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ABSTRACT 

The design of fatigue-prone structural elements such as wind turbine foundations requires 

adequate verification of the constituent materials to ascertain their resistance capacity under 

fatigue loading. Hence, the number of loading cycles that can be sustained in service using 

stress-life models, or the level of structural damage relative to a given limit, are required from 

the fatigue analysis of the structural components. 

The presence of cracks in these structural components often renders them vulnerable to damage 

propagation because increased stresses in the steel reinforcing bars traversing cracked concrete 

planes may result in reinforcement crack initiation, and possibly propagation. As such, mediums 

involving the use of steel-fibre reinforced concrete have been adopted in designs to prevent or 

inhibit concrete crack evolution and reinforcement crack propagation under fatigue loading. 

Investigations reported in the literature have shown that current fatigue resistance analysis 

approaches for concrete composites are insufficient, lack significant levels of reliance, and do 

not appropriately account for fatigue-governing mechanisms within a cracked concrete plane 

with intersecting reinforcement that exhibits progressive crack propagation. The effects of 

irreversible damage accumulation of concrete composites are often neglected, and damage 

models ignore important influencing factors; hence, they are limited to the analysis of structures 
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with similar loading conditions as the test specimens used for developing such models. 

An experimental campaign was conducted to develop robust damage models which account for 

relevant fatigue loading parameters. Various assumptions incorporated into fatigue analysis 

constitutive models were further verified to ascertain their conservative level and reliance. Based 

on the obtained results, a new analysis and design approach which accounts for irreversible 

damage accumulation of concrete composites (including steel fibres) is proposed. In addition, 

the complex behaviour at a concrete crack plane is considered by incorporating fracture 

mechanics and residual capacity models into the corresponding equilibrium equation, hence 

accounting for steel reinforcement crack propagation. 

The proposed models were further incorporated into algorithms for strut and tie analysis and 

into the Disturbed Stress Field Model (finite element framework) for fatigue life and damage 

evolution predictions. Corroborated results of the experimental investigation conducted with the 

modified analysis approaches exhibited good correlation. From the verified improved analysis 

concepts and the unambiguity of the results interpretation, the proposed approach can be used 

for the fatigue resistance design and analysis of fatigue-prone structures in order to ascertain the 

required fatigue resistance capacity during service life. 
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CHAPTER 1 

1.0 INTRODUCTION 

1.1 General Background 

The damage effects of fatigue loading on many types of structures, such as wind turbine 

foundations, have been investigated and reported by various researchers in the literature. As such, 

appropriate designs now require verification to ensure the invulnerability of fatigue-prone 

structural elements to collapse while in service (Holmen, 1982). 

Generally, a combination of an empirical stress-life model and a damage rule (e.g., Palmgren- 

Miner rule) is used for such verifications. However, due to the effects of progressive deformation, 

damage accumulation, and material crack initiation and propagation associated with fatigue 

loading on a global structure, the implementation of time/cycle-dependent models in the fatigue 

analysis of structural elements is considered invaluable. Various types of structures prone to 

fatigue damage are discussed subsequently. 

1.2 Types of Structures Affected by Fatigue  

Depending on the range of the number of cycles to which a structure is subjected during service 

life, fatigue-prone structures may be grouped into three main classes. These are low-cycle, high-

cycle, and super-high cycle fatigue structures.  The characteristic cyclic loads to which these 

structures are subjected include vibrations, traffic loads, wind, and water waves. Examples of 

some common structures in these groups are shown in Table 1.1 (Hsu, 1981).   

1.2.1 Onshore Wind Turbine Foundations 

In recent years, increases in the size of wind turbine structures have been seen due to higher 

demands for energy generation. In line with this development, notable fatigue failures of 

foundations have been reported in the wind energy industry in various parts of the world. Some of 

A B 
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these failures were linked to concrete damage or to fracture of the embedded reinforcing bolts 

connecting the wind turbine super-structure to its foundation.  

