples in that region.  Thus when analyzing the data as a global set of random variables, the 

lower tail contains samples of variables that far exceed the probability distribution function.  When 

the global mean was used to sample spatial variability, much better simulation of the global 

distribution was observed.   

This phenomenon is attributed to the ratio between the number of stochastic trials and the number 

of elements.  In a large structure with spatial variation, the number of elements may be in excess 

of 3000.  Similarly, due to computation limitations the number of stochastic trials may be between 
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50 and 500.  Thus for extreme values, the number of samples at that extreme is artificially inflated 

due to the fact that the number of elements (and thus number of unique sampling points) is larger 

than the samples.  This is the main vulnerability of sampling with this method.  

An empirical test of the following implementation was conducted on a mesh with 1600 rectangular 

elements. The random field length was set at 200 mm with the mesh being a 1000 x 1000 square. 

A coefficient of variation of 0.05 was selected for the random field. The concrete strength was 

modelled using the distributions generated by Nowak and Szersen (2004a). Five sets with 50, 100, 

200, 500, and, 1000 simulations respectively were generated in order to assess the accuracy of the 

sampling method.   Two statistics were then pulled out of the sampled data.  The first was the 

distribution of mean values for each random field simulation.  This was calculated by taking the 

mean of each random field visualization as a set of data.  The second set of data encompassed the 

entirety of the sampled data treating each element like a realization of a random variable.  The 

random field had a mean of 0 and standard deviation calculated using Equation 4.32.  

 ��, = ��J���16�� = ��Jm��� = 0.05 × 1.2 × 30 8/9 = 1.8 8/9 (4.32) 

where ��, is the random field standard deviation, ��J is the coefficient of variation due to spatial 

variability, m is the bias factor for concrete, and ��� is the compressive strength of concrete. Note 

that the coefficient of variation for the resulting global distribution can be approximated using 

Equation 4.33.  

 �71 �� = p����� + ��J�  (4.33a) 

 �71 �� = 4�0.10�� + �0.05�� = 0.112 (4.33b)  

The results of the simulation are summarized in Table 4.2. Note that all of the global random field 

samples fail to pass the chi-squared goodness of fit test, however the mean of each random field 

successfully passes the distribution fitting test.  

It is suspected that this is due to poor sampling at the tails of the distribution. Two quantile-quantile 

plot (q-q plot) of the mean random field data and the global random field data are presented in Fig. 

4.22. 
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Table 4.2: Results of simulated random field data. 

Sample 

size 

Sampled Mean Sampled COV p-value 

Mean RF Global RF Mean RF Global RF Mean RF Global RF 

50 1.1594 1.1594 0.1010 0.1113 0.0992 Failed 

100 1.1857 1.1857 0.1073 0.1168 0.0863 Failed 

200 1.1975 1.1975 0.1122 0.1214 0.2527 Failed 

500 1.1870 1.1870 0.1076 0.1176 0.6104 Failed 

1000 1.1892 1.1892 0.1009 0.1166 0.1166 Failed 

 

Fig. 4.22 reveals that the global random field samples a normal distribution reasonably well with 

the exception of the tails of the distribution.   The mean random field data also deviate at the tails; 

however, the deviation is limited to a few points. It is likely that the small deviation of the mean 

random field data is extrapolated into a larger deviation at the global level.  This is a result of the 

fact that for a deviated mean sample, there are 1600 samples within the random field.  Thus this 

sampling method does not sample the distribution tails correctly and, as a result, fails the 

distribution fitting tests at the global level.   Despite failing the goodness of fit tests, this method 

produces correct estimates of the mean and coefficient of variation of a sampled distribution.  This, 

coupled with the fact that the first order reliability method is primarily employed in this thesis, 

means that the sampled tails are of diminishing importance to a curve fitting approach to reliability.   

4.6 Disturbed Stress Field Model Error 

Any analytical model is an approximate representation of reality.  As such the analytical model 

will not be a perfect representation of the physical system. When conducting a stochastic analysis, 

uncertainties are categorized into three major categories:  uncertainty due to material properties, 

uncertainty due to geometry, and uncertainty due to modelling.  The uncertainty due to material 

properties and geometry can be directly measured from a population of experimental data.  The 

uncertainty model must be determined through comparison between experiments and model 

predictions.  If the actual resistance is designated as R, and the model prediction designated as Rn, 

the relationship between the actual and predicted resistance is modelled by Nowak and Szerszen 

(2003) using Equation 4.31. 
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(a) 

 

(b) 

Fig. 4.22: Quantile-quantile plots for (a) Global RF data and (b) Mean RF data.  
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 0 =  m@m,m30� (4.34) 

The material uncertainty is captured by m3,  the fabrication or geometric uncertainty by m,, and 

the professional or model uncertainty by m@.  For use in stochastic simulations, the statistical 

properties of the professional factor need to be determined.  The MCFT and DSFM element 

formations are largely derived on the experimental behaviour observed in panel tests.  It is thus 

appropriate to use panel tests to determine the statistical properties of the professional factor.  This 

was done by comparing the properties of R/Rn for a sample of panel tests.  Table 4.3 shows the 

panel tests and their MCFT and DSFM predictions, along with the R/Rn factors for each test.   

Table 4.3:  Comparison of Experiment vs. Model Predictions for MCFT and DSFM. Reproduced 

from Vecchio et al. (2001). 

Panel 

 
��� 

[MPa] 
� 
[%] 

�" 

[%] 

Loading �:�": d d!��# 

d!��#d!�3F,7 
d!��#d!�K�,3 

PV10 14.5 1.79 1 0:0:1 3.97 1.056 1.045 

PV11 15.6 1.79 1.31 0:0:1 3.56 0.989 0.967 

PV12 16 1.79 0.45 0:0:1 3.13 0.984 1.044 

PV16 21.7 0.74 0.74 0:0:1 2.14 1.070 1.070 

PV18 19.5 1.79 0.32 0:0:1 2.04 0.879 0.922 

PV19 19 1.79 0.71 0:0:1 3.95 0.959 0.978 

PV20 19.6 1.79 0.89 0:0:1 4.26 0.960 0.960 

PV21 19.5 1.79 1.3 0:0:1 5.03 0.998 0.953 

PV22 19.6 1.79 1.53 0:0:1 6.07 0.978 0.903 

PV23 20.5 1.79 1.79 -0.39:-0.39:1 8.87 1.232 1.109 

PV25 19.3 1.79 1.79 -0.69:-0.69:1 9.12 1.225 1.129 

PV27 20.5 1.79 1.79 0:0:1 6.35 0.978 0.859 

PV28 19 1.79 1.79 0.32:0.32:1 5.8 1.015 0.889 

PA1 49.9 1.65 0.82 0:0:1 6.4 1.027 1.021 

PA2 43 1.65 0.82 0:0:1 6.22 1.007 1.002 

PHS1 72.2 3.23 0 0:0:1 2.95 0.966 1.025 

PHS2 66.1 3.23 0.41 0:0:1 6.66 1.031 1.096 

PHS3 58.4 3.23 0.82 0:0:1 8.19 0.902 0.907 

PHS4 68.5 3.23 0.82 0.25:0.25:1 6.91 0.986 1.025 

PHS5 52.1 3.23 0.41 0.25:0.25:1 4.81 1.099 1.170 

PHS6 49.7 3.23 0.41 -0.25:-0.25:1 9.89 1.124 1.124 

PHS7 53.6 3.23 0.82 -0.25:-0.25:1 10.3 0.905 0.868 

PHS8 55.9 3.23 1.24 0:0:1 10.8 1.009 0.977 
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Table 4.3 (Continued): Comparison of Experiment vs. Model Predictions for MCFT and DSFM. 

Reproduced from Vecchio et al. (2001). 

Panel 

 
��� 

[MPa] 
� 
[%] 

�" 

[%] 

Loading �:�": d d!��# 

d!��#d!�3F,7 
d!��#d!�K�,3 

PHS9 56 3.23 0.41 -0.25:-0.25:1 9.37 0.991 1.002 

PHS10 51.4 3.23 1.24 0.25:0.25:1 8.58 1.002 0.993 

PB6 17.6 1.09 0 1:0:1 1.15 0.850 0.921 

PB8 20.4 1.09 0 2.98:0:-1 0.8 0.808 0.829 

PB10 24 1.09 0 5.94:0:-1 0.56 0.833 0.838 

PB14 41.1 2.02 0 3.01:0:-1 1.54 0.960 1.079 

PB16 41.7 2.02 0 1.96:0:-1 1.42 0.835 0.850 

PB17 41.6 2.02 0 5.93:0:-1 1.22 0.978 1.049 

PB18 25.3 2.2 0 0:0:-1 1.72 0.819 0.819 

PB19 20 2.2 0 1.01:0:-1 1.28 0.766 0.876 

PB20 21.7 2.2 0 2.01:0:-1 1.42 0.922 1.049 

PB21 21.8 2.2 0 3.08:0:-1 1.42 1.000 1.144 

PB22 17.6 2.2 0 6.09:0:-1 1.03 0.926 1.029 

PB29 41.6 2.02 0 2.02:0:-1 1.49 0.842 0.949 

PB30 40.4 2.02 0 2.96:0:-1 1.48 0.919 1.041 

PB31 43.4 2.02 0 5.78:0:-1 1.15 0.916 0.983 

PB32 57.7 2.2 0 3.01:0:-1 1.49 0.898 0.978 

The global material and fabrication factors can be ignored for laboratory tests because the material 

properties and geometry are well known and documented. However local variation in material and 

fabrication must be considered.  The approach taken by Mirza and MacGregor (1982) is adopted 

for determining the model error.  The error between measured and modelled experimental data is 

split into three categories: model error, test error, and specimen error.  The model error is what is 

used for the professional factor.  Test error represents the difference between actual and measured 

applied loads and displacements, and the specimen error arises from in-batch variation of material 

properties and measured dimensions. The coefficients of variation for test error and specimen error 

recommended by Mirza and MacGregor (1982) are assumed when determining the model error 

for MCFT and DSFM.  The bias factor and coefficient of variation from direct comparison of 

MCFT model results was determined to be 0.966 and 0.105 respectively.  Similarly, for the DSFM, 

the model factor has a bias factor of 0.987 and a coefficient of variation of 0.093. Thus the 

coefficient of variation for the model factor is determined using Equation 4.32 
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 �21L�� = p� /�� − � �� � − ��#��� (4.35a) 

 �3F,7 = 40.105� − 0.03� − 0.045� = 0.090 (4.32b) 

 �K�,3 = 40.093� − 0.03� − 0.045� = 0.076 (4.32c) 

Thus the professional factor for MCFT can be modelled with a mean of 0.966 and a coefficient of 

variation of 0.090.    The DSFM professional factor can be modelled with a mean of 0.987 and a 

coefficient of variation of 0.076.  The DSFM methodology is employed in VecTor2, thus all 

realiability simulations using VecTor2 can be modelled with the professional factors calculated 

for DSFM.  The DFSM professional factor was found to be normally distributed. A chi-squared 

goodness of fit test and a KS test produced p-values of 0.262 and 0.979.  The empirical CDF of 

the DSFM ratios is plotted in Fig. 4.23.  

 

Fig. 4.23: Normal distribution fit for model bias factor for DFSM results. 
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In the current implementation of stochastic simulation in VecTor2, the stochastic simulations 

produce Rn values that include the variation due to material properties.  The variation due to 

geometry is currently not a feature in the VecTor2 implementation.  Thus the analysis results from 

VecTor2 can be analyzed statistically to determine the distribution parameters of a random variable 

Rn which includes material property variation.  The actual resistance random variable is then 

calculated based on Equation 4.33.   

 0 =  m@0J7� (4.36) 

where m@ represents a random variable for the model error in VecTor2.  The resistance and model 

random variables are assumed to be statistically independent, and thus the probability density 

function for R is calculated using Equation 4.34. 

 /�0� = /�m@�/[0J7�] (4.37) 

The professional factor and the VecTor2 resistance model are assumed to be statistically 

independent.  Thus the mean and the coefficient of variation of the final resistance model can be 

calculated using Equation 4.35, which is used by Nowak and Szerszen (2003).  

 �� = �@ ∙ �����
 (4.38a) 

 �� = p�@� + �����

� (4.35b) 

The final resistance model R can be used in a reliability study based on simulation results generated 

by VecTor2.  The generalization of R to include the DSFM professional factor will ensure that 

simulation results are more representative of reality. The implemented stochastic sampling 

routines now allow for a variety of stochastic simulations techniques that are useful in determining 

the reliability of reinforced concrete structural elements. This software is particularly useful for 

the American code, where each member has a capacity reduction factor, and these factors are 

determined through stochastic simulation (Nowak and Szerszen, 2003b). The ability to capture 

nonlinear shear behaviour of reinforced concrete from a reliability framework may help future 
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code calibrations, and provide a tool for engineers who need to ensure a level of reliability for an 

atypical structural element.  It is noted that the professional factor for each type of structure 

modelled with VecTor2 will differ. The reader is referred to Section 5.3 for more information on 

the professional factors.  

4.7 Post-processing of Stochastic Simulation Results 

Stochastic simulations can produce large volumes of data. For example, an analysis with 300 

simulations, each with 75 load stages, generates a total of approximately 22800 output files.  

Typically, these output files are read by post-processors Janus (Chak, 2014) or Augustus (Bentz, 

2000). When the number of simulations becomes large, manually post-processing the data, even 

with the help of the post-processors is a tedious task.  As a result, several post-processing 

techniques are employed and discussed in this section.   

There are several analysis result parameters that are useful for the post-processing of stochastic 

simulation, the most basic of which are the sampled material modification factors.  These data are 

written into files for each trial named “TRIAL_X.C2E” where the X represents the trial number. 

They contain all of the stochastic modification factors for concrete and steel.    

Two post-processors were developed in MATLAB for use with the stochastic simulations in this 

thesis.  The first is a visualization post-processor GUI that can view the model input parameters, 

and visualize the stochastic modification factors to material properties.  This is particularly useful 

when spatially variable material properties are used in a stochastic analysis.  The user can load the 

analysis job results, and a visualization of the mesh with the stochastic modification factors can be 

loaded.  Fig. 4.24. shows the layout of the post-processor and an example of a loaded mesh with 

spatially variable properties. 

In addition to displaying the stochastic properties, material properties, and material types, the post-

processor is also capable of plotting the crack pattern for a given trial and selected load stage. 

Fig.4.25 shows an example of a crack pattern with the spatial variation.  In the second part of the 

figure, the mesh is removed from the main specimen for a clearer visualization of the crack pattern.  

 



STOCHASTIC SIMULATION – SOFTWARE FORMULATION 
 

159 

 

 

Fig. 4.24: Stochastic post-processor. 

 

(a) 

 

(b) 

Fig. 4.25: High quality visualization of stochastic material properties and analytical crack 

patterns: (a) With mesh (b) With mesh removed. 
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The second post-processor is not intended for visualization, but rather for data retrieval.  Similar 

to the first-post processor, the second retrieves and analyzes each simulation load-deflection curve 

and determines the point of failure.  This program is highly specialized for monotonic load-

deflection curves that exhibit shear failure or flexural rupture.  There are two main challenges to 

overcome when determining the failure point.  The first is that a shear failure in the current 

formulation may not be accompanied by a complete loss of load bearing capacity.  The nature of 

the finite element models for a deflection controlled analysis often allows them to continue the 

load-deflection response after the main shear failure has occurred.  Fig. 4.26 is an example of such 

a phenomenon.  The automated post-processor thus has to distinguish between the actual failure 

and the absolute maximum.  This is accomplished by enforcing three criteria: the ultimate load is 

greater than cracking load; after the ultimate load, there is a change from positive slope to negative 

slope; and the load drops more than 10 percent of the local maximum.  

 

Fig. 4.26: Numerical error after failure in VecTor2 model. 

Using these three criteria, the point where the data is discarded is established. The maximum is 

then taken as the maximum point in the remaining data. This method produces a reasonable 
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thoroughly tested, this method should work for a generalized load-deflection curve that may be a 

shear or flexure failure, with or without ductility.  In the case of a ductile failure that doesn’t 

contain bar rupture, no data is discarded and thus the absolute maximum is used.   One main 

limitation of this method is that it assumes that the structure has failed at some point in the analysis.  

If failure has not occurred, then this method will not identify it.  As a result, manual inspection of 

the data is recommended to identify suspicious load-deflection curves requiring greater scrutiny.  
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CHAPTER 5: RELIABILITY OF SHEAR CRITICAL 

REINFORCED CONCRETE BEAMS WITH 

NO TRANSVERSE REINFORCEMENT 

The following chapter presents a case study that highlights the potential applications of the 

implemented software pertaining to stochastic simulation. Stochastic simulation can be applied to 

a wide variety of structural problems including the development and validation of simplified 

design equations, the assessment of probabilistic deflection calculations, and the assessment of the 

reliability of structural elements.  A series of deep beams with no transverse reinforcement are 

simulated and their reliability is discussed.   

The size effect is a well-documented phenomenon that has been incorporated, along with various 

formulations of the Modified Compression Field Theory, into several design codes around the 

world (CSA A23.3, AASHTO, Eurocode 2).  The size effect in most cases is an additional 

parameter that is applied to the shear strength that results in diminishing returns on the concrete 

contribution to shear stress when the depth of the beam increases. It is unclear how the size effect 

affects the computed reliability of the reinforced concrete beam elements. Additionally, the 

professional factor that VecTor2 exhibits for reinforced concrete structures with no transverse 

reinforcement has not been identified. The purpose of this study is to assess the reliability indices 

for North American building codes and also determine if the reliability of shear-critical beams with 

no shear reinforcement is independent of the size effect when modelled with VecTor2. The 

determined reliability indices are calculated for the CSA A23.3-14 code and the ACI 318-14 code 

and compared with target reliability indices. Four reinforced concrete beams were selected from 

literature for stochastic simulation.  Each of the beams contain no transverse reinforcement and 

each of the beams possess similar longitudinal reinforcement ratios.  A plot of the normalized shear 

stress versus actual deflection for each beam is plotted in Fig. 5.1.  