Table 1.1- Fatigue cycles spectrum with corresponding structures  

Low-Cycle Fatigue  

(0 – 103 cycles) 

High-Cycle Fatigue 

(103 – 107 cycles) 

Super-High-Cycle Fatigue 

(107 – 5 x 108 cycles) 

 Structures subjected 

to earthquakes 

 Structures subjected 

to storm 

 

 Bridges 

 Airport pavement 

 Wind power plants 

 Highway pavement 

 Concrete railroad ties 

 Mass rapid transit 

structures 

 Sea structures 

 Machine foundations 

  

On the 27th and 30th of January, 2013, two wind turbine structures were observed to have collapsed 

in Devon and Cornwall, United Kingdom, respectively, due to embedded bolt fatigue fracture 

(Figure 1.1(a) and Figure 1.1 (b)). The investigation reports revealed that the exposure of the bolts 

due to loss of grout at the intersection between the tower structure and the foundation intensified 

the crack propagation in the connecting bolts under tensile forces. In each case, the lack of 

resilience to the fatigue load within the structure resulted in poor fatigue resistance.  

On the 24th of December, 2015, a wind turbine structure was observed to have fallen at the 

Lemnhult wind farm in Sweden. Similarly, the investigation conducted by the government 

accident investigation authority revealed that the wind turbine failure was attributable to fatigue 

of the bolts at the joint between the foundation and the tower structure (Figure 1.1(c)). 

Figure 1.1(d) shows the collapsed wind turbine structure at Fenner, New York that occurred on 

the 27th of January, 2009. The wind turbine superstructure was observed to have been detached 

from its base with an attached mass of concrete. This observation gave an indication of concrete 

degradation within the foundation (see Figure 1.1(e)) leading to a concrete shear failure. In the 

case of a 1.5 Megawatt wind turbine structure in Pennsylvania that failed on the 14th of January, 
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2014 (Figure 1.1 (f)), a large mass of damaged concrete was also observed at the base of the fallen 

turbine structure. Although an electrical fault indication was assumed, the observed mode of failure 

was attributable to the fatigue damage of concrete within the foundation. 

 

 

 

 

 

 

 

   

 

  

 

 

 

 

 

 

 

 

Fig. 1.1- Collapsed wind turbine structures. 

(e) (f) 

(a) 
(b) 

(c) (d) 
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Inferred results from investigations conducted by Structural Integrity Associates and ANATECH 

on the causes of wind turbine foundation failures, considering the turbine failures observed at 

Fenner and Pennsylvania in the United States of America, led to a recommendation quoted thus: 

“Given the aging fleet of wind turbines and the substantial adverse effects of fatigue on reinforced 

concrete foundations, wind turbine owners should carefully evaluate their foundation designs 

given the potential for collapse”.  

1.2.2 Other Fatigue-Prone Structures 

Structures subjected to dynamic stresses are generally prone to fatigue damage. Some of these 

structures are identified in Table 1.1; however, the type of fatigue loading giving rise to the 

dynamic stresses in each structure may differ from one another. For example, machine 

foundations are subjected to oscillations of machine components in service, while bridge decks 

are subjected to fatigue loading cycles resulting from traffic load (moving wheels). Railways are 

subjected to high numbers of transiting axles that flex the sleepers and ballasts, rendering them 

susceptible to fatigue damage. Offshore platforms and offshore wind turbines are normally 

exposed to environments different from those on land. In these cases, fatigue loading results from 

the effects of wind forces and water waves or current conditions. The rate of degradation of 

concrete and steel reinforcement may be aggravated depending on the salt level of the ocean and 

moisture in the air. In addition, the dynamic stresses induced in airport runways from aircraft 

wheels in motion also subject them to fatigue damage.  

Learning from the reported cases, the constituent materials of a reinforced concrete structure are 

susceptible to fatigue degradation, and, as such, the resistance of the structural component to 

fatigue degradation should be appropriately verified. In codes of practice, each constituent material 

is independently verified for fatigue damage using the critical stresses in the constituent materials. 

A B 



5 
 

Fatigue analysis approaches and independent behaviour of embedded steel reinforcing bars, 

concrete, and steel-fibre reinforced concrete under fatigue loading are considered in Sections 1.3.1 

to 1.3.3.  

1.3 Approaches for Fatigue Analysis 

The fatigue behaviour of a structural component can be analysed using the stress-life approach, 

the strain-life approach, the fatigue crack growth (fracture mechanics) approach (Halford et al, 

2001; Lee et al, 2005), and non-destructive test approaches (Shah et al, 1984; Yuyama et al, 2001).  

The stress approach involves a plot of various stress ranges for a particular material against the 

corresponding number of cycles leading to failure. This is the most common approach for fatigue 

analysis both in research literature and in codes of practice. In this approach, several specimens of 

a specific material are tested using different stress ranges. The tests are conducted using maximum 

stresses between 0 and 100 % of the static strength of the material either in tension, compression 

or shear. A negative-gradient linear equation is obtained from a plot of stress levels against the 

logarithms of the number of cycles resulting in failure. A plot from the equation is known as the 

finite life region from which the number of cycles resulting in failure at a known stress level can 

be obtained. However, a single stress-life plot has limitations in the prediction of local plasticity 

or crack initiation life, deformation evolution, and mean-stress effects (Halford et al, 2001; Lee et 

al, 2005).  

The strain-based approach involves a plot of strain against the number of cycles to failure. A cyclic 

stress-strain curve is also required to complement the strain-life curve. This approach basically 

considers plasticity nucleation within a structural component (crack initiation life). Equations from 

the aforementioned curves contain elastic and plastic strain terms (Dowling and Thangjitham, 
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2000); hence, the approach has the advantage of indicating the transition life between the plastic 

region and the elastic region under fatigue loading. Using stress concentration factors, the local 

amplitude of the stress and strain required for analysis are obtained from Neuber’s rule or simply 

from a finite element analysis. However, this approach is only significant in reinforced concrete 

structures when the crack initiation life in a reinforcing bar is required. 

The crack growth approach can also be used to predict the fatigue life of reinforced concrete 

structures. This approach adopts the use of a fatigue crack growth law (e.g. Paris law) and a stress 

intensity factor concept as functions of crack depth, shape factor, and stress range. The number of 

load cycles it takes for an initial crack length to increase to a final crack length in a region of high 

stress concentration is calculated (Lee et al., 2005). Although fracture mechanics models have 

been used in fatigue-crack prediction, they are unable to predict the number of cycles required to 

initiate a crack. Secondly, in concrete structures with numerous smeared cracks, models from 

fracture mechanics are inappropriate for predicting fatigue life. 

Non-destructive tests have also been employed in the study of fatigue damage evolution of 

reinforced concrete elements using the inherent properties (Shah et al, 1984; Yuyama et al, 2001). 

For example, the fatigue damage of concrete is associated with increased cracks, higher 

temperature, lower strength, and degraded stiffness. Progressive measurement and plotting of the 

values of these properties for a fatigue-damaged concrete element give indications of the fatigue 

deformation profiles. 

1.3.1 Fatigue Life of Steel Reinforcement 

The fatigue life of steel reinforcing bars are commonly estimated using stress-life models. As 

previously discussed, this involves a plot of the stress range against the numbers of cycles resulting 



7 
 

in failure. Various models have been proposed and used in different codes for estimating the 

number of cycles to failure for steel reinforcing bars under fatigue loading (Tilly, 1979; JSCE, 

1986; Chinese Code, GB 50010-2002; CEB-FIP Model Code 1990; AASHTO (Specified in ACI-

217R-74); EN 1992-1-1: 6.8). The model proposed by AASHTO considers the influence of the 

stress range, the diameter of the bar, and the ratio of the radius at the root and the height of the 

reinforcement rib (r/h) (Equation 1.1 and Equation 1.2). 

                                                    𝑓𝑟  = 145-0.l33𝜎𝑚𝑖𝑛+55 (r/h)                                                  (1.1) 

                                                    Log N = 6.1044 - 591x10−5𝑓𝑟- 200 x 10−5𝜎𝑚𝑖𝑛 +  

                                                    103 x 10−3𝑓𝑏 - 8.77 x 10−5𝐴𝑠 + 0.0127 d (r/h)                     (1.2) 

where 𝑓𝑟 is equal to 𝜎𝑚𝑎𝑥-𝜎𝑚𝑖𝑛, d is the diameter of the reinforcing bar in mm, 𝜎𝑚𝑎𝑥 is the 

maximum stress in the steel reinforcing bar,  𝜎𝑚𝑖𝑛 is the minimum stress in the steel reinforcing 

bar, 𝑓𝑏 is the tensile strength of the reinforcement, and 𝐴𝑠 is the sectional area of the reinforcement 

in 𝑚𝑚2.  