The first two beams, BN50 and BN100, tested by Podgorniak-Stanik (1998) (and reported by 

Collins et al. 2008), had depths of 500 mm and 1000 mm respectively.  The next beam, YB2000, 

tested by Yoshida (2000) (and reported by Collins et al. 2008), had a depth of 2000 mm.  The last 

beam, PLS4000, was a slab strip tested by Quach (2016) (and reported by Collins et al. 2015) and 

had a depth of 4000 mm.  Beams BN50, BN100, and YB2000 had a thickness of 300 mm.  The 
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slab strip PLS 4000 had a thickness of 250 mm.  The properties of each beam are summarized in 

Table 5.1 

 

Fig. 5.1: Normalized shear stress for selected beams: BN50, BN100, YB2000, and PLS400. 

Table 5.1: Properties of selected specimens. 

Specimen b 

[mm] 

d 

[mm] 

a/d ��� 
[MPa] 

Ag 

[mm] 

�" 

[Mpa] 

�D1�0. 

[%] 

BN 50 300 450 3.00 37 10 483 0.81 

BN 100 300 925 2.92 37 10 550 0.76 

YB 2000 300 1890 2.86 33.6 10 447 0.74 

PLS 4000 250 3840 3.13 39.4 14 573 0.656 

All of the selected beams had similar compressive strengths, reinforcement ratios, span-to-depth 

ratios, and widths. The only main variability between specimens was the depth and the yield 

strength of the longitudinal reinforcement.  However, all of the specimens were shear-critical and 

did not yield the longitudinal reinforcement.  Thus it can be concluded that the only significant 

difference between the selected specimens was the depth.   
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Each of the beams was tested to failure and failed via a diagonal shear crack.  A scaled comparison 

of the crack patterns is shown in Fig. 5.2.  

 

Fig. 5.2: Comparison of crack patterns for selected specimens. 

The following sections describe the experimental response, the deterministic finite element 

modelling, the results of the stochastic simulation, and the reliability analysis.  

5.1 Deterministic Finite Element Models 

This section compares the experimental behaviour of each of the selected beams with the 

associated finite element models. The load-deflection response for each of the experiments, the 

BN50 

BN100 

YB2000 

PLS4000 



RELIABILITY OF SHEAR CRITICAL BEAMS WITH NO TRANSVERSE REINFORCEMENT 
 

165 

 

crack pattern, and failure mode are discussed.  The important parameters in the finite element 

model are presented and discussed.  

For all models, the predicted load-deflection response is sensitive to the assumed maximum crack 

spacing.  As a result, a consistent estimation of the maximum crack spacing based on the CIB-FIB 

code was used.  In the case of beams with no transverse reinforcement, the maximum crack spacing 

predicted by Equation 5.1 was assumed to govern both directions (Collins and Mitchell, 1997).  

 ��� � 2��� �
��
10	 � 0.25��

��

��
 (5.1) 

�� is the distance between the top of the reinforcement and the mid-height of the shear area, �� is 

the horizontal spacing of the longitudinal reinforcement, �� is the diameter of the longitudinal 

reinforcing bars, and �� is the longitudinal reinforcement ratio. The parameter �� is taken as 0.4 

for deformed reinforcing bars. 

5.1.1 BN50 

Specimen BN50 represents the smallest specimen in the series and is generally not considered to 

have a large depth.  BN50 had a depth of 500 mm, and a span of 1450 mm.  A finite element mesh 

with a total of 20 elements through the thickness and an average element size of approximately 25 

mm by 25 mm was used.  A plot of the finite element mesh is shown in Fig. 5.3. The steel bearing 

plates for the applied load was modelled by one layer of steel plate material and one layer of 

bearing material. The longitudinal reinforcing steel was modelled using truss elements. A 

maximum crack spacing of 693 mm was determined using Equation 5.1. The material properties 

of the finite element model for BN50 are summarized in Table 5.2.   

 

Fig. 5.3: Finite element mesh for BN50. 
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Table 5.2: Material properties for BN50 finite element model. 

Color 

/Material 

Mat. 

# 

f’c or fy 

[MPa] 

Ec or Es 

[MPa] 

ε’c or εsh 

x10-3 

f’t or fu 

[MPa] 

t or As 

[mm/mm2] 

Description 

Concrete 1 37 27095 2.08 2.01 300 Concrete 

Steel 2 500 200000 5.00 600 300 Bearing Plate Steel 

Bearing 3 N/A 28772 N/A N/A 300 Bearing Material 

Steel 4 483 200000 14.00 667 1100 Bottom Bars 

The BN50 specimen was tested at the University of Toronto by Podgorniak-Stanik (1998) as part 

of a series of tests to determine the influence of skin reinforcement on the shear strength of 

reinforced concrete members.  Specimen BN50 exhibited a bilinear response and a brittle failure 

at an ultimate load of 261 kN and a deflection of 5.6 mm. The failure was the result of a large shear 

crack opening up in the specimen. The crack pattern at failure is depicted in Fig. 5.4.  

 

Fig 5.4:  Experimental crack pattern of specimen BN50 at failure. 

The finite element model was able to capture the experimental response of the specimen reasonably 

accurately. The predicted ultimate load and displacement were 266 kN and 4.8 mm respectively.  

A plot of the experimental load-deflection response and the finite element prediction is shown in 

Fig. 5.5.   The finite element model tends to overestimate the pre-cracked stiffness of the response 

but produces a reasonable estimate for the post-cracked stiffness of the experimental response.  

The model was calibrated to reduce the tension stiffening effect from the bars by artificially 

decreasing the effective bar diameter.  This was done because current implementation of the 

tension stiffening effect.  For discrete bars, the tension stiffening effect is modelled as a uniform 

tension stiffening response that influences concrete 7.5 bar diameters away from the bar.  In the 

case of BN50, the there are two 20M bars and one 25M bar.  So assuming that the 20M bars govern 
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the tension stiffening, 7.5 bar diameters away is a distance of 150 mm.  With the truss bars sitting 

at 50 mm up from the bottom, the total height from the bottom of tension stiffening concrete is 

200 mm.  This means that 40 percent of the beam is tension stiffened.  For the type of shear failure 

observed, tension softening tends to govern the failure and the experimental response.  Thus 

artificially reducing the bar diameter results in a better prediction of the load-deformation 

response. The influence of this calibration should be investigated further. However, the current 

calibration for the reduction in bar diameter is considered acceptable.  

 

Fig. 5.5: BN50 experimental (black) vs. finite element (red) load-deflection response.  

5.1.2 BN 100 

Specimen BN100 represents the second of the beams with no transverse or skin reinforcement in 

the series tested by Podgorniak-Stanik (1998).  A finite element mesh of 7194 elements was 

constructed.  A plot of the finite element mesh is shown in Fig. 5.6.   A total of 21 elements were 

used through the depth of the beam with an average element size of approximately 50 mm by 50 

mm.  The bearing plates were modelled with a combination of steel and bearing material.  The 

reinforcing steel was modelled with discrete truss bars. A maximum crack spacing of 1226 mm 

was determined using Equation 5.1. Table 5.3 outlines the details of the finite element model.  

0

50

100

150

200

250

300

0 2 4 6 8 10

A
p
p
li

ed
 L

o
ad

 [
k
N

]

Deflection [mm]

Exp.

VT2



RELIABILITY OF SHEAR CRITICAL BEAMS WITH NO TRANSVERSE REINFORCEMENT 
 

168 

 

 

Fig. 5.6: Finite element mesh for BN100. 

Table 5.3: Material properties for BN100 finite element model. 

Color 

/Material 

Mat. 

# 

f’c or fy 

[MPa] 

Ec or Es 

[MPa] 

ε’c or εsh 

x10-3 

f’t or fu 

[MPa] 

t or As 

[mm/mm2] 

Description 

Concrete 1 37 27095 2.08 2.01 300 Concrete 

Steel 2 500 200000 5.00 600 300 Bearing Plate Steel 

Bearing 3 N/A 28772 N/A N/A 300 Bearing Material 

Steel 4 550 200000 15.00 825 2100 Bottom Bars 

A large shear crack formed on the east span of the beam.  The onset of failure occurred at a peak 

load of 370 kN and a peak deflection of 5.87 mm.  The crack plot for BN100 is depicted in Fig. 

5.7.  

 

Fig. 5.7: BN100 crack pattern. 

The finite element model predicted a peak load of 406 kN and a peak deflection of 5.98 mm.  This 

was in reasonably good agreement with the experimental results. A comparison of the 

experimental and predicted load-deflection response is shown in Fig. 5.8. Note that the initial 

stiffness predicted by the finite element model is much stiffer than the experimental results.  It is 

possible that the beam was pre-cracked due to accidental loading before testing or due to restrained 
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shrinkage.  However, because the peak response is modelled reasonably well, and the initial 

stiffness of the other three specimens was in good agreement with the experimental results, this 

discrepancy is not considered important to this study.  

 

Fig. 5.8: BN100 experimental (black) vs finite element (red) load-deflection curves. 

5.1.3 YB2000 

Specimen YB2000 was tested by Yoshida (2000) as part of a series of deep beam tests with varying 

amount of transverse reinforcement.  The specimen is reported in the literature as YB2000/0 

however because the other specimens are not being considered in this study, the designation has 

been shortened to YB2000 for the purpose of this thesis.  Note that the east span of the specimen 

is in fact YB2000/0 and the west span is YB2000/9.  The specimen was modelled as tested, and 

thus the finite element model incorporates both YB2000/0 and YB2000/9.  However, the results 

in this study refer strictly to the YB2000/0 results. The finite element mesh is shown in Fig. 5.9. 

A maximum crack spacing, determined using Equation 5.1, was calculated to be 2181 mm. The 

material properties for the model are shown in Table 5.4 

The beam failed via a diagonal shear crack on the east span.  This mode of failure was forced by 

the experimental setup as the west span contained strengthening reinforcement.  The failure 

occurred at an applied load of 461 kN and a deflection of 8.0 mm.  The crack pattern is shown in 

Fig. 5.10. 
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Fig. 5.9: Finite element mesh for YB2000 

Table 5.4: Material properties for YB2000 finite element model. 

Color 

/Material 

Mat. 

# 

f’c or fy 

[MPa] 

Ec or Es 

[MPa] 

ε’c or εsh 

x10-3 

f’t or fu 

[MPa] 

t or As 

[mm/mm2] 

Description 

Concrete 1 31.8 25622 2.04 1.86 300 Concrete 

Steel 2 500 200000 5.00 600 300 Bearing Plate Steel 

Bearing 3 N/A 28772 N/A N/A 300 Bearing Material 

Steel 4 447 200000 14.80 610 4200 Bottom Bars 

Steel 5 433 200000 14.10 638 900 Top Bars 

Steel 6 470 200000 14.50 470 645 T-head shear reinf. 

 

Fig. 5.10: YB2000 experimental crack pattern. 

The finite element model was able to produce a reasonable prediction for the initial stiffness, and 

cracking load of the YB2000 specimen.  However, the post-crack stiffness, ultimate load, and 

deflection at ultimate were overestimated.  The finite element model predicted a failure load of 

562 kN with a deflection of 8.79 mm.  A comparison of the finite element and experimental load-

deflection curves are presented in Fig. 5.11.  Although the finite element prediction overestimates 

the experimental response by approximately 22%, it was considered reasonable enough to continue 

with stochastic simulation.  
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Fig. 5.11: YB2000 experimental (black) vs finite element (red) load-deflection curves. 

5.1.4 PLS4000 

The specimen PLS4000 was recently tested at the University of Toronto by Quach (2016).  This 

large deep beam specimen was meant to represent a slice of a deep slab foundation.  Such structural 

elements are being used in the designs of hydro dam structures or as mat foundations for high-rise 

structures. The specimen and the finite element model are extensively described in Chapter 3.  The 

mesh used for simulation is shown in Fig.5.12.  A maximum crack spacing of 4035 mm was 

selected based on Equation 5.1. A summary table of the material properties is shown in Table 5.5. 

 

Fig. 5.12: PLS4000 finite element mesh. 

Similar to specimen YB2000, this test was designed to have two shear failure tests in one specimen. 

The west span contained 20M T-headed shear reinforcement spaced at 1500 mm.  The east span 

contained no transverse reinforcement and is thus the subject of this study. 
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Table 5.5: Material properties for PLS4000 finite element model. 

Color 

/Material 

Mat. 

# 

f’c or fy 

[MPa] 

Ec or Es 

[MPa] 

ε’c or εsh 

x10-3 

f’t or fu 

[MPa] 

t or As 

[mm/mm2] 

Description 

Concrete 1 40 27898 2.09 2.09 250 Concrete (east span) 

Concrete 2 40 27898 2.09 2.09 250 Concrete (west span) 

Steel 3 500 200000 5.00 600 250 Bearing Plate Steel 

Bearing 4 N/A 28772 N/A N/A 250 Bearing Material 

Steel 5 573 200000 14.00 675 6300 Bottom Bars 

Steel 6 522 200000 17.00 585 900 Top Bars 

Steel 7 522 200000 17.00 585 300 T-head shear reinf. 

The experimental crack pattern for the failure of the east span is shown in Fig. 5.13.  The specimen 

failed after two large shear cracks developed.  The peak load was 685 kN with a peak deflection 

of 12 mm. The eastern-most shear crack was the failure crack. 

 

Fig. 5.13: PLS4000 experimental crack pattern. 

The finite element analysis load-deflection was submitted as a blind prediction in the prediction 

competition. It predicted a peak load of 761 kN and a deflection at peak load of 12.2 mm. A 

comparison of the experimental and finite element load-deflection curves is shown in Fig. 5.14.  
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Fig. 5.14: PLS4000 experimental (black) vs finite element (red) load-deflection curves. 

All four deterministic finite element models were reasonably successful in predicting the 

experiments, given the high degree of scatter obtained from various other modelling procedures 

and software for such elements. Failure modes, peak load, and deflection at peak load were all 

predicted with reasonable accuracy. Continuing challenges include the prediction of cracked 

stiffness, the cracking load, and the simulated crack pattern.  A summary of the deterministic finite 

element models is presented in Table 5.6. 

Table 5.6: Summary of deterministic finite element modelling. 

Specimen PExp PVT2 PExp / PVT2 

BN50 261 265.8 0.980 

BN100 370 405.6 0.912 

YB2000 461 561.6 0.821 

PLS4000 685 760.5 0.900 

  Average 0.903 

  COV 0.072 
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5.2 North American Building Code Calculations 

The stochastic simulation results are compared to the Canadian (CSA A23.3-14) and the American 

(ACI-318-14) building codes.  This sections outlines the computation of the shear strength of 

reinforced concrete for the Canadian and American building codes. 

The CSA A23.3-14 code calculation required the applied moment and applied shear force to be 

known.  Collins et al. (2015) note that the ratio between moment and the product of the shear times 

the shear depth can be taken as 2.10 for the Toronto size effect series.  The CSA code calculation 

requires iteration based on the assumed applied shear and moment.  If the maximum shear is 

unknown, a guess is supplied and the moment acting on the section is calculated using the specified 

ratio. The procedure for determining the shear strength of a member using the CSA A23.3 general 

method is summarized in Fig. 5.15.  

 

 

Fig. 5.15: CSA A23.3 General Method for the shear strength of reinforced concrete.  
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assuming a constant shear stress.  The shear stress is calculated using Equation 5.2 or Equation 

5.3.   

 �� = 24���:M�   [5:�] (5.2a) 

 �� = 0.1674���:M�   [Xq] (5.2b) 

 �� = 224��� + 2500� ��8 3:M�     [5:�] (5.3a) 

 �� = A0.167 + 8.174 � ��8 4���C4���:M�   [Xq] (5.3b) 

Equation 5.2 (ACI Eq. 11-3) is the basic equation for the concrete contribution to the shear strength 

of a reinforced concrete section.  Equation 5.3 (ACI Eq. 11-5) is a slightly more complicated 

equation that accounts for the influence of combined moment and shear on the shear strength of a 

flexural element.  A plot of the respective code predictions is shown in Fig. 5.16. In the case of 

this plot, the shear is generalized into a metre width section.  Each of the experimental results for 

the selected specimens is plotted on the figure.  These results were determined as the summation 

between the applied shear, and the shear due to the self-weight of the specimen.  The calculated 

experimental shear force is shown in Table 5.7.  

Table 5.7: Summary of experimental shear calculations. 

Specimen 

d 

[mm] 

/$5@ 

[kN] 

�$5@ 

[kN] 

�K$4K 

[kN] 

V/m 

[kN/m] 

BN50 450 260.5 130.3 3.4 445.5 

BN100 925 369.8 184.9 13.5 661.2 

YB2000 1890 461.2 230.6 24.4 850.0 

PLS4000 3840 678.8 250.1 101.1 1404.6 
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Fig. 5.16: Code Calculations comparing the selected specimens, the ACI-318-14 code and the 

CSA A23.3-14 code. 