Two basic approaches are specified in Eurocode (EN 1992-1-1: 6.8). The first approach is used 

under constant fatigue loading. In this approach, the damage of a single stress amplitude is 

determined using the corresponding S-N curves (Figure 1.2) for reinforcing and prestressing steel. 

It is expected that Equation 1.3 is satisfied for an appropriate fatigue resistance capacity. 

                                                    𝛾𝐹,𝑓𝑎𝑡 . ∆𝜎𝑠,𝑚𝑎𝑥 ≤ 
∆𝜎𝑅𝑠𝑘(𝑁∗)

𝛾𝑠,𝑓𝑎𝑡
                                                    (1.3) 

where 𝛾𝐹,𝑓𝑎𝑡 is a partial factor for fatigue loading (recommended value of 1.0), EN 1992-1-1:2005-

2.4.2.3 (1),  ∆𝜎𝑠,𝑚𝑎𝑥 is the maximum steel stress range, ∆𝜎𝑅𝑠𝑘(𝑁
∗) is the reference resisting fatigue 

stress range at 𝑁∗ cycles, and 𝛾𝑠,𝑓𝑎𝑡 is a partial factor for fatigue that takes the material 

uncertainties into account (Table 2.1N in EN 1992-1-1:2005-2.4.2.4). 
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Fig. 1.2- Stress-life relations for reinforcing and prestressing steel. 

𝑘1 is the exponent that defines the slope of the first part of the stress-life curve (Table 6.3N in EN 

1992-1-1:2005), 𝑘2 is the exponent that defines the slope of the second part of the stress-life curve 

(Table 6.3N in EN 1992-1-1:2005), and 𝐹𝑦𝑑 is the yield strength of the reinforcement. 

In reality, the fatigue loading on a structural component is variable in nature; hence, the second 

approach for estimating the fatigue life of steel reinforcement involves the use of the Palmgren-

Miner variable damage accumulation rule. The total damage (𝐷𝐸𝑑) can be estimated thus: 

                                                  𝐷𝐸𝑑 = ∑
𝑛(∆𝜎𝑖)

𝑁(∆𝜎𝑖)
𝑖  < 1                                                                   (1.4) 

where 𝑛(∆𝜎𝑖) is the number of cycles for the stress range ∆𝜎𝑖, and 𝑁(∆𝜎𝑖) is the ultimate number 

of cycles for the stress range ∆𝜎𝑖. From the stress-life curve of reinforcing and prestressing steel, 

the corresponding ultimate number of cycles 𝑁(∆𝜎𝑖) can be estimated thus: 

𝑘1 

1 

𝑘2 
1 

Log N 
𝑁∗ 

𝐹𝑦𝑑 

Log∆𝜎𝑅𝑠𝑘 
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                                                  𝑁(∆𝜎𝑖) = 𝑁∗ (
(

∆𝜎𝑅𝑠𝑘
𝛾𝑠,𝑓𝑎𝑡

)

𝛾𝐹,𝑓𝑎𝑡.∆𝜎𝑖
)

𝑘1

 if 𝛾𝐹,𝑓𝑎𝑡 . ∆𝜎𝑖 ≥ 
∆𝜎𝑅𝑠𝑘

𝛾𝑠,𝑓𝑎𝑡
                      (1.5) 

                                                  𝑁(∆𝜎𝑖) = 𝑁∗ (
(

∆𝜎𝑅𝑠𝑘
𝛾𝑠,𝑓𝑎𝑡

)

𝛾𝐹,𝑓𝑎𝑡.∆𝜎𝑖
)

𝑘2

 if 𝛾𝐹,𝑓𝑎𝑡 . ∆𝜎𝑖 < 
∆𝜎𝑅𝑠𝑘

𝛾𝑠,𝑓𝑎𝑡
                      (1.6) 

𝑘1 and 𝑘2 are given in EN 1992-1-1:2004 (Table 6.3N). 