5.3 VecTor2 Professional Factor for Shear Critical Beams with No 

Transverse Reinforcement 

Since the creation of the original limit state design method in the late 1970s and early 1980s there 

has always been an understanding that despite the best efforts of structural engineers, the 

simulation of structural behaviour will always be an approximation to reality.  Thus it is important 

to quantify and understand how analysis tools used for reliability analysis are representative of 

reality.  In a stochastic simulation, the ideal model provides an exact replication of real behaviour 

if the input information is perfectly correct. However, most analysis tools are never perfect and all 

rely on simplifying assumptions that create uncertainty in the model results.  The definition of a 

professional factor in this study is an additional random variable that captures the uncertainty 

derived from modelling, even with perfect information. This model is incorporated into the 

material resistance model as a product between the VecTor2 specific professional factor, the 

fabrication factor, and the VecTor2 predicted resistance model. This is reflected in Equation 5.4. 

 0 = 0� ×8 × / × $ (5.4a) 
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 0 = 0J7� × / × $ (5.4b) 

VecTor2 is a generalized finite element program and, as such, it will model different structures 

with varying degrees of accuracy.  For example, consider the statistics published by Vecchio et al. 

(2001).  The bias factor for beams, shear walls, and panels were reported as 1.000, 1.011, and 

1.022 respectively. Similarly, the coefficient of variation for those elements were reported as 5.3%, 

20.3%, and 9.6% respectively. Thus although all three examples show a bias factor of 

approximately 1.0, the coefficient of variation due to model uncertainty varies significantly 

depending on which structural element is selected for modelling.  These reported numbers are 

calculated as PVT2 / PExp.  However, for the purpose of this study, the inverse ratio is required. 

In the current study, shear-critical beams with no transverse reinforcement are being modelled.  In 

order to assess the professional factor for VecTor2 shear-critical beams, a large number of beams 

must be modelled.  The database published by Reineck et al. (2013) contains a total of 744 shear 

critical beams that were tested under a one-point or two-point bending test; all with span to depth 

ratios greater than 2.41.  The total of 744 was reduced to a subset of 680 by removing all the T-

beams.  Although it is easy to model T-beams in VecTor2, it was decided that using rectangular 

beams was sufficient. Additionally, this eliminates any possible out of plane (3D) influence on 

planar (2D) results. The set of beams was additionally refined by removing all beams without 

sufficient or reliable information.  This means that if any reported test did not include the 

parameters required to model it, it was removed from the list of selected beams. Note that 64 of 

the selected beams do not contain information on their aggregate size, but contained otherwise 

sufficient information.  This resulted in a set of 371 beams that fell into two groups, each with a 

subgroup.  The beams were classified as Type A if the beams were a one-point bending test, and 

Type B if the beams were a two-point bending test. A second designation was given to beams with 

or without compression reinforcement; the designations of 1 and 2 were added to the initial 

designation. For example, a Type A1 beam is a one-point bending test with no compression steel. 

Similarly, a Type B2 beam is a two-point bending test with compression steel. A schematic of the 

two beam types is shown in Fig. 5.17.  
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In Fig. 5.17, there are eight parameters that are used for the generation of the structure files.  The 

most common parameters are h, d, ��, L, and c which denote the height, distance to bottom 

reinforcement, distance to top reinforcement, length of beam, and length of constant moment zone 

respectively. Additionally, there are three parameters which reference the bearing plate 

information: ba, aa, and af , which denote the distance between the edge of the beam and centerline 

of the reaction bearing plate, width of reaction bearing plate, and width of loading plate (half the 

width of loading plate for Type A and full width of loading plate for Type B) respectively. 

This final group of 371 beams was selected to be modelled with VecTor2.  The selected beams, 

compared with the original subset, are shown in Fig. 5.18. From the figure it can be seen that the 

selected specimens are fairly representative of the complete data set.   

 

(a) 

 

(b) 

Fig. 5.17: Basic schematics for mesh generation. (a) Type A beam, (b) Type B beam. 
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For the analysis of the selected data, a few simplifying assumptions were made; the first was that 

the bottom steel reinforcement could be modelled as a single layer of reinforcement with a 

centerline equal to the centroid of the reinforcement. Each beam was assumed to be perfectly 

symmetric and thus only half of the beam was modelled around the plane of symmetry. The 

maximum crack spacing for each beam was assumed to be equal in both directions, and governed 

by Equation 5.1, which was reported by Collins and Mitchell (1997).    

 

Fig. 5.18: Selected test results versus rejected test results. 

Lastly it was assumed that the reinforcement is perfectly bonded to the concrete; no slip between 

the concrete and the steel is assumed.  This last assumption is considered to be reasonable because 

only shear tests with deformed reinforcing bars were selected, thus reducing the likelihood that a 

test is critical to the bond of the reinforcement. 

VecTor2 requires material properties, node list, incidence list, support conditions, and loading 

conditions in order to properly model the structural response of the beams.  Thus for each beam, a 

unique structure file and two load case files were required to properly define the finite element 

model for the beam.  A pre-processor, Formworks+, has been extensively developed at the 

University of Toronto to create user-friendly generation of structure and load case files. However, 
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manual input into Formworks+ would constitute a significant cost in resources and time.  To avoid 

such an issue, an automated pre-processor was developed that read the input information for each 

beam and generated the structure file and the load case files required for analysis. 

Beam YB2000 is included in the database and is modelled as part of the reliability study.  Thus 

the automated structure and load case file generator can be compared against a mesh created 

manually.  The generated mesh is shown in Fig. 5.19. 

 

Fig. 5.19: Automatically generated finite element mesh.  

The automatically generated mesh contained vertical rollers along the right edge and a horizontal 

roller at the left support.  A unit displacement was applied in the vertical direction along the right 

edge. Additionally, gravity loading was applied to each concrete element.  A comparison of the 

predicted responses is shown in Fig. 5.20.  

 

Fig. 5.20: Comparison of automated mesh with manual mesh for YB2000.  
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Both meshes contained similar mesh sizes (the automated mesh had 29 elements through the 

thickness and the manual mesh had 27 elements through the thickness) and identical bearing plate 

and material properties. However, the manual finite element model contained the actual 

reinforcement configuration for the YB2000 specimen. Thus the manual model is not perfectly 

symmetric.  The load-deflection response for the automated mesh and the manually made mesh 

are identical until approximately 80% of the peak load.  VecTor2 relies on a maximum crack width 

equation that reduces the stiffness of elements parallel to the crack direction once the crack width 

becomes too large.  This simulates the loss of aggregate interlock that permits the transfer of shear 

stress across a crack.  The difference in the load-deflection responses around the point of failure 

could be attributed to the mesh asymmetry; which forces the failure for the manual mesh to one 

side and thus the crack width check to one side. The models redistributed their stress to adjacent 

elements in different ways, resulting in a deviation in the load-deflection response. Thus the failure 

was not exactly the same between the half-model and the full model.  

Even with the automated model generation, a method to run the VecTor2 executable for each of 

the analysis was required.  A script was developed that runs each of the executables thereby 

additionally increasing the automation. Finally, a post-processor was developed to obtain the 

results.   

The automated process was not without errors; of the selected 371 beams, 53 of the automatically 

generated meshes produced errors when running.  Thus these 53 models were excluded from the 

reported results.  This was considered acceptable as the sample size of 318 is considered sufficient 

to estimate the professional factor.  The normalized shear stress for the experimental results and 

the simulation results are calculated for each specimen. Equation 5.5 is used to calculate the 

normalized shear stress.  

 WH1�2��
N�L =
�:�4��� (5.5) 

A plot showing the normalized shear stress for the experimental data versus the simulated data is 

shown in Fig. 5.21.  It can be seen from the plot that there is significant scatter in the prediction of 

the shear strength using VecTor2.  The data do appear to capture the behaviour of all of the beams 
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reasonably well.  Additionally, the majority of the tests fall on under the equal ratio and thus are 

conservative predictions of the shears strength. 

 

Fig. 5.21: Comparison of experimental and theoretical normalized shears stresses. 

The professional factor is modelled as a random variable that is equal to the ratio between the 

experimental and predicted peak load.  It is calculated using Equation 5.6.  

 / =
�$#�J7� (5.6) 

This ratio was calculated for each simulation and analyzed as a set of data. The calculated 

professional ratios were found to be normally distributed with a mean of 1.106 and a coefficient 

of variation of 0.183. The mean value of the professional factor is also reported as the professional 

bias factor.  A histogram showing the normal distribution fit is shown in Fig. 5.22.   A chi-squared 

goodness of fit test and a KS test were performed. Both tests confirmed the goodness of fit and 

provided p-values of 0.172 and 0.372 respectively.  Thus the professional factor can be modelled 

as a normal distribution.  

The uncertainty due to the testing and the difference between assumed specimen properties and 

actual specimen properties is incorporated into the computation of the professional factor using 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5

N
o
rm

al
iz

ed
 S

h
ea

r 
S

tr
es

s 
-

V
T

2

Normalized Shear Stress - Experiment



RELIABILITY OF SHEAR CRITICAL BEAMS WITH NO TRANSVERSE REINFORCEMENT 
 

183 

 

the same method as Bartlett and MacGregor (1996).  The values for � ��  and ��#�� are taken as 

0.030 and 0.045 respectively (Bartlett and MacGregor, 1996).  The coefficient of variation for the 

professional factor is calculated using Equation 5.7. 

 �# = p� /�� − � �� � − ��#��� (5.7a) 

 �# = 4(0.183)� − (0.03)� − (0.045)� = 0.174 (5.7b) 

Thus the coefficient of variation for the professional factor can be taken as 0.174. 

As previously stated, a total of 53 results were excluded from the original set of data.  The removal 

of these analysis results was based on four main criteria: the model contained a numerical error 

and did not complete the analysis (Model Error), the beam was modelled without any longitudinal 

reinforcement (Mesh Error), the specimen did not fail the beam under the applied displacement 

(Not Failed), or the automated retrieval of the model results provided suspiciously high or low 

peak load-deflection results (Suspicious).  Fig. 5.23 shows a comparison of the original 371 test 

results and highlights the results identified as erroneous.  

  

Fig. 5.22: Histogram and fitted distribution for the VecTor2 professional factor. 
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Fig. 5.23:  Illustration of removed data points disaggregated by removal rationale. 

The results identified as suspicious were based on visual inspection of the load-deflection curve 

without comparing the test to predicted ratio.  It is interesting then, that most of the selected test 

results fall on the periphery of the test-to-predicted ratio cloud.  Only eight of the tests were 

considered to be suspicious.  The suspicious results were mostly due to errors in the automated 

retrieval of the peak load.  The specimens fell into three categories:  the automated result 

overpredicted the strength due to a common phenomenon where the structure continues to hold 

load after the main shear crack is formed; the automated result interprets the cracking point as the 

failure point; or the analysis fails prematurely in an unrealistic manner. For the first two causes, 

the actual failure point is clear based on the load-deflection and crack patterns and can be selected 

manually.  For the third cause, these three tests were selected for removal because the testing 

apparatus was inverted such that the gravity force was applied upward (from the frame of reference 

of the model). Fig. 5.24 shows the suspicious data points after manual selection of maximum point 

and the data points selected for removal.   
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Fig. 5.24: Adjustment or removal of suspicious data. 

The analysis of the selected test data was repeated with the CSA A23.3 code and the ACI-318 

code. These analyses were done not for the purpose of developing professional factors for the CSA 

A23.3 code or the ACI-318 code, but rather to compare the results from each code to VecTor2.  

The CSA code and VecTor2 are both implementations based on the Modified Compression Field 

Theory.  The CSA code simplifies the original Modified Compression Field Theory and is 

calibrated for analysis of flexural elements (Bentz, 2000).  VecTor2 uses the Disturbed Stress Field 

Model (Vecchio et al., 2000) and expands on the Modified Compression Field Theory by including 

shear slip along the cracks. The results for the CSA code are shown in Fig. 5.25.  

It can be seen that for most of the test results, the CSA code is conservative.  It becomes partially 

unconservative for specimens that develop lower shear stress. However, given the overall scatter, 

it is reasonable to assume that the mean value of the CSA equations are good predictors of the 

shear strength, and that the variability observed in the figure is acceptable given the simplicity of 

the model. It is worth noting that VecTor2 also experiences significant scatter in these regions, 

although does not appear to have an unconservative bias. 
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Fig. 5.25: CSA A23.3-14 predictions for shear strength vs. normalized shear strength. 
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yet realistic reinforcing ratio.  It is clear from the figure that most of the tests poorly captured by 

the CSA code have a reinforcement ratio above 2.5 percent.  

Finally, the ACI 318-14 code is compared to the test results.  The ACI code essentially assumes a 
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Fig. 5.26: Disaggregated CSA predictions with � ≥ 2.5% 

clearly evident in Fig. 5.27, which plots the ACI predictions against the experimental results.  This 

figure shows that, for the majority of test results, the ACI predictions are conservative.  However, 

after a point in which the ACI predictions equal the experimental predictions, the ACI code quickly 

becomes unconservative.  This is discussed further in Section 5.6, which assesses the reliability of 

the ACI code in consideration with the size effect.  

A comparison of all three code predictions and the depth of the specimen is presented in Fig. 5.28 

and Fig. 5.29.  Fig. 5.28 shows the scatter plot of the predictions for all three analysis methods.  

The ratio of calculated to experiment (note: this is the inverse of the professional factor) is shown 

in the figure. The figure shows that while the ACI code exhibits the most scatter, the predictions 

from the CSA code and VecTor2 are not without scatter. Fig. 5.29 takes the average value of the 

calculated to prediction compared against the depth to depth to tensile reinforcement.  The depth 

to tensile reinforcement is averaged in bins of 250 mm, and the number of specimens in each bin 

is indicated in the figure. This figure illustrates the scatter in VecTor2 and CSA code predictions.  

The CSA code seems to generally predict the strength of the specimens conservatively. The 
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beams with 1000 < d < 1250) continue to increase.  Further discussion on the reliability of the code 

predictions is presented in Section 5.6.  

 

Fig. 5.27: ACI 318-14 predictions for shear strength vs. normalized shear strength. 

 

Fig. 5.28: Scatter plot of calculated to experimental ratios versus depth to tensile reinforcement. 
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Fig. 5.29: Disaggregated averages of calculated to experimental ratios versus depth to tensile 

reinforcement. 

5.4 Stochastic Simulation Results 

Stochastic simulation was conducted for each of the selected specimens from the Toronto size 

effect series.  The number of simulations for each specimen varied based on computation time. 

Each simulation consisted of a random field using Latin hypercube sampling for the specified 

concrete strength, assumed to be 30 MPa. The steel properties were assumed to be deterministic.  

This was done because of the limited influence of the steel on the behaviour of the unreinforced 

concrete. The strain in the steel is influenced only by the steel modulus of elasticity, which exhibits 

only small variability.  The number of simulations and stochastic analysis parameters are outlined 

in Table 5.8. 

Mirza et al. (1979) provide functions to estimate the mean value of the tensile strength and modulus 

of elasticity from the compressive strength; however, updated approximations have been 

substituted in place of the original functions.  As a result, the standard deviation is calculated using 

the coefficient of variation provided by Mirza et al. (1979) but not the mean value.  
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Table 5.8: Stochastic simulation input properties for reinforced concrete.  

 

Variable Model Mean 

Value 

[MPa] 

Standard 

Deviation 

[MPa] 

Coefficient 

of Variation 

[%] 

Compressive Strength 

    ��
� � 30	��� 

Bartlett and MacGregor 

(1996) 38.57 7.14 18.6 

Tensile Strength   
    ��

� � 1.81	��� 

Modified Mirza et al.  

(1979) 1.81 0.23 12.7 

Modulus of Elasticity  

    �� � 25084	��� 

Modified Mirza et al.  

(1979) 25084 2006.7 8.0 

The distributions from Table 5.8 represent the global distributions.  However, as discussed in 

Section 4.5.6, the local spatial variation is much lower.  For the purpose of this study, the spatial 

variation due to the random fields was based on the measured properties of PLS4000 outlined in 

Chapter 3. A correlation length of 1200 mm and the random field coefficient of variation of 5.0% 

were selected. The simulation results produce a series of load-deflection curves.  The peak load 

for each curve needs to be identified.  A script was employed to read the stochastic simulation 

results, and identify the peak load.  A typical plot of the stochastic simulation results is plotted in 

Fig. 5.30. 

 

Fig. 5.30:  Example of stochastic simulation results. Simulated load-deflection for YB2000. 
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The peak load from each stochastic simulation can be analyzed as a set of random data.  A 

statistical distribution is fitted to the results of each simulation. Fig. 5.31 shows an example of the 

distribution of the peak load for specimen YB2000.  

 

Fig. 5.31:  Statistical Distribution of Peak Load for specimen YB2000. 

The results of each simulation were determined to be normally distributed.  A chi-squared 

goodness of fit test and a KS test were used to assess the fits. The p-values for each statistical test 

are shown in Table 5.9. The average bias factor and coefficient of variation are also presented in 

the table.  These average values are used in the reliability analysis. 
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Table 5.9: Stochastic Simulation Results. 

Specimen No. of 

Simulations 

Statistical 

Distribution 
�@��B D1�L 

[kN] 
m =

�@��B D1�L0F�4  
Simulated 

COV 

p-value y� / KS 

BN 50 200 Normal 235.0 1.200 0.116 0.563 / 

0.342 

BN 100 300 Normal 324.4 1.040 0.092 0.932 / 

0.475 

YB 2000 398 Normal 513.9 1.101 0.091 0.464 / 

0.536 

PLS4000 175 Normal 652.3 1.226 0.112 0.365 / 

0.134 

   Average 1.142 0.103  

 

Fig. 5.32: Comparison of stochastic simulation results, experimental results, and CSA-A23.3-14. 
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 z =
!! + x (5.8) 

If the loading ratio ranges from 0 to 1, the live load can be determined based on the dead load and 

the loading ratio or vice versa.  Thus either the dead load or the live load need to be selected for 

the reliability analysis.   

The live load can be divided into two categories: the sustained live load, and the transient live load 

(Nowak and Collins, 2000).  The sustained live load is also referred to as the load at any arbitrary 

point in time, while the structure is under normal occupancy. The transient live load represents 

conditions when the load is at a maximum.  Transient live loads occur randomly and are difficult 

to predict (Nowak and Collins, 2000).  Szerszen and Nowak (2003) compiled loading statistics 

from the literature which are presented in Table 5.10. 

Table 5.10: Statistical parameters for loading. Taken from Szerszen and Nowak (2003). 

Load Component 

Arbitrary-point-in-time load Maximum 50-year load 

Bias COV Bias COV 

Dead Load (cast-in place) 1.05 0.10 1.05 0.10 

Dead Load (plant-cast) 1.03 0.08 1.03 0.08 

Live Load 0.24 0.65 1.00 0.18 

Snow 0.20 0.87 0.82 0.26 

Wind 0 0 0.78 0.37 

Earthquake 0 0 0.66 0.56 

 

5.6 Size Effect, Reliability, and North American Building Codes 

This section discusses the methodology and results of the reliability analysis for the selected 

Toronto Size Effect series specimens. Two sets of reliability analyses are conducted.  The first set 

looks at the reliability of each individual specimen.  The second looks at the reliability of the 

specimens as a whole, in comparison with North American building codes. 

The specimens being analyzed are not part of a real structure, and thus they have no real definition 

of live load and dead load. It is for this reason that the loading ratio is specified.  However, if the 

dead load is simply the self-weight of the specimens, then the ratio between nominal strength and 
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self-weight decreases as the depth of the beam increases.  Thus, when calculating the reliability of 

a given structural element with unknown dead and live loads, a different approach is required.  

Two methods are considered; both rely on codified predictions for the nominal resistance of the 

member.  For this analysis, the CSA code is used for the nominal resistance. 

Method 1 

For the first method, the dead load is considered an unknown value, the nominal resistance is 

considered to be known, and the loading ratio is specified.  The limit state function can be 

described using Equation 5.9.  

 fK! + fDx ≤ Y0� (5.9) 

In the case of this study, CSA load factors and material resistance factors will be assumed.  Thus 

the load factors for dead and live load are taken as 1.25 and 1.5 respectively.  With respect to the 

resistance factor, the beams are shear-critical without any transverse reinforcement.  Thus the 

resistance factor for the structural element can be taken as the material resistance factor for 

concrete (Y� = 0.65).  The load and resistance factors are substituted into Equation 5.9 to produce 

the limit state function considered in this reliability analysis.  

 1.25! + 1.5x ≤ 0.650� (5.10) 

where D and L are the specified dead and live loads respectively, and Rn is the nominal resistance. 

Assuming that the structural specimen was designed according to the CSA code, the nominal 

resistance, Rn, can be calculated. This only leaves the specified dead load as an unknown.  

Substituting the load resistance factor from Equation 5.8 into Equation 5.10 and solving for the 

specified dead load yield Equation 5.11. 

 ! =  
0.650� 

1.25 + 1.5
��O
O

 (5.11) 

 The mean values of the dead and live loads can be found by applying Equation 5.12. 

 �K = mK! (5.12a) 
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 �D = mDx (5.12b) 

The standard deviation is then calculated as the product of the computed mean value and the 

coefficient of variation.  The statistical parameters for the loading that satisfy the code limit state 

equation have now been determined.  Szerszen and Nowak (2003) note that a realistic loading ratio 

for beams ranges from 0.3 and 0.7; however, a loading ratio between 0 and 1 is used for this 

analysis.  

This first method is useful for comparing the reliability between the selected specimens because 

the nominal resistance and statistical parameters for each are known.  Thus the unknown loading 

parameters on the tested specimens can be determined to calculate code acceptable loading.  

Method 2 

For the second method, a dead load is assumed.  The required nominal resistance is then computed 

by solving Equation 5.10 for the nominal resistance.  This is illustrated in Equation 5.13.  

 0� =
YfK! + fDx (5.13a) 

 0� =
0.65?1.25 + 1.5

��O
O @! (5.14b) 

The nominal resistance can then be used to determine the statistical parameters of the member 

resistance curve.  Thus a model that relates the nominal resistance and the mean resistance is 

required.  A bias factor is generally used to relate the mean resistance with the nominal resistance. 

The statistical resistance model used for this analysis is shown in Equation 5.14.  

 0 = 0� ×8 × / × $ (5.14) 

where M is the material property parameter, 0� ×8 is taken as the results of the stochastic 

simulation, F is the fabrication factor, and P is the professional factor. The statistical properties of 

R can be calculated as: 
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 �� = m�0� (5.15) 

 �� = ���� (5.16) 

where �� and �� are the mean and standard deviation of the resistance, m� is the bias factor for the 

resistance, and �� is the coefficient of variation.  The bias factor and the coefficient of variation 

can be determined using Equation 5.17 and Equation 5.18 respectively.  

 m� = m3 × m@ × m, (5.17) 

 �� = 4��3�� + ��@�� + ��,�� (5.18) 

Where m3 = 1.016 is the bias factor for M calculated in Section 5.4, m@ = 1.13 is the bias factor 

for P calculated in Section 5.3, m, = 1.004 is the bias factor for F calculated in Section 3.4.1, �3 = 0.103 is the coefficient of variation for M calculated in Section 5.4, �@ = 0.170 is the 

coefficient of variation for P calculated in Section 5.3, and �, = 0.01 is the coefficient of variation 

for F calculated in Section 3.4.1.  

It is worth noting that the fabrication factor in this study only considers the width of the specimen.    

A study by Mirza and MacGreggor (1979b) reports that the beam width bias fabrication factor for 

a total of 315 specimens is calculated as 1.005 with a coefficient of variation of 0.8 percent. Nowak 

and Szerzen (2003) based their fabrication width factor on a study done by Ellingwood (1980) and 

reported a bias factor of 1.01 with a coefficient of variation of 4.0 percent.  The present study 

measured a bias factor of 1.004 with a coefficient of variation of 1.0 percent. All studies 

recommend a normal distribution for the fabrication factor. The collected data in Section 3.4.1 are 

in reasonable agreement with previous studies in the literature and thus used for the current 

reliability analysis. 

For cases where there are multiple load combinations, Method 2 can be employed where the 

maximum nominal resistance, Rn, is computed from each load combination.  The resulting 

statistical parameters then use Turkstra’s Rule for load combinations (Nowak and Collins, 2000). 

Turkstra’s rule used the combination of statistical parameters at their maximum value (over a 
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period of time) and the statistical parameters at any point in time. The total load is defined in 

Equation 5.19.  

 - = �� + �� + ⋯ + �� (5.19) 

Turkstra’s rule required that for n load combinations, n possible combinations of the load statistics 

must be considered.  The maximum value of the load variable is computed using Equation 5.20.  

 -2� = max 

[{\
{]max����+ ���# + ⋯ + ���# ���# + max����+ ⋯ + ���# 

⋮���# + ���# + ⋯ max����
 (5.20) 

Thus the mean and standard deviation for Qmax can be calculated using Equation 5.21 and Equation 

5.22 respectively. 

 �P���
= max 

[{\
{]�2� 5�

+ �5�

�# 
+ ⋯ + �5�

�# 
�5�

�# 
+ �2� 5�

+ ⋯ + �5�

�# 
⋮�5�

�# 
+ �5�

�# 
+ ⋯�2� 5�

 (5.21) 

 �P���

� = �QRS (5�)
� + � )�5�

�# +�
1 +�� �12#1��� �

 (5.22) 

Note that the computation of the standard deviation requires that the governing load combination 

be identified.  The standard deviation then uses the maximum value statistics for the governing 

load combination with the sum of the arbitrary point in time values for the remaining loads. So in 

the case of computing the nominal resistance using Equation 5.14a, the resulting statistical 

parameters follow Turkstra’s rule using the maximum 50-year load for the principal load and the 

arbitrary point in time load for the companion loads.  Note that the dead load is considered a 

companion load unless it is the only load in a given load combination. 

With the statistical parameters for the loading and the resistance, the reliability index can be 

calculated for either method using Equation 5.23.  
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 � =
�� − �P4��� + �P� (5.23) 

The second method takes the opposite approach to the first method.  It requires a bias factor for 

the nominal resistance which can take any value depending on the assumed dead load.  It is noted 

that both methods produce identical results for reliability, regardless of the assumed dead load, if 

the statistical parameters for the resistance are identical.  The second method has the advantage of 

being able to consider multiple load combinations.  Fig. 5.33 shows the results of both methods 

for PLS4000.  Note that the bias factor for Method 2 was calculated as the ratio of the code 

calculated nominal resistance to the simulated mean resistance.  

 

Fig.5.33: Comparison of Method 1 and Method 2 calculation for PLS4000 (without fabrication 

and professional factors). 

The only difference between the methods occurs at the right hand side of the figure where Method 

2 governs.  This deviation occurs when Method 2 switches its governing load combination from 

1.25D + 1.5L to 1.4D.  This occurs because the live load is less than 10 percent of the dead load. 

However, Method 1 is more convenient to calculate for the selected specimens and thus used in 

the reliability analysis.  
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The reliability for each specimen is calculated using the first method and the CSA code predictions 

for the nominal resistance. The results of the reliability analysis are shown in Fig. 5.34. The CSA 

reliability for all specimens is almost identical.  This is in part due to the similar material factor 

bias coefficients and coefficients of variation, but also due to the professional factor.  The 

variability of the professional factor dominates the variability of the resistance model, and thus all 

bias factors and coefficients of variation for each specimen trend toward the same value.  The 

average reliability index for the CSA code calculations, for each specimen, is 2.96.  This is below 

the target reliability index of �7 = 3.5 suggested by Nowak and Szerszen (2003).  

 

Fig. 5.34: Reliability index for CSA-A23.3. 
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respectively.  This equates to a probability of failure of 0.3%, 1.6% and 51.8% respectively.  Thus 

the consideration of the size effect in the reliability of shear-critical members should not be ignored 

by the ACI-318 code.  It is worth noting that for all ACI reliability calculations, the nominal 

resistance is calculated in accordance with ACI 318 Clause 11.4.6.1 which states: 

…A minimum area of shear reinforcement, Av,min, shall be provided in all reinforced 

concrete flexural members (prestressed and nonprestressed) where Vu exceeds |.}∅~T… 

The nominal resistance meeting code requirements is thus taken as half of the concrete 

contribution. Thus the reliability in this study encompass structures that currently meet all code 

requirements for beams, but do not meet the code level reliability.   

 

Fig. 5.35: Reliability index for ACI-318-14. 
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One of the important distinctions when discussing how spatial variation of material properties 

influences predicted structural behaviour is symmetry of the crack patterns. However, in almost 

all experimental data with a plane of symmetry, failure and large shear cracks occur on only one 

of the two sides (In an analysis model with a plane of symmetry, both sides develop a perfectly 

symmetric crack pattern). Cracks are formed as a combination of local material weakness and 

applied stress at a given location.  A location of locally high strength still may form a crack if the 

stress is high enough.  To illustrate this point, consider a two-point bending test of an unreinforced 

concrete beam, similar to a modulus of rupture test. In the first case, uniform material properties 

are assumed, and in the second case, spatially variable material properties are assumed. The 

stochastic properties of the concrete are shown in Table 5.8 and are the same as the main stochastic 

simulations.  Fig. 5.36 shows how the crack pattern for the uniform material properties is always 

predicted as symmetric and identical for each simulation.  In contrast, the simulations with spatial 

variation exhibit crack patterns that stem from a zone of weakness.  Additionally, the localized 

zones of strength have reduced crack widths, or have remained uncracked all together. This 

example highlights the influence that spatial variation can have on the crack pattern; however, 

there are important distinctions to make.   

In Fig. 5.37, the concrete element is governed by tension softening response. In the presence of 

reinforcement, the tension stiffening phenomenon results in a crack pattern that is less sensitive to 

the material properties.   In Fig. 5.37, the first two trials result in two cracks forming, in similar 

locations to the analysis with uniform material properties.  In the third trial, only one crack forms. 

A local maximum and minimum of material properties in trial three occur where the two cracks 

would form in the uniform analysis. The addition of the transverse reinforcement, and the 

associated tension stiffening, has reduced the effect of spatial variation. 

The analysis was repeated a third time, this time including transverse shear reinforcement with a 

reinforcement ratio of 0.05%.  With the inclusion of the reinforcement in both directions, the entire 

response is subject to tension stiffening. As shown in Fig. 5.38, the effect of spatial variation is 

further reduced with trial one and trial three very similar to the uniform analysis.  Trial two exhibits 

two vertical cracks; however, one is influenced by a local zone of weakness. 
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The above simulations illustrate two findings that are pertinent to the reliability of shear-critical 

beams with no transverse reinforcement.  The first is that crack patterns in unreinforced concrete 

elements (where tension softening governs) are affected more by spatial variability than tension 

stiffening.  Thus for larger specimens, in which the concrete governed by tension softening 

response makes up a larger percentage of the total area, spatial variability should have a greater 

influence on the crack pattern than for smaller members. Additionally, the generated random fields 

are based on a correlation length that is assumed independent of the size of the specimen. Thus a 

larger beam will have more localized areas of strength and weakness than a smaller beam, which 

may resemble more uniform material properties.  Secondly, the above simulations illustrate that 

the inclusion of orthogonal reinforcement supports the basis for the assumptions in the Modified 

Compression Field Theory and the Disturbed Stress Field Model.  The reinforcement strongly 

influences the behaviour of the concrete; the crack spacing becomes uniform, and the influence of 

the concrete variability does not govern.   

5.8 Concluding Remarks 

Reliability analysis of reinforced concrete beams with no transverse reinforcement was 

successfully completed using VecTor2 stochastic simulation to generate the resistance models. 

Stochastic simulations for each selected specimen was performed with the number of simulations 

for each specimen ranging between 175 to 398.  The strength of each beam was found to be 

normally distributed and exhibited a similar coefficient of variation.  The average bias factor for 

the four beams based on a CSA-A23.3 nominal strength prediction is 1.142.  The average 

coefficient of variation is 10.3 percent.  These factors represent the material variability of the 

members. 

In addition, the professional factor for VecTor2 models of reinforced concrete beans with no shear 

reinforcement was established via the successful deterministic modelling of 318 beams.  VecTor2 

underpredicts the strength of reinforced concrete beams in general although a large amount of 

scatter is observed.  A bias factor of 1.106 with a coefficient of variation of 17.4% are the 

recommended professional factor statistics. This professional factor was incorporated into the 

results of the stochastic simulations to form the basis of the reliability analysis.  
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Fig. 5.36: Comparison of crack pattern for uniform and spatial variation simulations. 
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Fig. 5.37: Comparison of crack pattern for uniform and spatial variation simulations with 

longitudinal reinforcing bars. 
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Fig. 5.38: Comparison of crack pattern for uniform and spatial variation simulations with 

longitudinal reinforcing bars and transverse smeared steel. 
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Reliability analysis was conducted for the CSA A23.3-14 code and the ACI 318-14 code 

calculations for nominal member resistance.  The respective code load factors and member 

resistance factors were applied. For the CSA-A23.3 code, the member resistance (Y) factor was 

assumed equal to the material resistance factor (Y�). This was considered acceptable because the 

concrete shear strength equation exclusively contributes to the predictions. A target reliability 

index of 3.5, taken from the literature, was assumed to satisfy code level reliability requirements. 

The reliability index determined for the CSA-A23.3 code is 2.96.  This is significantly below the 

target reliability.  This suggests that a material resistance factor of 0.65 is not low enough to reach 

the target reliability for this class of members.   

The reliability index could not be determined for the ACI code in general.  This stems from the 

exclusion of the size effect resulting in a different bias factor for each specimen. A plot of the 

average reliability index versus depth for the CSA and ACI code is shown in Fig. 5.39.  

 

Fig. 5.39: Average reliability index versus depth of specimen for CSA A23.3-14 and  

ACI 318-14 codes. 

As the size of the specimen increases, the reliability decreases rapidly.  This is further confirmation 

that the ACI 318-14 predictions for the shear strength of reinforced concrete members are 

unconservative. 
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It should be noted that these reliability results are heavily influenced by the professional factor 

statistics.  The removal of the professional factor results in reliability indices for the CSA code 

that put the reliability indices at well above the target reliability index. Further research is required, 

using multiple analytical and computational tools, before a definitive conclusion can be made 

about the reliability of reinforced concrete beams with no shear reinforcement.  This study 

indicates that the predictions for slender reinforced concrete beams may not be as conservative as 

preferred. 

Lastly it is important to understand when spatial variation is useful in stochastic simulation.  The 

spatial variability of concrete material properties seems to diminish in importance when steel 

reinforcement is added.  The presence of orthogonal reinforcement limits the influence of spatial 

variability.  This is analogous to the fundamental assumptions of the DSFM in which cracks are 

smeared and a spacing is averaged.   
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CHAPTER 6: CONCLUSIONS AND RECOMENDATIONS 

This section presents conclusions and recommendations for future work based on the research 

completed for the thesis.  The conclusions are arranged such that they mirror the structure of the 

thesis chapters. The recommendations for future work discuss the inconclusive or ambiguous 

findings of this thesis and also provides recommendations to advance the state of the art.  

6.1 Assessment of Spatial Variability Via Non-destructive Test 

Methods 

The use of ultrasonic pulse velocity to capture the spatial variability of reinforced concrete material 

properties was accomplished.  The ultrasonic pulse velocity was collected for a grid of points on 

specimen PLS4000 and its associated cylinders. The set of cylinders was used to establish the 

relation between ultrasonic pulse velocity and concrete compressive strength.  For the UPV data 

collected from PLS4000, kriging maps were developed that allowed for a statistical prediction of 

the ultrasonic pulse velocity between the measured points. A comparison of the kriging plot and 

the experimental crack pattern suggest that the spatial distribution of material properties influenced 

the crack pattern and the failure crack. 