The methods described above are used for straight reinforcing bars; however, for bent bars, the 

reinforcing bar strength is modified. First, the strength of the reinforcing bars may be reduced by 

half (Hawkins, 1974; Okamura et al., 1981). Second, from EN 1992-1-1: 2004, the value of the 

resisting fatigue stress range ∆𝜎𝑅𝑠𝑘(𝑁
∗) at 𝑁∗ may be reduced by a reduction factor ξ for bent 

bars.  

                                                   ξ = 0.35 + 0.026
𝐷

∅
                                                                        (1.7) 

where D is the diameter of the reinforcing bar, and ∅ is the bending diameter of the bent bar. 

1.3.2 Fatigue Life of Concrete 

The fatigue life of concrete can be estimated using stress-life models similar to steel reinforcement. 

From investigations conducted in the past, the fatigue behaviour of concrete is influenced by 

various factors such as stress level, stress ratio, eccentricity of loading, frequency, shape of the 

waveform, and stress reversals amongst others. Many such models are available in the literature; 

however, those with insufficient fatigue-influencing factors are seldom used. Stress-life models 

used for estimating the fatigue life of concrete are usually given as plots of normalized concrete 

stress levels against the logarithm of the number of cycles resulting in failure (Aas-Jakobsen, 1970; 

Hsu, 1981, Zhang et al., 1996; Zhang et al., 1998; Fib, 2010). 
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FIB Model Code 2010 considers uniaxial compression, tension, or reversed loads. Stress-life 

curves are developed for normalized maximum compressive stresses for various concrete 

compressive strengths. The curves produced correspond to normalized minimum effective 

compressive stress levels with the compressive strength (𝑓𝑐
′) from 0 to 0.8. According to FIB 

Model Code 2010, the equations presented are valid for concrete under a constant environment 

with approximate conditions of 200C and 65% relative humidity; however, the effect of creep is 

not accounted for (Figure 1.3). 

For pure compression where 0≤ 𝑆𝑐,𝑚𝑖𝑛 ≤0.8, then 

                                                      Log 𝑁1 = 
8

(𝑌−1)
. (𝑆𝑐,𝑚𝑎𝑥-1)                                  (1.8)  

                                                      Log 𝑁2 = 8 + 
8.ln (10)

(𝑌−1)
. (𝑌 − 𝑆𝑐,𝑚𝑖𝑛).log(

𝑆𝑐,𝑚𝑎𝑥−𝑆𝑐,𝑚𝑖𝑛

𝑌−𝑆𝑐,𝑚𝑖𝑛
)        (1.9)                                          

                                                      Y = 
0.45+1.8.𝑆𝑐,𝑚𝑖𝑛

1+1.8.𝑆𝑐,𝑚𝑖𝑛−0.3𝑆𝑐,𝑚𝑖𝑛
2                                                       (1.10) 

 

Fig. 1.3- S-N curve based on equations above (FIB Model code 2010). 

where 

LogN = Log 𝑁1 if Log 𝑁1 ≤ 8 
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LogN = Log 𝑁2, if Log 𝑁1>8  

                                                       𝑆𝑐,𝑚𝑎𝑥=|𝜎𝑐,𝑚𝑎𝑥|/𝑓𝑐𝑘,𝑓𝑎𝑡                                                      (1.11)                                                                       

                                                       𝑆𝑐,𝑚𝑖𝑛 =|𝜎𝑐,𝑚𝑖𝑛|/𝑓𝑐𝑘,𝑓𝑎𝑡                                                      (1.12) 

                                                       ∆𝑠𝑐 = 𝑆𝑐,𝑚𝑎𝑥-𝑆𝑐,𝑚𝑖𝑛                                                           (1.13) 

                                                        𝑓𝑐𝑘,𝑓𝑎𝑡 = 𝛽𝑐𝑐 (t).𝛽𝑐,𝑠𝑢𝑠(t,𝑡0).𝑓𝑐𝑘.(1-𝑓𝑐𝑘/400)                    (1.14) 

For concrete in compression-tension with 𝜎𝑐𝑡,𝑚𝑎𝑥 ≤ 0.026|𝜎𝑐,𝑚𝑎𝑥|    

                                                       LogN = 9.(1-𝑆𝑐,𝑚𝑎𝑥)                                                          (1.15)    