The geospatial statistics allowed for a UPV prediction at the centre of each element in the finite 

element model.  This UPV was then converted to compressive strength using the developed 

relation.  Thus a finite element model that incorporated the in-situ material properties was created.  

This model was compared to a model with uniform material properties. It was found that the 

inclusion of spatial variability does not have a significant effect on the strength prediction and 

failure mode for this particular specimen.  It is not, however, conclusive that this result generally 

applies to the analysis of reinforced concrete beams.  

6.2 Stochastic Simulation with VecTor2 

Several sampling techniques for stochastic simulation were successfully implemented into 

VecTor2.  The software was expanded to perform Monte Carlo simulations, Latin Hypercube 

simulation, random field generation (both MC and LHS), and correlated sampling (both MC and 

LHS).  All of these methods were implemented and tested in VecTor2.  
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In addition, several post-processing tools were developed to aid users with post-processing of 

stochastic simulation results. Multiple MATLAB scripts were created to collect, analyze, and 

visualize the data.  

6.3 Evaluation of VecTor2 Professional Factor for Slender 

Reinforced Concrete Beams with No Shear Reinforcement 

The professional factor for VecTor2, as well as for any other analytical tool, is unique to the 

structure type being analyzed. The professional factor statistics are obtained by comparing the 

experimental to predicted ratios for a large number of deterministic tests.  The process for creating 

finite element models in VecTor2 was successfully automated.  A mesh generator, a structure file 

generator, and a load case file generator were all successfully developed. Using the database 

published by Reineck et al (2014), a total of 371 VecTor2 models were created and run.  The 

database contains a total of 784 tests.  This was filtered down to 371 tests by removing tests with 

missing information and selecting only rectangular specimens.  A program was developed to 

automate the retrieval of the analysis results and identify the peak shear. Of the 371 models, only 

318 produced usable results. A total of 53 models contained file generation errors that either didn’t 

run or produced significant numerical errors.  The professional factor was found to be normally 

distributed with a mean value of 1.106 and a coefficient of variation of 17.4 percent. This 

professional factor was incorporated into the reliability analysis. 

6.4 Reliability Analysis with VecTor2 

The implemented stochastic simulation tools were used to assess the reliability of shear-critical 

reinforced concrete beams without transverse reinforcement. Four beams from the ‘Toronto Size 

Effect Series’ were selected and a stochastic simulation for each beam was completed.  The results 

of the stochastic simulation were then used in a reliability analysis for the CSA A23.3-14 and ACI 

318-14 codes.  The analysis results showed that there was no influence of the size effect on the 

predicted reliability for the CSA A23.3 code.  However, the average reliability index for the 

Canadian code, calculated to be 2.96, is below the target reliability index of 3.5.   This suggests 

that further investigation is required to assess the load factors and safety factors for this class of 

structure.  
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The ACI 318-14 code was found to be unconservative with respect to the prediction of deep beams. 

The average reliability indices for the selected specimens were 3.34, 2.79, 2.14, and -0.05 for 

BN50, BN100, YB2000, and PLS4000 respectively. 

6.5 Recommendations for Future Work 

This section outlines the recommendations for future work in the field of stochastic simulation, 

nondestructive test methods for spatial variability, and needs for new analytical tools.   

This thesis has established the viability of using UPV to assess the spatial variability of concrete 

structures; however, the accuracy of the technique cannot be determined.  It is recommended that 

further testing be conducted wherein existing or new experimental slabs or walls are cast and their 

UPV measured to assess spatial variability. Additionally, it is recommended that cores be taken at 

the points of measurement to have a direct correlation between spatial variation predictions from 

UPV measurements and from concrete cores.  Such an experimental program would truly assess 

the capabilities and usefulness of this test as a method for measuring spatial variability in existing 

structures.  

Additionally, there has not been a Canadian update to the statistical descriptions of concrete 

strength in approximately 20 years.  It is recommended that cylinders be collected from across 

Ontario (or across Canada) from multiple concrete suppliers to create a database of concrete 

cylinder strengths. Additionally, tests for the tangent modulus of elasticity and tensile strength of 

concrete should be included in the study.  The statistics for modulus of elasticity and tensile 

strength have not been updated (or perhaps published) for Canadian concrete in 37 years. Updated 

statistics for the short-term and long-term properties of Canadian concrete could then be used for 

better calibration of the Canadian code and more accurate representation of concrete statistics.  

From an analytical perspective, the shortcomings in the current implementations need to be 

addressed. The alternate sampling method for random fields needs to be replaced with two 

alternatives. First, it is recommended that correlated Latin hypercube sampling be added to the 

alternate method for simulating random fields.  This will lead to improved sampling accuracy for 

smaller sample sizes.  Second, it is recommended that cross-correlated random fields be 
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implemented such that the direct correlation between compressive random fields and tensile 

random fields is not used.  

Additional stochastic properties should be added to the current software formulation.  Stochastic 

variables for the steel reinforcing bar area, the depth of steel reinforcement (d), the thickness of 

structural elements, and the remaining physical dimensions should be incorporated into stochastic 

analysis methods.  This will help create a more complete picture on the variability of a structural 

elements in a population of structures.  

Currently, the professional factor is only established for slender beams without shear 

reinforcement.  However, it would be useful to identify the statistics for other types of structures 

as well.  Three additional databases exist that include slender beams with shear reinforcement, 

non-slender beams without shear reinforcement, and non-slender beams with shear reinforcement.  

Additionally, useful and common structures include shear walls, dapped end beams, beam-column 

connections, etc.  A series of experimental databases for these types of structures should be 

developed and used to assess the professional factor for VecTor2.  In addition to providing 

statistical descriptions for reliability analysis, this exercise will prove useful in identifying the 

current strengths and weaknesses of VecTor2 as a deterministic nonlinear finite element analysis 

program.  

To aide in usability, stochastic simulation post-processing should be incorporated with the post-

processor Janus.  The post-processing of stochastic simulation results still remains a challenge. 

Currently, separate techniques that are programmatically based are developed and employed.  

However, expanding Janus to include the stochastic simulation post-processing will improve 

accessibility for most users.  

Lastly, VecTor2 should be expanded to deterministically and stochastically assess deteriorated 

structures including corrosion of steel reinforcement. The current population of structures in North 

America are aging and beginning to show signs of deterioration.  With fiscal budgets unable to 

repair or rebuild the majority of deteriorating infrastructure, identification of the structures most 

at risk is of paramount importance.  A tool that can assess the reliability of deteriorated 

infrastructure could prove invaluable in ensuring the structures most at risk receive appropriate 
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funding.  VecTor2 is ideal for such an application; however, it currently lacks the ability to assess 

deteriorating infrastructure with corroded reinforcement.   
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The following appendix contains all of the collected data from the lab test program.  All of the 

destructive testing data were obtained directly from Quach (2015).  All of the non-destructive data 

were obtained by the author.   As referenced in Chapter 3, all collected data are in reference to the 

following two grids. The first grid, in Fig. A.1 covers the entire unreinforced side of the specimen.   

 

Fig. A.1: Grid layout for ultrasonic pulse velocity measurements.  

 

Fig. A.2: Minor grid layout for ultrasonic pulse velocity measurements.  
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Large Grid UPV Data 

Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

A1 53.4 52.9 52.9 52.9 52.9 53.00 

B1 54.6 54.4 54.2 54.4 54.4 54.40 

C1 53.4 53.9 53.4 53.4 53.4 53.50 

D1 52.2 52.2 52.1 52.4 53.4 52.46 

E1 51.1 51.4 50.4 51.4 51.1 51.08 

F1 53.4 52.9 52.9 53.4 52.9 53.10 

G1 53.2 52.9 52.9 53.4 53.4 53.16 

A2 53.1 52.9 52.6 52.7 52.9 52.84 

B2 54.4 53.9 54.4 54.4 54.4 54.30 

C2 52.7 52.9 52.7 52.9 52.9 52.82 

D2 50.9 51.4 51.4 51.2 51.1 51.20 

E2 51.1 50.9 51.1 52.4 52.4 51.58 

F2 53.4 52.9 52.7 52.9 53.1 53.00 

G2 53.2 52.9 53.2 53.4 52.9 53.12 

A3 53.4 53.6 53.4 53.4 53.4 53.44 

B3 54.4 54.4 54.4 54.9 54.4 54.50 

C3 53.9 53.9 53.6 53.4 53.7 53.70 

D3 51.9 51.6 51.9 51.4 51.1 51.58 

E3 51.9 51.9 51.4 51.4 51.4 51.60 

F3 52.9 52.9 52.4 52.9 52.9 52.80 

G3 53.1 52.9 52.9 52.9 52.9 52.94 

A4 52.9 52.9 52.9 52.9 52.9 52.90 

B4 53.9 53.9 53.9 53.9 53.9 53.90 

C4 52.9 52.9 52.9 52.9 52.9 52.90 

D4 51.6 51.4 51.4 51.1 50.9 51.28 

E4 51.9 51.9 51.9 51.9 51.4 51.80 

F4 53.4 53.4 53.4 53.4 53.1 53.34 

G4 53.1 52.9 52.9 52.9 52.9 52.94 

A5 53.4 53.14 53.4 53.6 53.4 53.39 

B5 53.9 53.9 53.4 53.9 53.9 53.80 

C5 52.4 52.4 52.4 52.4 52.4 52.40 

D5 52.4 51.9 51.9 51.9 51.9 52.00 

E5 51.9 51.9 51.4 51.4 51.6 51.64 

F5 52.9 53.1 52.9 52.7 52.7 52.86 

G5 52.4 52.4 52.4 52.4 52.4 52.40 

A6 52.6 52.4 52.4 52.4 52.7 52.50 

B6 52.9 53.4 52.9 53.1 53.4 53.14 

C6 52.9 52.9 53.1 52.9 52.9 52.94 
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Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

D6 51.9 51.9 51.9 51.7 51.7 51.82 

E6 51.9 51.9 51.9 51.6 51.4 51.74 

F6 53.6 53.4 53.2 53.2 53.4 53.36 

G6 53.4 53.7 53.4 53.4 53.2 53.42 

A7 52.9 52.6 52.4 52.6 52.7 52.64 

B7 53.4 53.9 53.4 53.4 53.4 53.50 

C7 52.9 52.7 52.7 52.4 52.4 52.62 

D7 52.1 52.2 52.2 51.9 52.1 52.10 

E7 52.2 52.4 52.4 52.2 52.4 52.32 

F7 53.6 53.4 53.4 53.4 53.4 53.44 

G7 53.4 53.4 53.9 53.7 53.6 53.60 

A8 53.1 52.9 52.9 52.9 52.9 52.94 

B8 53.9 53.9 53.9 53.9 53.9 53.90 

C8 53.4 53.2 52.9 52.9 52.9 53.06 

D8 52.4 52.2 52.4 52.4 52.4 52.36 

E8 52.1 52.4 51.9 51.9 51.9 52.04 

F8 52.9 52.9 52.9 52.9 52.9 52.90 

G8 53.9 53.9 53.9 53.6 53.9 53.84 

A9 52.7 52.4 52.1 52.2 52.7 52.42 

B9 52.4 52.4 52.4 52.4 52.9 52.50 

C9 51.52 51.4 51.4 51.1 50.9 51.26 

D9 51.4 51.4 51.4 51.4 51.4 51.40 

E9 50.9 50.9 50.9 50.9 50.9 50.90 

F9 52.4 52.4 52.4 52.4 52.4 52.40 

G9 52.9 52.9 52.9 52.9 52.9 52.90 

A10 53.1 52.9 52.9 52.9 52.9 52.94 

B10 53.4 53.4 53.4 53.4 53.2 53.36 

C10 52.4 52.4 52.2 51.9 52.4 52.26 

D10 51.9 51.9 51.6 51.9 51.9 51.84 

E10 51.9 51.9 51.9 51.6 51.4 51.74 

F10 52.9 52.9 52.9 52.9 52.9 52.90 

G10 52.9 52.9 52.9 52.7 52.4 52.76 

A11 52.4 52.4 52.4 52.4 52.4 52.40 

B11 53.6 53.4 53.4 53.4 53.4 53.44 

C11 54.1 53.9 53.9 54.2 53.9 54.00 

D11 51.9 51.9 51.9 51.9 51.7 51.86 

E11 51.9 51.9 51.9 51.9 51.9 51.90 

F11 52.2 52.4 52.4 52.4 52.4 52.36 

G11 52.4 52.4 52.4 52.4 52.4 52.40 
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Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

A12 52.1 52.4 51.9 52.4 51.9 52.14 

B12 53.4 53.4 53.4 53.4 53.4 53.40 

C12 52.9 52.9 52.6 52.9 52.4 52.74 

D12 50.9 50.9 51.4 51.4 51.1 51.14 

E12 51.2 51.6 51.4 51.9 51.9 51.60 

F12 52.9 52.9 52.9 52.9 52.9 52.90 

G12 52.9 52.9 52.9 52.9 52.9 52.90 

A13 52.9 52.9 52.9 52.9 52.4 52.80 

B13 53.9 53.6 53.9 53.6 53.4 53.68 

C13 52.9 52.9 52.9 53.2 53.1 53.00 

D13 51.2 51.2 51.2 51.4 51.1 51.22 

E13 51.9 51.9 52.4 51.4 51.9 51.90 

F13 52.9 52.9 52.4 52.9 52.4 52.70 

G13 53.1 53.4 53.4 53.4 53.9 53.44 

A14 52.4 52.6 52.4 52.4 51.9 52.34 

B14 53.6 53.4 53.4 53.4 52.9 53.34 

C14 52.2 52.2 51.9 52.2 52.1 52.12 

D14 51.4 51.4 51.4 51.4 51.4 51.40 

E14 51.4 51.4 51.4 51.4 51.4 51.40 

F14 52.9 52.9 52.9 52.4 52.7 52.76 

G14 53.4 53.2 53.4 52.9 52.9 53.16 

A15 53.4 53.4 53.4 53.4 53.4 53.40 

B15 52.9 52.9 52.9 52.9 53.4 53.00 

C15 51.9 53.9 52.4 52.2 52.2 52.52 

D15 51.6 51.4 51.4 51.1 51.4 51.38 

E15 51.7 51.4 51.4 51.4 51.4 51.46 

F15 52.9 52.9 52.9 52.9 52.9 52.90 

G15 53.9 53.9 53.9 53.9 53.9 53.90 

A16 53.9 53.9 53.4 53.4 53.4 53.60 

B16 53.4 52.9 52.9 53.4 53.1 53.14 

C16 52.2 52.4 51.9 52.1 52.4 52.20 

D16 51.4 51.4 51.4 51.4 51.4 51.40 

E16 51.4 51.4 51.4 51.45 51.4 51.41 

F16 53.4 53.4 53.4 53.4 53.4 53.40 

G16 53.6 53.9 53.6 53.9 53.9 53.78 

A17 53.1 52.9 52.9 53.1 52.9 52.98 

B17 53.2 52.9 52.6 52.9 52.9 52.90 

C17 52.4 52.4 52.1 51.9 51.9 52.14 

D17 50.9 50.9 51.4 50.9 50.9 51.00 
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Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

E17 50.9 51.1 51.1 51.1 50.9 51.02 

F17 51.9 52.4 52.04 52.4 52.4 52.23 

G17 52.9 52.4 52.4 52.4 52.4 52.50 

A18 53.4 53.4 53.4 53.4 53.4 53.40 

B18 53.9 52.9 52.9 53.4 53.1 53.24 

C18 51.4 52.4 51.6 52.4 51.9 51.94 

D18 51.4 51.4 51.4 51.4 51.4 51.40 

E18 50.9 51.4 51.2 51.1 50.9 51.10 

F18 51.4 51.4 51.9 51.4 51.9 51.60 

G18 53.4 53.4 53.9 53.9 53.4 53.60 

A19 53.9 53.9 53.9 53.6 53.9 53.84 

B19 53.4 53.2 53.1 53.1 52.9 53.14 

C19 50.9 51.2 51.4 51.9 51.9 51.46 

D19 51.9 51.9 51.4 51.9 51.9 51.80 

E19 51.4 51.4 51.4 51.4 51.4 51.40 

F19 53.4 52.9 53.2 52.9 52.9 53.06 

G19 53.2 52.9 52.9 53.2 53.4 53.12 

G - 5.1 52.1 52.2 52.4 52.7 52.4 52.36 

Small Grid UPV Data 

Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

D.5 - 3 51.9 51.6 51.4 51.4 51.4 51.54 

D.5 - 3.1 51.4 51.4 51.4 51.4 51.4 51.40 

D.5 - 3.2 51.9 51.7 51.4 51.4 51.4 51.56 

D.5 - 4 52.1 52.9 52.4 52.4 52.4 52.44 

D.5 - 4.1 51.4 51.4 51.4 51.4 51.4 51.40 

D.5 - 4.2 51.6 51.4 51.7 51.4 51.4 51.50 

D.5 - 5 51.9 51.9 51.9 51.9 51.9 51.90 

D.5 - 5.1 51.9 51.6 51.7 51.9 51.9 51.80 

D.5 - 5.2 51.9 51.9 51.9 51.9 51.7 51.86 

D.5 - 6 52.4 52.4 52.2 52.4 52.6 52.40 

D.5 - 6.1 51.9 51.9 51.4 51.6 51.4 51.64 

D.5 - 6.2 50.9 51.1 50.9 50.9 50.9 50.94 

D.5 - 7 52.4 51.9 51.9 51.9 52.4 52.10 

E - 3.1 50.9 51.1 50.9 51.2 51.4 51.10 

E - 3.2 50.9 50.6 50.4 50.4 50.4 50.54 

E - 4.1 51.4 51.1 50.9 50.9 50.9 51.04 

E - 4.2 50.9 50.9 50.9 50.9 50.9 50.90 
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Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

E - 5.1 51.9 51.6 51.4 51.4 51.4 51.54 

E - 5.2 50.9 50.9 50.9 50.9 50.9 50.90 

E - 6.1 51.4 51.2 51.9 51.4 51.4 51.46 

E - 6.2 50.9 50.9 50.9 50.9 50.9 50.90 

E.5 - 3 50.9 50.9 50.9 50.9 50.9 50.90 

E.5 - 3.1 51.4 51.4 51.4 51.4 51.2 51.36 

E.5 - 3.2 50.7 50.9 50.9 51.4 51.2 51.02 

E.5 - 4 52.4 51.9 51.9 51.6 51.4 51.84 

E.5 - 4.1 50.9 50.9 50.7 50.6 50.6 50.74 

E.5 - 4.2 50.7 50.6 50.4 50.4 50.4 50.50 

E.5 - 5 51.4 51.4 51.4 51.4 51.4 51.40 

E.5 - 5.1 51.4 51.4 51.4 51.4 51.4 51.40 

E.5 - 5.2 50.9 50.4 50.4 50.4 50.4 50.50 

E.5 - 6 51.4 51.4 51.4 51.4 51.4 51.40 

E.5 - 6.1 51.4 51.2 50.9 50.9 50.9 51.06 

E.5 - 6.2 50.4 50.4 50.4 50.4 50.4 50.40 

E.5 - 7 51.9 51.9 51.9 51.9 51.9 51.90 

F - 3.1 52.9 52.4 52.4 52.4 52.4 52.50 

F - 3.2 52.6 52.9 52.9 52.7 52.4 52.70 

F - 4.1 51.9 51.9 51.7 51.6 51.4 51.70 

F - 4.2 52.4 52.4 52.4 52.4 52.4 52.40 

F - 5.1 52.4 51.9 52.2 51.9 51.9 52.06 

F - 5.2 52.2 52.4 52.4 52.1 51.9 52.20 

F - 6.1 52.1 52.2 51.9 51.9 51.9 52.00 

F - 6.2 52.4 52.9 52.9 52.9 52.9 52.80 

F.5 - 3 52.6 52.4 52.4 52.4 52.4 52.44 

F.5 - 3.1 51.9 51.9 52.2 52.1 52.1 52.04 

F.5 - 3.2 51.7 52.4 51.9 51.9 51.9 51.96 

F.5 - 4 54.1 52.4 52.6 52.4 52.4 52.78 

F.5 - 4.1 51.4 51.9 51.9 51.7 51.9 51.76 

F.5 - 4.2 51.9 52.4 51.9 52.4 52.4 52.20 

F.5 - 5 52.9 52.4 52.4 52.6 52.6 52.58 

F.5 - 5.1 51.9 52.1 51.9 51.9 51.9 51.94 

F.5 - 5.2 52.4 52.4 52.4 52.4 52.4 52.40 

F.5 - 6 53.2 53.4 53.2 52.9 52.9 53.12 

F.5 - 6.1 52.4 52.7 52.4 52.4 52.4 52.46 

F.5 - 6.2 52.9 52.9 52.7 52.4 52.4 52.66 

F.5 - 7 53.4 52.9 53.1 52.9 53.4 53.14 

G - 3.1 52.4 52.4 52.6 52.2 52.4 52.40 
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Grid Point Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Average 

 [µs] [µs] [µs] [µs] [µs] [µs] 

G - 3.2 51.9 51.9 51.9 51.9 51.7 51.86 

G - 4.1 51.9 51.9 51.9 51.7 51.9 51.86 

G - 4.2 51.4 51.4 51.4 51.4 51.4 51.40 

G - 5.1 52.1 52.2 52.4 52.7 52.4 52.36 

G - 5.2 51.9 52.9 52.4 52.1 52.1 52.28 

G - 6.1 53.4 52.6 52.4 52.7 52.4 52.70 

G - 6.2 52.4 52.4 52.4 52.4 52.4 52.40 

 

UPV Cylinder Data 

The cylinders were measured as well as the main grid.  The following tables are all of the collected 

data for the cylinders as well as the UPV for each cylinder and the average UPV for each test date.  

7-day Cylinders 

Cylinder 

ID 

Cylinder Length UPV Time Measurements Time Velocity 

L1 L2 L3 L avg t1 t2 t3 t4 t5 Avg Avg 

mm mm mm mm [μs] [μs] [μs] [μs] [μs] [μs] [m/s] 

PLS4K 

T1D7A 
301 301 301 301 64.9 64.9 64.9 64.9 - 64.9 4638 

PLS4k 

T1D7B 
296 295 296 295.6 63.9 63.9 64.4 64.4 - 64.15 4609 

PLS4K 

T2D7A 
298 299 298 298.3 62.6 64.4 62.9 62.7 62.4 63.00 4735 

PLS4K 

T2D7B 
300 298 300 299.3 63.4 63.1 63.4 63.4 - 63.33 4727 

PLS4K 

T3D7A 
294 295 294 294.3 62.9 62.4 62.4 62.9 - 62.65 4698 

PLS4k 

T3D7B 
298 297 297 297.3 66.7 64.7 65.4 64.7 64.1 65.12 4566 

          Mean 4662 

          COV 1.47% 
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14-day Cylinders 

Cylinder 

ID 

Cylinder Length UPV Time Measurements Time Velocity 

L1 L2 L3 L avg t1 t2 t3 t4 t5 Avg Avg 

mm mm mm mm [μs] [μs] [μs] [μs] [μs] [μs] [m/s] 

PLS4K 

T1D14A 
299 298 - 298.5 61.9 61.9 61.4 61.4 - 61.65 4842 

PLS4k 

T1D14B 
295 296 - 295.5 61.4 61.4 61.9 61.9 - 61.65 4793 

PLS4K 

T2D14A 
295 295 - 295 60.9 60.9 60.9 60.9 - 60.90 4844 

PLS4K 

T2D14B 
293 293 - 293 60.4 60.4 60.4 60.4 - 60.40 4851 

PLS4K 

T3D14A 
299 299 - 299 62.9 62.9 62.9 62.9 - 62.90 4754 

PLS4k 

T3D14B 
299 299 - 299 62.4 62.4 62.4 61.9 - 62.28 4801 

          Mean 4814 

          COV 0.72% 

22-day Cylinders 

Cylinder 

ID 

Cylinder Length UPV Time Measurements Time Velocity 

L1 L2 L3 L avg t1 t2 t3 t4 t5 Avg Avg 

mm mm mm mm [μs] [μs] [μs] [μs] [μs] [μs] [m/s] 

PLS4K 

T1D22A 
304 304 303 303.7 62.1 62.4 61.9 62.1 - 62.13 4888 

PLS4k 

T1D22B 
303 304 303 303.3 61.9 61.9 61.9 61.9 - 61.90 4900 

PLS4K 

T2D22A 
296 296 296 296.0 60.9 60.9 60.9 60.9 - 60.90 4860 

PLS4K 

T2D22B 
296 297 297 296.7 60.9 60.9 60.9 60.7 - 60.85 4875 

PLS4K 

T3D22A 
304 304 305 304.3 62.6 62.4 62.1 62.4 - 62.38 4879 

PLS4k 

T3D22B 
303 304 304 303.7 62.6 62.9 62.9 62.9 - 62.83 4834 

          Mean 4873 

          COV 0.44% 
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28-day Cylinders 

Cylinder 

ID 

Cylinder Length UPV Time Measurements Time Velocity 

L1 L2 L3 L avg t1 t2 t3 t4 t5 Avg Avg 

mm mm mm mm [μs] [μs] [μs] [μs] [μs] [μs] [m/s] 

PLS4K 

T1D28A 
300 300 301 300.3 60.9 61.1 60.9 60.9 - 60.95 4928 

PLS4k 

T1D28B 
301 301 302 301.3 61.9 61.9 62.1 62.1 - 62.00 4860 

PLS4K 

T2D28A 
303 304 302 303.0 61.4 61.4 61.4 61.4 - 61.40 4935 

PLS4K 

T2D28B 
300 301 301 300.7 60.1 60.2 60.4 60.2 - 60.23 4992 

PLS4K 

T3D28A 
302 303 302 302.3 60.9 60.9 60.7 60.9 - 60.85 4969 

PLS4k 

T3D28B 
304 304 303 303.7 61.9 61.9 61.7 61.9 - 61.85 4910 

          Mean 4932 

          COV 0.85% 

42-day Cylinders 

Cylinder 

ID 

Cylinder Length UPV Time Measurements Time Velocity 

L1 L2 L3 L avg t1 t2 t3 t4 t5 Avg Avg 

mm mm mm mm [μs] [μs] [μs] [μs] [μs] [μs] [m/s] 

PLS4K 

T1D42A 
302 301 301 301.3 60.9 60.9 60.9 61.1 - 60.95 4944 

PLS4k 

T1D42B 
304 303 303 303.3 60.6 60.4 60.4 60.4 - 60.45 5018 

PLS4K 

T2D42A 
301 301 301 301.0 60.7 60.4 60.4 60.2 - 60.43 4981 

PLS4K 

T2D42B 
303 303 303 303.0 60.4 60.9 60.1 60.4 - 60.45 5012 

PLS4K 

T3D42A 
301 301 301 301.0 59.9 59.7 59.7 59.9 - 59.80 5033 

PLS4k 

T3D42B 
304 305 305 304.7 60.3 60.9 60.9 60.7 - 60.70 5019 

          Mean 5001 

          COV 0.60% 
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APPENDIX B: PROFESSIONAL FACTOR SIMULATION 

RESULTS 
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The professional factor simulation results presented below are based on the database vuct-RC-

A2A3 published by Reineck et al. (2014).  This database represents an exhaustive list of 784 tests 

for shear-critical reinforced concrete beams with no shear reinforcement.  All of the tests with 

uniform loading and T-shaped beams were removed.  Additionally, all tests missing information 

on the bearing plates were removed.  This left a total of 371 tests that were analyzed using 

VecTor2.  Of the 371, 318 tests were successfully modelled.  The 53 tests that were excluded 

contained issues with the automated mesh generator.  Fig. B.1 shows the results of the simulation. 

   

Fig. B.1: Simulation results for VecTor2 professional factor. 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