For plain concrete in tension, and compression-tension > 0.026|𝜎𝑐,𝑚𝑎𝑥| 

                                                      LogN = 12.(1-𝑆𝑐𝑡,𝑚𝑎𝑥)                                                        (1.16) 

𝑆𝑐𝑡,𝑚𝑎𝑥 = 𝜎𝑐𝑡,𝑚𝑎𝑥/𝑓𝑐𝑡𝑘,𝑚𝑖𝑛 

where 

N: number of cycles 

𝑆𝑐,𝑚𝑎𝑥: maximum compressive stress level (normalized with 𝑓𝑐
′) 

𝑆𝑐,𝑚𝑖𝑛: minimum compressive stress level (normalized with 𝑓𝑐
′) 

𝑆𝑐𝑡,𝑚𝑎𝑥: maximum tensile stress level (normalized with 𝑓𝑐
′) 

∆𝑠𝑐: stress range 

𝜎𝑐,𝑚𝑎𝑥: maximum compressive stress in MPa 

𝜎𝑐,𝑚𝑖𝑛: minimum compressive stress in MPa 

𝜎𝑐𝑡,𝑚𝑎𝑥: maximum tensile stress in MPa 

𝑓𝑐𝑘: characteristic compressive strength (MPa) 

𝑓𝑐𝑘,𝑓𝑎𝑡: fatigue reference compressive strength (MPa) 

𝑓𝑐𝑡𝑘,𝑚𝑖𝑛: minimum characteristic tensile strength (MPa) 
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𝛽𝑐𝑐 (t): coefficient depending on the age of the concrete at the beginning of fatigue loading 

𝛽𝑐,𝑠𝑢𝑠(t,𝑡0): coefficient which considers the mean stresses at loading; taken as 0.85 for fatigue 

loading. 

In the case of variable fatigue loading, FIB Model Code 2010 also proposes the use of the 

Palmgren-Miner cumulative damage rule as considered in steel reinforcement. As such, the 

cumulative damage (D) can be estimated thus: 

                                                D = ∑
𝑛𝑠𝑖

𝑛𝑅𝑖
𝑖  < 1                                                                           (1.17) 

where 𝑛𝑠𝑖 is the number of fatigue loading cycles at a given stress level, and 𝑛𝑅𝑖 is the 

corresponding number of cycles resulting in failure at the given stress level. 

In the literature, other approaches which consider a comparison between the induced concrete 

stresses and a limiting value for appropriate fatigue resistance capacity are available. In EN 1992-

1-1 2004, two approaches exist. In the first approach (EN 1992-1-1 2004 (6.8.6)), a satisfactory 

fatigue resistance capacity may be assumed for concrete under compression, if the following 

condition is fulfilled: 

                                                𝐸𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢 + 0.43  √1 − 𝑅𝑒𝑞𝑢 ≤ 1                              (1.18) 

where 

𝑅𝑒𝑞𝑢 = 
𝐸𝑐𝑑.𝑚𝑖𝑛.𝑒𝑞𝑢

𝐸𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢
 

𝐸𝑐𝑑.𝑚𝑖𝑛.𝑒𝑞𝑢 = 
𝜎𝑐𝑑.𝑚𝑖𝑛.𝑒𝑞𝑢

𝑓𝑐𝑑.𝑓𝑎𝑡
 

𝐸𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢 = 
𝜎𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢

𝑓𝑐𝑑.𝑓𝑎𝑡
 

 𝑅𝑒𝑞𝑢: stress ratio 

𝐸𝑐𝑑.𝑚𝑖𝑛.𝑒𝑞𝑢: minimum compressive stress level 
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𝐸𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢 : maximum compressive stress level 

𝑓𝑐𝑑.𝑓𝑎𝑡 : design fatigue strength of concrete 

𝜎𝑐𝑑.𝑚𝑎𝑥.𝑒𝑞𝑢: upper stress of the ultimate amplitude for N cycles 

𝜎𝑐𝑑.𝑚𝑖𝑛.𝑒𝑞𝑢: lower stress of the ultimate amplitude for N cycles. 

From the code, a recommended value for N is 106 cycles. 

                                              𝑓𝑐𝑑.𝑓𝑎𝑡 = 𝑘1𝛽𝑐𝑐( 𝑡0) 𝑓𝑐𝑑 (1 −
𝑓𝑐𝑘

250
)                                              (1.19)                                                     

𝛽𝑐𝑐( 𝑡0) is a coefficient for concrete strength at first load application, and 𝑡0  is the time of the start 

of the cyclic loading on concrete in days. The recommended value of 𝑘1 for N equal to 106 cycles 

is 0.85. 

In the second approach, the fatigue verification for concrete under compression may be assumed 

if the following condition is satisfied: 

                                            
𝜎𝑐.𝑚𝑎𝑥

𝑓𝑐𝑑.𝑓𝑎𝑡
≤0.5 + 0.45

𝜎𝑐.𝑚𝑖𝑛

𝑓𝑐𝑑.𝑓𝑎𝑡
                              (1.20) 

 ≤0.9 for 𝑓𝑐𝑘 ≤ 50 MPa 

 ≤0.8 for 𝑓𝑐𝑘 > 50 MPa 

where 

𝜎𝑐.𝑚𝑎𝑥 is the maximum compressive stress at a fibre under the frequent load combination 

(compression stress measured positive), and 𝜎𝑐.𝑚𝑖𝑛 is the minimum compressive stress at the same 

fibre where 𝜎𝑐.𝑚𝑎𝑥 occurs. If  𝜎𝑐.𝑚𝑖𝑛 is a tensile stress, then 𝜎𝑐.𝑚𝑖𝑛 should be taken as 0.  

Equation 1.20 also applies to the compression struts of members subjected to shear. In this case 

the concrete strength  𝑓𝑐𝑑.𝑓𝑎𝑡 should be reduced. Other similar approaches for the fatigue analysis 

of concrete are available in DNV RIS∅ (Guidelines for Fatigue Design of Wind Turbines) and 

DIBt (Wind Turbine Guideline for Design). 
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1.3.3 Fatigue Life of Steel-Fibre Reinforced Concrete 

In the literature, tests have been conducted on steel-fibre reinforced concrete in order to verify its 

performance under fatigue loading. Results reported on tests conducted on flexural fatigue 

strength, endurance limit, and compressive fatigue strength have shown that concrete fatigue 

resistance can be improved using steel fibre. As such, the use of smaller cross sections or increases 

in the life-span of structural components such as pavements, bridge deck overlays, offshore 

structures, machine foundations etc. are obtainable. Despite the well-documented qualitative 

attributes of steel fibre in enhancing fatigue life, no appropriate model has been proposed for 

quantifying or estimating the fatigue life of steel fibre concrete. This has obviously impeded its 

wide-spread use. 

1.4 Loading History and Cumulative Damage under Fatigue Load 

As previously indicated, reinforced concrete structures are generally subjected to variable 

amplitude fatigue load. The Palmgren-Miner’s linear cumulative damage rule is often used to 

calculate the total damage value due to each number of load cycles corresponding to a given load 

level (Figure 1.4). Fatigue analysis reports from Hilsdorf et al. (1960), Wirshig et al., (1995), and 

Lee et al. (2005) have shown that the linear Palmgren-Miner rule gives inconsistent results, and 

hence may result in unsafe designs.  

In order to show the inconsistency of the Palmgren-Miner rule, other damage rules such as the 

nonlinear damage rule and the double linear damage rule for two or more load steps have been 

used to illustrate the damage value per fatigue load (Figure 1.5 and Figure 1.6). As an illustration, 

consider equal damage values (A and A’) on damage profiles OB and OB’ for a high and a low 

stress level, respectively. The number of cycles required for failure on profile OB’ after an initial 

fatigue loading of the high stress level (𝑛1) on OB (intersection of A) can be observed to be less 
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than the number of cycles required for failure after the initial application of the lower stress level 

(𝑛2). 

 

Fig. 1.4- Linear damage accumulation (Lee et al, 2005). 

 

Figure 1.5: Nonlinear damage accumulation (Lee et al, 2005). 