123 DB0530 5400 925 167.9 124.9 1.344 

124 DB120 5400 925 181.9 188.1 1.054 

125 DB130 5400 925 187.9 218.2 0.927 

126 DB140 5400 925 182.9 241.1 0.811 

127 DB165 5400 925 187.9 265.1 0.753 

128 DB180 5400 925 174.9 290.2 0.637 

129 DB230 5400 895 259.9 285.8 0.962 

131 2 2500 250 221.6 169.4 1.377 

132 3 2500 250 226.1 203.4 1.161 

134 11 4750 500 279.7 267.4 1.168 

135 12 4750 500 342.5 322.9 1.161 

161 AT-1 - East 5400 916 1194.2 1159.2 1.133 

162 AT-1 West 5400 916 1287.8 1155.9 1.225 

163 AT-2 / 250N 2600 437 116.8 87.2 1.386 

164 AT-2/ 250W 2600 439 113.7 87.9 1.339 

165 AT-2 /1000W 2600 439 479.3 354.9 1.398 

166 AT-2/1000N 2600 438 448.0 348.0 1.333 

167 AT-2/3000 2600 439 1308.4 1073.1 1.261 

168 AT-3/N1 2080 307 240.2 190.5 1.304 

169 AT-3/N2 2080 306 261.3 190.6 1.419 

170 AT-3/T1 2080 306 256.4 191.8 1.383 

171 AT-3/T2 2080 307 252.3 191.2 1.366 

172 A1 2100 168 21.5 16.9 1.311 

173 A2 2100 168 24.1 16.1 1.541 

174 A3 2100 168 20.2 16.4 1.266 

175 A4 2100 168 21.9 16.9 1.335 

176 A5 2100 168 21.3 16.1 1.365 

177 A6 2100 168 17.6 16.4 1.106 

184 B1 1800 300 71.0 72.3 1.008 

185 B2 3600 600 119.5 129.2 0.969 

186 B3 5400 900 166.4 179.5 0.993 

187 B4 7200 1200 187.1 239.9 0.852 

188 B5 3600 600 106.9 85.6 1.340 

189 B6 3600 600 115.4 103.0 1.188 

190 B7 5400 900 140.0 135.5 1.134 

191 B8 5400 900 127.6 164.2 0.839 

192 0A-1 3658 461 170.7 117.9 1.541 

193 0A-2 4572 466 184.4 120.9 1.646 

195 H 50/1 2160 360 100.8 103.6 0.991 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

196 H 50/5 2160 360 178.7 103.6 1.756 

197 H 60/1 2160 360 109.2 108.6 1.023 

198 H 75/1 2160 360 101.0 112.5 0.913 

199 H 100/1 2160 360 118.9 119.1 1.014 

200 H 100/5 2160 360 141.2 119.1 1.204 

201 SB 2012/0 10800 1845 418.4 409.9 1.204 

202 SB 2003/0 10800 1925 238.9 176.0 0.938 

241 IA1 1168 137 20.0 22.1 0.912 

243 IB1 762 137 19.6 24.3 0.812 

245 IC1 965 137 19.7 23.2 0.855 

246 IC2 965 137 17.9 23.2 0.776 

249 IIB1 1168 137 16.7 16.3 1.037 

251 IIC1 762 137 17.9 21.6 0.831 

267 4-21a 1067 137 21.2 22.5 0.949 

269 4-22a 1067 137 21.5 21.7 1.000 

271 4-23a 1067 137 21.7 21.8 1.004 

277 5-21a 1067 137 29.0 24.8 1.176 

278 5-21b 1067 137 27.6 24.9 1.116 

279 5-22a 1067 137 22.5 24.5 0.926 

280 5-22b 1067 137 26.0 24.5 1.070 

281 5-23a 1067 137 24.6 24.8 0.999 

282 5-23b 1067 137 23.5 24.7 0.956 

295 B100 5400 925 227.9 231.7 1.054 

296 B100H 5400 925 193.0 317.8 0.639 

297 B100B 5400 925 206.9 240.5 0.920 

298 B100L 5400 925 225.9 240.3 1.005 

299 B100-R 5400 925 251.9 231.7 1.165 

300 B100HE 5400 925 219.9 317.8 0.728 

301 B100L-R 5400 925 237.9 246.4 1.031 

351 L-2 2438 252 76.4 51.4 1.524 

352 L-2A 2438 252 80.9 63.4 1.302 

353 L-3 2946 252 54.3 47.0 1.195 

354 L-4 3454 252 52.0 41.4 1.315 

355 L-5 3962 252 52.2 39.2 1.408 

358 L2R 1524 252 74.8 53.8 1.411 

359 L2aR 1524 252 93.0 68.5 1.372 

360 L3R 2032 252 62.4 51.7 1.232 

399 N155 (N) 1138 128 112.5 108.5 1.045 

400 N155 (S) 1138 128 85.2 84.4 1.020 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

401 N220 (N) 1450 190 123.7 132.2 0.946 

402 N220 (S) 1450 190 104.6 108.3 0.979 

403 N350 (N) 2063 313 180.8 182.3 1.009 

404 N350 (S) 2063 313 160.2 147.8 1.108 

405 N485 (N) 2700 440 219.1 226.2 0.992 

406 N485 (S) 2700 440 191.2 176.4 1.118 

409 H90 (N) 825 65 77.7 101.1 0.967 

410 H90 (S) 825 65 52.4 76.0 0.826 

411 H155 (N) 1138 128 105.6 119.2 0.892 

412 H155 (S) 1138 128 77.3 105.5 0.838 

413 H220 (N) 1450 190 136.3 152.8 0.900 

414 H220 (S) 1450 190 106.9 116.6 0.928 

415 H350 (N) 2063 313 191.8 210.9 0.923 

416 H350 (S) 2063 313 159.5 153.6 1.060 

417 H485 (N) 2700 440 202.7 258.3 0.802 

418 H485 (S) 2700 440 202.2 192.1 1.083 

421 S 1.1 1540 153 70.9 77.0 0.936 

422 S 1.2 1540 152 75.9 86.7 0.888 

423 S 1.3 1540 146 99.3 102.8 0.977 

424 S 2.2 3260 348 194.0 150.8 1.327 

425 S 2.4 3260 328 233.2 193.3 1.236 

426 S 3.2 6860 718 270.2 294.9 0.975 

428 S 3.4 6860 690 393.1 379.5 1.087 

449 B91SC4-2-69 2000 195 74.6 55.9 1.360 

451 B91SD2-4-61 2000 195 90.5 63.1 1.461 

452 B91SD3-4-66 2000 195 82.1 65.4 1.278 

453 B91SD4-4-66 2000 195 79.6 65.2 1.242 

463 G1 2560 370 45.0 39.4 1.174 

464 G2 2560 372 41.4 30.3 1.418 

466 G4a 4440 372 31.0 24.1 1.405 

467 G4b 4440 372 38.9 28.2 1.487 

468 8A-X 1981 267 81.2 59.5 1.387 

469 8A 1981 267 58.4 62.1 0.957 

470 8B 1981 267 91.1 68.9 1.342 

471 8C 1981 267 128.0 99.3 1.303 

472 8D 1981 267 166.2 107.3 1.564 

482 M100-S0 2200 203 65.6 59.2 1.135 

483 M80-S0 2200 203 58.6 56.0 1.073 

484 M60-S0 2200 207 46.1 42.9 1.111 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

485 M40-S0 2200 205 55.6 45.2 1.269 

486 M25-S0 2200 207 48.1 35.1 1.427 

488 40 1952 140 32.0 25.9 1.263 

489 41 1137 141 51.4 42.2 1.229 

490 43 2083 137 29.1 25.2 1.183 

494 47 1814 132 28.2 25.1 1.146 

495 48 1814 133 27.1 25.9 1.068 

496 52 1544 138 28.9 31.3 0.936 

499 55 1270 135 32.6 35.3 0.933 

500 56 1409 137 28.0 34.9 0.812 

501 57 1952 139 31.6 26.2 1.231 

502 58 1409 138 28.9 35.3 0.829 

503 59 1203 140 50.2 40.3 1.256 

504 60 1271 139 39.3 38.1 1.042 

521 63 5356 543 93.2 86.4 1.153 

523 65 3734 552 112.3 105.2 1.106 

535 3042 7506 1095 236.9 183.7 1.395 

536 3043 8585 1092 165.0 171.6 1.063 

663 709 3633 279 52.0 43.1 1.264 

664 666 2546 277 63.4 62.4 1.038 

665 675 2548 277 56.7 59.5 0.975 

666 718 3632 280 54.3 43.7 1.298 

683 CTL-1 1890 270 71.3 71.1 1.018 

684 CTL-2 1890 270 72.3 71.1 1.032 

685 P1.0-1 1904 272 58.9 54.3 1.107 

686 P1.0-2 1904 272 57.1 54.3 1.072 

687 P3.4-1 1869 267 78.7 88.1 0.904 

688 P3.4-2 1869 267 79.2 88.1 0.909 

689 P4.6-1 1785 255 90.4 95.9 0.952 

690 P4.6-2 1785 255 96.0 95.9 1.011 

693 A4.5-1 2700 270 67.5 55.4 1.253 

694 A4.5-2 2700 270 64.7 55.4 1.201 

695 A6.0-1 3510 270 60.4 50.4 1.248 

696 A6.0-2 3510 270 62.2 50.4 1.286 

697 D142-1 994 142 41.2 49.5 0.839 

698 D142-2 994 142 39.5 49.5 0.805 

699 D550-1 3850 550 231.0 215.1 1.110 

700 D550-2 3850 550 219.4 215.1 1.055 

701 D915-1 6405 915 284.9 337.7 0.892 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

702 D915-2 6405 915 345.3 337.7 1.081 

713 11A2 1829 314 74.4 73.3 1.036 

714 12A2 1829 238 64.7 55.1 1.203 

715 III-18A2 1829 316 64.0 58.2 1.129 

716 18B2 1829 316 73.0 58.9 1.272 

717 18C2 1829 316 73.9 62.1 1.220 

718 18D2 1829 316 60.9 61.5 1.015 

719 IV-13A2 1829 319 49.2 35.4 1.453 

720 14A2 1829 243 35.8 29.0 1.291 

721 15A2 1829 316 46.5 44.5 1.081 

722 15B2 1829 316 52.7 45.1 1.210 

723 16A2 1829 240 42.5 34.5 1.280 

724 17A2 1829 243 44.6 38.6 1.196 

725 18E2 1829 316 82.6 58.7 1.445 

726 19A2 1829 240 46.8 44.3 1.088 

727 20A2 1829 238 51.3 46.7 1.130 

728 21A2 1829 238 77.2 63.4 1.252 

730 2AC 2438 254 38.3 30.8 1.314 

731 3AC 2438 256 45.1 33.9 1.397 

732 4AC 2438 254 38.4 33.1 1.218 

733 5AC 2438 252 42.7 37.0 1.208 

734 6AC 2438 250 54.4 43.1 1.310 

737 3CC 3048 256 36.5 31.5 1.236 

738 4CC 3048 254 41.0 32.9 1.323 

739 5CC 3048 252 45.8 34.9 1.391 

753 VII-6C 1829 252 51.9 47.4 1.125 

754 VIII- 3AAC 1829 256 56.4 48.3 1.199 

755 4AAC 1829 254 58.5 51.1 1.174 

756 5AAC 1829 252 57.6 56.2 1.048 

757 6AAC 1829 250 60.7 61.3 1.011 

758 3AC 2438 256 54.1 38.5 1.468 

759 4AC 2438 254 54.8 42.7 1.334 

760 5AC 2438 252 55.3 47.0 1.218 

761 6AC 2438 250 59.9 50.3 1.231 

762 4CC 3048 254 53.7 41.4 1.361 

763 5CC 3048 252 58.1 42.6 1.431 

764 6CC 3048 250 63.8 49.4 1.344 

766 5EC 3658 252 53.9 42.0 1.357 

767 6EC 3658 250 50.0 42.6 1.240 
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Database 

ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

769 4AAC 1829 254 43.2 35.9 1.247 

770 5AAC 1829 252 51.0 41.9 1.256 

772 3AC 2438 256 37.5 28.0 1.420 

777 4CC 3048 254 35.8 29.8 1.285 

782 X-C 3048 483 86.8 77.4 1.183 

783 XI-PCA 3658 250 53.9 42.3 1.348 

784 PCB 3658 250 53.9 42.4 1.345 

785 s-I-OCa 3048 254 49.1 41.5 1.241 

786 OCb 3048 254 53.1 43.9 1.265 

787 s-II- Oca 3658 456 150.0 127.9 1.228 

788 OCb 3658 456 137.3 127.9 1.125 

820 S2 2743 269 43.2 39.8 1.125 

821 S3 2743 265 53.8 43.1 1.292 

822 S4 2743 263 56.3 46.1 1.260 

823 S5 2743 262 50.5 48.0 1.085 

826 S11 2743 267 34.5 29.0 1.252 

827 S13 2743 262 50.5 45.5 1.146 

845 4l 1700 270 81.2 77.3 1.068 

846 4r 1700 270 86.6 79.5 1.107 

847 5l 1950 270 59.8 67.6 0.904 

848 5r 1950 270 75.8 68.9 1.125 

849 6l 2350 270 59.7 58.0 1.061 

850 6r 2350 270 67.2 58.4 1.186 

851 7-1 3100 278 60.9 51.6 1.233 

852 7-2 3100 278 67.0 50.7 1.383 

853 8-1 3600 278 64.0 48.9 1.383 

854 8-2 3600 274 64.2 50.4 1.345 

859 EA1 2000 270 59.2 64.1 0.951 

860 EA2 2000 270 75.5 59.3 1.313 

861 D1/1 520 70 7.3 7.0 1.050 

862 D1/2 520 70 7.2 7.0 1.036 

863 D2/1 1040 140 21.3 22.5 0.957 

864 D2/2 1040 140 23.4 22.5 1.049 

865 D3/1 1560 210 46.8 44.1 1.080 

866 D3/2l 1560 210 41.6 44.1 0.960 

867 D3/2r 1560 210 44.9 44.1 1.037 

868 D4/1 2080 280 75.1 69.7 1.106 

869 D4/2l 2080 280 75.0 69.7 1.105 

870 D4/2r 2080 280 69.6 69.7 1.026 
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ID 

Original 

Designation 

L 

[mm] 

D 

[mm] 

�$#. 

[kN] 
�J7� 
[kN] 

�$#.�J7�  

871 C1 1000 150 21.7 23.7 0.926 

872 C2 2000 300 65.5 53.6 1.248 

873 C3 3000 450 100.5 96.0 1.083 

874 C4 4000 600 150.8 141.1 1.118 

875 E6 2000 270 92.0 75.1 1.256 

907 IIIa- 17 3658 403 90.4 84.7 1.115 

908 IIIa-18 3658 403 83.1 82.3 1.056 

909 Va-19 3658 403 65.7 60.2 1.160 

910 Va-20 3658 403 68.3 62.0 1.170 

911 VIb-21 2896 403 73.3 61.5 1.249 

912 VIb-22 2896 403 64.3 61.2 1.101 

913 VIb-23 2896 403 77.0 64.0 1.258 

914 VIa-24 3658 403 56.9 44.7 1.384 

915 VIa-25 3658 403 52.3 47.7 1.186 

929 A1 1600 262 60.6 65.7 0.935 

930 A2 1600 267 67.3 68.7 0.992 

931 A3 1600 268 76.2 70.5 1.095 

932 A4 1600 270 71.7 73.7 0.985 

933 B1 1600 267 56.8 53.5 1.080 

934 B2 1600 268 60.6 54.8 1.125 

935 B3 1600 270 56.1 52.9 1.080 

936 B4 1600 272 56.1 51.1 1.119 

941 1 2743 268 58.8 50.5 1.199 

942 2 2743 268 36.6 38.7 0.982 

943 3 2743 268 53.3 44.8 1.229 

944 4 2743 268 41.5 37.7 1.144 

945 5 2743 268 53.1 48.2 1.135 

946 6 2743 268 35.5 37.9 0.973 

947 7 2743 268 52.2 48.5 1.108 

949 9 2743 268 54.4 52.4 1.067 

950 10 2743 268 49.9 44.1 1.171 

951 11 2743 268 61.1 51.4 1.222 

952 12 2743 268 48.2 41.8 1.193 

953 13 2743 268 56.6 50.5 1.154 

954 14 2743 268 44.2 43.5 1.050 

955 15 2743 268 52.2 50.1 1.072 

956 16 2743 268 38.8 38.6 1.045 

983 B40 B4 2388 368 157.6 138.2 1.170 

984 B56 B2 3200 368 102.6 83.0 1.302 
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[kN] 
�J7� 
[kN] 

�$#.�J7�  

986 B56 A4 3200 375 140.4 115.8 1.258 

987 B56 B4 3200 368 124.8 106.1 1.225 

988 B56 E4 3200 368 111.5 91.5 1.277 

989 B56 A6 3200 356 180.5 148.9 1.248 

990 B56 B6 3200 372 139.3 127.5 1.130 

991 B70 B2 3912 365 92.0 78.5 1.264 

992 B70 A4 3912 368 135.4 103.3 1.387 

993 B70 A6 3912 356 181.0 140.5 1.343 

994 B84 B4 4623 363 114.8 88.6 1.403 

997 AO-3-3b 2134 298 65.3 54.3 1.229 

998 AO-3-3c 2134 298 67.5 53.4 1.292 

999 AO-7-3a 2134 298 82.8 68.9 1.223 

1000 AO-7-3b 2134 298 83.5 70.7 1.200 

1001 AO-11-3a 2134 298 90.4 84.8 1.080 

1002 AO-11-3b 2134 298 90.0 84.1 1.086 

1003 AO-15-3a 2134 298 94.1 86.8 1.099 

1004 AO-15-3b 2134 298 100.7 90.6 1.126 

1005 AO-15-3c 2134 298 98.5 89.9 1.110 

1006 AO-3-2 1492 298 78.2 64.3 1.239 

1007 AO-7-2 1492 298 118.4 90.9 1.319 

1008 AO-11-2 1492 298 111.8 106.7 1.059 

1009 AO-15-2a 1492 298 178.3 109.3 1.649 

1010 AO-15-2b 1492 298 206.2 102.7 2.031 

1025 BRL100 5400 925 165.6 192.1 0.938 

1026 BRH100 5400 895 690.4 508.4 1.402 

1027 BN100 5400 925 193.6 200.1 1.049 

1028 BH100 5400 925 195.0 254.4 0.817 

1029 BN50 2700 450 132.4 98.3 1.403 

1030 BH50 2700 450 132.0 133.1 1.022 

1031 BN25 1352 225 73.0 73.1 1.012 

1032 BH25 1352 225 85.2 90.4 0.953 

1044 R1 1828 272 46.5 43.2 1.104 

1046 R3 1828 272 46.5 42.6 1.120 

1050 R7 1828 272 56.5 44.2 1.311 

1051 R29 1828 272 54.5 45.3 1.233 

1054 P 1 3000 313 333.1 264.5 1.311 

1069 1.2 / 1 1800 260 91.2 90.7 1.018 

1071 2.3 / 1 2300 262 79.7 63.3 1.292 

1072 2.4 / 1 2250 260 121.1 79.8 1.548 
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[kN] 

�$#.�J7�  

1073 2.6 / 1 2250 260 75.9 59.1 1.319 

1074 X 1250 111 14.7 16.1 0.926 

1075 Y 2240 199 30.6 32.0 0.980 

1076 Z 2960 262 56.0 56.5 1.028 

1086 A-2 3500 372 85.3 79.9 1.115 

1089 B-2 3500 368 127.3 115.9 1.132 

1090 B-3 3500 368 111.9 102.0 1.135 

1092 C-2 3500 366 123.3 141.0 0.896 

1093 C-3 3500 366 108.0 126.8 0.875 

1095 D-2 3500 362 123.3 132.5 0.955 

1096 D-3 3500 362 123.0 121.8 1.039 

1226 NNN-3 1295 216 36.9 45.4 0.811 

1229 NHN-3 1295 216 46.0 59.1 0.776 

1233 YB2000/0 10800 1890 289.4 333.0 0.809 

1234 AW1 3700 538 604.3 437.0 1.358 

1235 AW4 3700 506 744.6 617.0 1.192 

1236 AW8 3700 507 819.3 609.1 1.329 

1237 AX6 2080 288 282.5 232.6 1.207 

1238 AX7 2080 287 250.5 183.9 1.352 

1239 AX8 2080 289 272.0 239.2 1.130 

1241 L-10N1 8100 1400 270.6 297.8 0.869 

1242 L-10N2 8100 1400 247.9 304.0 0.780 

1243 L-10H 8100 1400 240.4 355.3 0.651 

1244 L-20N1 8100 1400 268.4 313.5 0.820 

1245 L-20N2 8100 1400 272.5 328.7 0.796 

1246 L-40N1 8100 1400 245.0 324.9 0.723 

1247 L-40N2 8100 1400 290.7 332.0 0.841 

1248 L-50N1 8100 1400 274.3 369.9 0.715 

1249 L-50N2 8100 1400 299.1 367.6 0.784 

1250 L-50N2R 8100 1400 331.2 367.7 0.868 

1251 S-10N1 1620 280 36.7 36.3 1.005 

1252 S-10N2 1620 280 38.3 36.3 1.049 

1253 S-10H 1620 280 37.7 41.6 0.902 

1254 S-20N1 1620 280 39.2 35.8 1.086 

1255 S-20N2 1620 280 38.3 35.2 1.079 

1256 S-40N1 1620 280 41.7 34.5 1.201 

1257 S-40N2 1620 280 34.9 34.5 1.003 

1258 S-50N1 1620 280 38.5 39.2 0.976 

1259 S-50N2 1620 280 40.6 39.2 1.029 
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[kN] 
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1262 T1_ohne 2100 248 107.4 80.8 1.319 

1263 T7_70_oben 2100 297 130.9 111.9 1.160 

1264 T9_ohne 1700 167 112.2 91.4 1.224 

1265 T13_ohne 1700 217 127.8 115.6 1.101 

1266 T10_40_oben 1700 167 102.4 82.8 1.231 

1270 SB 2 1601 200 42.0 31.9 1.310 

1271 SB 3 2400 300 52.4 42.5 1.224 

1272 SB 4 3600 450 93.4 102.6 0.900 

1273 SB 5 4800 600 165.7 165.9 0.984 

1274 SB 6 7200 900 304.2 368.0 0.808 

1281 1.1-1 1800 260 50.6 42.3 1.188 

1282 2.1-1 1800 260 91.1 92.2 0.984 

1286 SBB1.1 495 84 14.5 18.4 0.786 

1287 SBB1.2 495 84 18.5 18.6 0.995 

1288 SBB1.3 495 84 15.0 18.4 0.813 

1289 SBB2.1 990 168 28.9 28.2 1.022 

1290 SBB2.2 990 168 30.6 28.0 1.089 

1291 SBB2.3 990 166 29.8 27.8 1.071 

1292 SBB3.1 1980 333 42.5 42.6 0.991 

1293 SBB3.2 1980 333 41.0 41.6 0.980 

1294 SBB3.3 1980 333 43.3 41.6 1.034 

1358 1-1 1397 233 131.1 93.0 1.096 

1359 1-2 3162 532 139.3 215.5 0.640 

1364 2-3 4064 684 260.8 133.0 1.880 

1365 2-4 4928 820 344.2 600.3 0.564 
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Random Variable Generator Testing 

To test each random variable generator, a single element mesh was created with applied nodal 

displacements of zero.  A total of 500 simulations were performed for each distribution type.  Each 

implementation was tested using the chi-squared goodness of fit test and the Kolmogorov-Smirnov 

(KS) test.  For the normal and lognormal distributions, a mean of 30 MPa and a standard deviation 

of 6 MPa was assumed. To test the beta distribution, the alpha and beta parameters were selected 

equal to 2.0. To test the gamma distribution, alpha was taken as 1.0 and beta was taken as 2.0.  The 

beta and gamma distributions were deliberately taken as simple cases so that they could be readily 

compared with their respective theoretical distributions. For the beta and gamma distributions, a 

chi-squared goodness of fit value could not be calculated easily and thus the KS test was considered 

sufficient.  

 

a) Normal Distribution: n = 500 � = 30    � = 6.0 
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b) Lognormal Distribution: n = 500 � = 30    � = 6.0 

 
 

 

 

c) Beta Distribution: n = 500 � = 2.0    � = 2.0 
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d) Gamma Distribution: n = 500 � = 1.0    � = 2.0 
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D.1 Introduction  

This appendix serves as a guide for users who want to conduct stochastic simulations using 

VecTor2. As part of this thesis, a range functionality was implemented into the VecTor2 source 

code to allow users to conduct stochastic simulations.  The current implementation includes: the 

input of user specified material property factors; Monte Carlo sampling with uniform, correlated, 

nugget-effect, and spatially correlated (random field) random variables; and Latin hypercube 

sampling with uniform, correlated, and spatially correlated random variables.  For more 

information on the theory behind each implementation, the reader is referred to Chapter 4.  

Stochastic simulation in the context of this thesis involves the randomization of the concrete and 

steel material properties within VecTor2.  The user specifies the material properties, which are 

then modified for each simulation based on their respective statistical distributions.  The material 

properties can be assumed to be independent, or correlated (both globally and spatially).  As a user, 

the goal of the stochastic simulation may be to: assess the probabilistic deflection of a critical 

structural component; to assess the reliability of a structural element; or to understand the 

sensitivity to failure mode that the structural element has relative to material property inputs. The 

stochastic simulation derives information on these random outputs by repeated simulation with 

randomly generated inputs.  This user’s manual focuses on the implemented options for stochastic 

simulation with VecTor2.   

In Formworks, the dedicated pre-processor for VecTor2, the stochastic simulation options are 

found under the Define Job menu in the Special tab. The default menu is shown in Fig. D.1. 

By default, the stochastic analysis type is set to Not Considered. This means that VecTor2 will 

bypass the stochastic simulation subroutines and run as a deterministic simulation.  The dropdown 

menu for stochastic simulation type is highlighted in Fig. D.1. The stochastic analysis types are 

listed as follows: 

1. User Input Modification Factors  (SFD Option: -1) 

2. Not Considered  (SFD Option: 0) 

3. Monte Carlo Simulation MCS  (SFD Option: 1) 

4. Uncorrelated Spatial Variation MCS  (SFD Option: 2) 
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Fig. D.1: Stochastic simulation input options in Define Job menu.  

5. Random Field Spatial Variation MCS (SFD Option: 3) 

6. Latin Hypercube Sampling LHS (SFD Option: 4) 

7. Correlated Sampling MCS (SFD Option: 5) 

8. Correlated Sampling LHS (SFD Option: 6) 

9. Random Field Generation LHS (SFD Option: 7) 

Each of these options are detailed in the following sections.  Note that any option that ends with 

MCS uses Monte Carlo sampling and that any option ending in LHS uses Latin hypercube 

sampling. 
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The number of simulations to be undertaken is specified in the input box below the stochastic 

analysis type dropdown menu.  The user can currently select a maximum of 999 simulations. If 

more simulations are desired for any Monte Carlo sampling, another analysis can be run and 

produce independent results. This cannot be done for Latin hypercube sampling, as the 

stratification for both simulations is identical.  However, the purpose of Latin hypercube sampling 

is to reduce the required number of simulations and thus it is unlikely that a user will require Latin 

hypercube samples in excess of the maximum. 

D.2 Monte Carlo Sampling 

Monte Carlo sampling involves the basic random number generation to any of the selected 

distributions.  The user is able to select a distribution for the concrete compressive strength, the 

concrete tensile strength, the concrete elastic modulus, the steel yield strength, the steel ultimate 

strength, and the steel elastic modulus.  If the material properties in the model represent the 

assumed material properties (the specified strength for example) then the following models are 

recommended and set as the default distributions.  

Parameter Models from Literature 

Compressive Strength Bartlett and MacGregor 1996 

Tensile Strength Mirza et al. 1979 

Elastic Modulus (Concrete) Hybrid Mirza + CSA 

Yield Strength Nowak and Szerzen 2003 

Ultimate Strength Mirza et al. 1979 

Elastic Modulus Mirza et al. 1979 

These selected models are not specific to Monte Carlo sampling; they are recommended for all 

stochastic simulations.  Note that for the concrete tensile strength and elastic modulus, the CSA 

A23.3 predictions for the modulus of elasticity and tensile strength are substituted. This was 

considered more representative of modern day concrete than the original statistics proposed by 

Mirza et al. (1979).  The selection of Mirza et al. (1979) for the tensile strength and modulus of 

elasticity reflect that a contemporary database of those parameters has not recently been compiled 

for Canadian concrete. 



APPENDIX D: USER’S MANUAL 
 

251 

 

When SFD Option 1: Monte Carlo Simulation MCS is selected, all of the parameters on the right 

of the Special tab can be ignored except the specified age of the concrete.  Some of the models 

(Bartlett and MacGregor, 1996; Unanwa and Mahan, 2014) scale the specified strength up to the 

current age of the concrete. Thus, if a specific structure is being analyzed where the age and 

specified strength are known, these models are preferred.  

The required number of simulations for Monte Carlo sampling can vary widely.  It is recommended 

that the number of simulations be greater than 200; however, this is contingent on model 

simplicity, variation in failure mode, computation time, etc. If the sampling of the tails is 

paramount, then the number of simulation should be increased significantly. The parameters 

employed when SFD Option 1: Monte Carlo Simulation MCS is selected are highlighted in Fig. 

D.2. 
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Fig. D.2: Relevant parameters for the Monte Carlo Simulation MCS option. 

The simulation options that employ Monte Carlo sampling are SFD Options 1, 2, 3, and 5 (in 

reference to the list supplied above).  The parameters for SFD Options 3 and 5 are detailed in 

Section D.4. The parameters for SFD Option 2 are the same as SFD Option 1. 

D.3 Latin Hypercube Sampling 

Latin hypercube sampling is a stratified simulation technique that has been shown to reduce the 

required number of simulations.  This technique is advantageous when the computation time for 

each simulation is long.  For example, it is not uncommon for a VecTor2 analysis to take between 

3 and 10 minutes to run a set of load stages that capture the behaviour of the specimen.  Thus if 

300 simulations were desired, the total running time would range between approximately 15 to 50 

hours of computation time.  If Latin hypercube sampling is employed, this number can drop 

significantly and thus the simulation time can drop significantly.  Some researchers estimate that 

satisfactory results can be obtained with less than 50 simulations (Vorechovsky and Novak, 2005).  

Nevertheless, it is recommended that between 50 and 100 simulations are selected when Latin 

Hypercube sampling is employed.  

The required parameters for SFD Option 4: Latin Hypercube Sampling LHS are the same as those 

described for SFD Option 1 and are highlighted in Fig. D.2.  The simulation options that employ 

Latin hypercube sampling are SFD Options  4, 6, and 7. The parameters for SFD Options 6 and 7 

are detailed in Section D.4. 

Option 9 has limited functionality in the current implementation.  The sampling method described 

in Section 4.5.6 is currently set to default. Thus it is not entirely a Latin Hypercube sample as the 

local random field is a Latin Hypercube sample but the RF mean is still a Monte Carlo sample.  

This represents one of the biggest limitations and thus the recommended number of simulations 

for Option 9 should exceed 200.  

D.4 Random Field Generation and Correlated Sampling 

Random field generation and correlated sampling represent the majority of the remaining 

stochastic simulation options not addressed in Section D.1 through Section D.3.  A random field 
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requires three parameter: the number of included eigenvalues, the random field variance, and the 

correlation length.  The eigenvalues are calculated in VecTor2 using the FEAST algorithm and, as 

such, eigenvalues are computed in descending order (largest to smallest).  Thus the user can specify 

the number of eigenvalues to be calculated.  VecTor2 will display the computed eigenvalues in 

ascending order. The maximum number of eigenvalues is equal to the maximum number of 

elements. However, Vorechovsky and Novak (2005) noted that a majority of the eigenvalues when 

using the Karhunen-Louve Transform (see Section 4.5.2) are zero. As a result, it is useful to reduce 

the number of calculated eigenvalues, and thus the number of random variables required for 

simulation.  The recommended number of eigenvalues varies depending on the correlation length.  

For a large correlation length, the number of significant (non-zero) eigenvalues is small.  For a 

nugget-effect model, each eigenvalue is significant.  It has been found that selecting 80 eigenvalues 

results is adequate in generating of random fields for correlations lengths observed in concrete.  

The computed eigenvalues are displayed when VecTor2 is running and can be inspected to ensure 

that the lowest computed eigenvalue is significantly smaller than the largest eigenvalue.  An 

example of this printout is shown in Fig. D.3. Note that the 80th eigenvalue is 0.18 and the largest 

is 97.40.  Thus, 80 eigenvalues are sufficient for the generation for this random field. 

 

Fig. D.3: VecTo2 eigenvalue printout. 
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The correlation length describes the distance in which two element become completely 

uncorrelated.  The current implementation is limited to a Gaussian correlation function. Based on 

a review of the literature and the experimental program in this thesis, a correlation length of 800 – 

1200 mm is recommended for stochastic simulations.  

The random field variance should always remain at 1.0 with the current implementation.  The 

current implementation produces a random field with a mean of zero and a variance equal to the 

specified variance, however this random field is then scaled to meet the global distribution for 

concrete. As a result, until the random field data implementations are expanded to include non-

Gaussian random fields, this parameter should always be specified as 1.0.  A summary of the 

relevant parameters for random field generation is presented in Fig. D.4.  

 

Fig. D.4: Relevant parameters for random field generation. 
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Correlated sampling allows users to induce correlations into their simulation of random variables. 

In reality, there are well established trends that show that the concrete compressive, tensile, and 

elastic modulus are correlated random variables.  These correlations are established usually based 

on a range of concrete strengths and their resulting tensile strength or modulus of elasticity.  Thus, 

when simulating a structure with a population of concrete strengths, it may be useful to induce 

correlation in the simulation.  It should be noted, however, that assuming the variables are 

uncorrelated does not necessarily result in a reduction in simulation accuracy.  The dispersion 

matrix for concrete is represented as follows: 

Z = t1.0 Z� Z�Z� 1.0 Z�Z� Z� 1.0
u 

where C1 represents the correlation coefficient between the compressive strength and the tensile 

strength, C2 represent the correlation coefficient between the compressive strength and the 

modulus of elasticity, and C3 represents the correlation coefficient between the tensile strength and 

the modulus of elasticity.  It should be noted that the current implementation requires that the 

dispersion matrix be positive definite.  This means that conflicting correlations cannot exist. For 

example, if concrete compressive strength is positive and strongly correlated (>0.8) with both the 

tensile strength and the elastic modulus, then the C3 coefficient cannot be weakly correlated 

(~<0.5). This will cause the current generation method to produce numerical errors.  It is noted 

that techniques like simulated annealing (Vořechovský & Novák, 2009) circumvent this problem; 

however, that is outside the scope of the current implementation.  There is little literature on the 

correlation coefficients for concrete material properties for a distribution based on a specified 

strength, and thus no correlation coefficients are suggested as defaults.  

Another important correlation coefficient is the relationship between the yield strength and the 

ultimate strength of steel reinforcement. This was included in the implementation and a default 

value of 0.85 (Wisniewski et al., 2012) is recommended.  Fig. D.5 summarizes the input parameters 

relevant to correlated sampling. 
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D.5 Stochastic Overrides 

In addition to the implemented distributions, the user may elect to use an alternate distribution or 

exclude certain material properties from stochastic simulation.  This can be accomplished using 

the stochastic overrides.  A menu that is used for the input of stochastic override parameters is 

opened by clicking the Edit Stochastic Overrides button on the bottom right hand corner.  

 

Fig. D.5: Relevant parameters for correlated sampling. 

The edit stochastic override menu allows the user to selected a specific variable from a specific 

material property and control its distribution. The stochastic override menu is shown in Fig. D.6. 
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From the stochastic override menu, the user can select one of the following options for random 

variables: 

1. Not a random variable. 

2. Normally distributed random variable. 

3. Lognromally distributed random variable. 

Fig. D.6: Stochastic override menu. 

4. Beta distribution random variable.  

5. Gamma distribution random variable. 

In order to alter the properties of smeared reinforcement, the Steel number dropdown menu allows 

the user to select the steel layer, or indicate that the material is a truss bar. The user will then select 

the appropriate distribution and input the distribution parameters manually.  The parameters for 

each distribution type are summarized below.  

 

Distribution 

Type 

Parameter 1 Parameter 2 Parameter 3 Parameter 4 

Normal Mean Standard Deviation N/A N/A 

Lognormal Mean Standard Deviation N/A N/A 

Beta Alpha Beta Lower Bound Upper Bound 

Gamma Alpha Beta N/A N/A 
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Once the override properties for a material type are input, the user selects the Add button and the 

stochastic override appears. These overrides can be deleted at any time.  

D.6 User Input Modification Files  

In addition to the options provided within VecTor2 for stochastic simulation, the user may elect to 

construct separate input modification factors for the simulation.  This was done in Chapter 3 in 

order to include the kriging predictions for concrete properties in a VecTor2 analysis. The user 

input file is currently created manually, and formatted according to the VT2.STOC file format. 

The VT2.STOC file can be generated with any text editor and a template is available. Currently 

the user input modification files must include a factor for every property and every element.  

In order for VecTor2 to read the input file, Option 1 must be selected in the Special tab.  An 

example of the manual input file is shown in Fig. D.7.  

 

Fig. D.7: ‘VT2.STOC’ file template in a text editor. 

D.7 Disaggregated Variability Options 

All of the implemented models for concrete strength represent the relationship between the 

specified strength and the actual statistical distribution for concrete material properties.  However, 

an analyst may have access to the actual cylinder strength of the concrete, or even the current 
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strength of the concrete.  Thus an attempt is made to disaggregate the variability in the selected 

statistical models to allow the user to perform stochastic simulation on a specific structure, with 

more information than the specified material properties.  To incorporate this into the stochastic 

simulation framework, an additional variable, denoted ‘Reference Strength’, is added to the 

simulation options. This section outlines the possible disaggregation for a few selected concrete 

compressive strength models.  

D.7.1 Mirza et al. 1979 

Mirza et al. 1979 offers limited information on the source of variability that makes up their 

concrete compressive strength.  It is simply noted that the coefficient of variation due to spatial 

and batch-to-batch variation can be taken as 0.13.  Thus if the analyst knows the concrete strength 

matching the actual age of the structure the coefficient of variation may be taken as 0.13.  

D.7.2 Bartlett and MacGregor 1996 

Bartlett and MacGregor (1996) constructed a model that is based on two parameters: 

���= = ������� 
where �� relates the cylinder strength to the specified strength and �� relates the cylinder strength 

to the actual strength of the structure. Thus if the 28-day cylinder strength is known, the parameter �� can be removed from the prediction of the distribution parameters and the coefficient of 

variation becomes 0.14. Note that this only applies to the 28-day strength as the �� parameter 

implicitly includes the variation of strength with time.  

D.7.3 Unanwa and Mahan 2014 

Unanwa and Mahan (2014) proposed a model for the compressive strength of concrete that 

incorporated three parameters: 

���= = ��������� 
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where �� relates the cylinder strength to the specified strength, �� relates the cylinder strength to 

the actual strength of the structure, and �� scales the strength of the concrete to any specified age.  

The statistics of these parameters are summarized below.  

Parameter Bias factor Coefficient of Variation �� 1.45 0.15 �� 0.81 0.11 �� 	U	.�V �

�	
W
 

0.07 

 

D.7.4 Implementation in VecTor2 

These three models are currently implemented in VecTo2. The Reference Strength can be selected 

as one of the following three options: 

A. Specified strength is known. 

B. 28-day cylinder strength is known. 

C. Current cylinder strength is known. 

Option A represents the default option. It assumes that the strength in VecTor2 is a specified 

strength and thus all models can be used. Option B assumes that the 28-day cylinder strength is 

known.  Thus the variability relating the cylinder strength to the specified strength can be removed.  

For Mirza et al. (1979) a coefficient of variation of 0.13 can be used for Option B. For Bartlett and 

MacGregor (1996) the first parameter can be removed and thus the coefficient of variation is 

reduced to 0.14.  For Unanwa and Mahan (2014) the coefficient of variation is approximated as 

� = 4(0.11)� + (0.07)� = 0.1304 

 For Option C, the cylinder strength at the current age of the structure is known, and thus the 

variability associated with the age is eliminated. If the Unanwa and Mahan (2014) model is 

selected, then the coefficient of variation is further reduced to 0.11.  A summary of which models 

are compatible with each reference strength is shown below. 
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Model Option A: 

Specified Strength is 

known (Default) 

Option B: 

28-day cylinder 

strength is known 

Option C: 

Current/test-day 

cylinder strength is 

known 

Mirza et al. 1979 Compatible [1] 
Compatible 

Use for older concrete 
Not Compatible 

Bartlett and 

MacGregor 1996 
Compatible [2] Compatible[5] Not Compatible 

Nowak and Szerszen 

2003 
Compatible [3] Not Compatible Not Compatible 

Unanwa and Mahan 

2014 
Compatible [4] Compatible Compatible 

[1] Recommended for older concrete [2] Developed from Canadian concrete [3] Developed from American Concrete 

[4] Developed from California Concrete [5] Preferred for Option B 

The reported data from the disaggregation are taken or calculated from the published works only.  

These statistics should be verified via an independent database before they can be used with 

confidence.  It is worth noting that the coefficients of variation for Option B for all three models 

were essentially equal. This suggests that the reduction in variability may be representative of the 

actual data.  Additionally, the influence of reduced concrete strength variability on the tensile 

strength and modulus of elasticity statistics is unclear.   

The user should employ these modifications with caution, and whenever possible, use the unaltered 

distributions presented in the literature.  

D.8 Stochastic Simulation Output Files 

The modifications factors generated in stochastic simulations are output to a series of text files.  

Each file is referenced to a specific trial with the name and extension ‘TRIAL_X.C2E’, where X 

represents the trial number.   The stochastic output files identify the default distribution models, 

trial number, and override distribution parameters.  Additionally, they report all of the stochastic 

modification factors generated in VecTor2 for concrete, smeared steel, and truss bar steel.  An 

example of a stochastic output file is shown in Fig. D.8.  
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Fig. D.8: Stochastic simulation output file. 