 

 

 

 

 

 

Fig. 1.6 - Double linear damage rule for two step load levels (Lee et al, 2005). 
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1.5 Outstanding Questions in the Fatigue Resistance Analysis and Design Approach 

A number of outstanding questions remain; these include: 

 Can damage evolution models which account for various controlling factors be developed 

for residual concrete strength and modulus degradation, since these models are required to 

develop fatigue constitutive equations for time-dependent numerical analysis? 

 Certain assumptions have been made regarding the behaviour of concrete under fatigue 

loading; hence, resulting in the simplification of fatigue analysis. In addition, experimental 

results indicate that irreversible fatigue strains accumulate in concrete under fatigue 

loading; however, this is neglected in analysis. As such, can the reliability of these 

assumptions be verified and can irreversible fatigue strain be accounted for in fatigue 

analysis? 

 A majority of fatigue-prone structural elements are designed as deep beams. How viable is 

the use of steel fibre in enhancing their fatigue life? Further, can appropriate stress-life 

models be developed for steel-fibre concrete? 

 Stress-life models are generally used in the progressive damage analysis of steel 

reinforcing bars. However, progressive crack growth up to fracture in reinforcing bars 

traversing cracked concrete planes has been observed in reinforced concrete structures, 

apparent in the progressive increase in the width of a traversed cracked concrete plane and 

the increase in deformation. Hence, can crack growth be taken into account in the 

equilibrium equations for a cracked concrete plane? 

1.6 Research Motivation 

The behaviour of concrete under fatigue loading is well known to be nonlinear. As such, the 

cumulative damage predictions using the Palmgren-Miner rule do not give values corresponding 
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to the deformed state of a structural element at any instant (Hilsdof et al., 1966; Hawkins, 1974; 

Holmen, 1982; Shah, 1984; Oh, 1991; Vega et al., 1995; Lee et al., 2005; Lloyd et al., 2007). 

Although the Palmgren-Miner rule has been reported in the literature to be suitable for steel 

reinforcement (Byers et al., 1997; Petryna et al., 2002; Maekawa et al., 2006; Teng et al., 2000), 

crack propagation in reinforcing bars is characterised by a nonlinear profile, thus supporting 

evidence of nonlinearity in the behaviour of reinforced concrete structures under fatigue loading 

(Paris et al., 1961; Dowling, 1993; Hirt and Nussbaumer, 2006; Herwig, 2008; Rocha and 

Bruhwiler, 2012). 

Irreversible deformation accumulates in concrete structures as fatigue loads progress (Maekawa 

et al., 2006; Zanuy et al., 2009). In addition, once concrete cracking initiates due to the 

degradation of its tensile strength, concrete cracking propagates within a plane while the stresses 

in the reinforcing bars intersecting the plane increase (Isojeh and Vecchio, 2016). Provided the 

induced reinforcement stresses are higher than the threshold values required for crack initiation, 

reinforcement crack propagation may also occur and result in a progressive increase in the 

deformation within the cracked concrete planes. The stability and deformation of the global 

structure may be influenced by these local deformations in addition to the irreversible deformation 

accumulation in concrete. As such, rather than estimating the number of cycles at which a material 

may fail at a locality, the progressive stability in terms of residual strength and the corresponding 

deformation evolution is of more importance, considering the fact that the residual strength of the 

global structure or the serviceability limits may be surpassed even before a local material failure 

occurs under fatigue loading. 

In design, the volumes of materials (concrete and steel reinforcement) are usually increased once 

the estimated cumulative damage exceeds the proposed limit. In the case of a wind turbine 
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foundation with a restricted size, the increase in reinforcement may result in bulkiness or 

congestion within the foundation. Hence, a means of reducing reinforcement congestion 

(especially shear reinforcement), optimising the structural size, and preventing or mitigating 

concrete crack growth under fatigue loading is required. 

As an improvement over the rudimentary use of stress-life models and the Palmgren-Miner rule, 

fatigue constitutive models and damage models for concrete which account for progressive 

damage and irreversible deformation accumulation are available in the literature. However, these 

models are typically void of the salient factors affecting fatigue loading. A majority of such 

models are limited in use to structural components having the same parameters as the experimental 

tests conducted for deriving the models. 

The implementation of fatigue damage models, which account for the aforementioned deficiencies, 

into the governing equations (constitutive, compatibility, and equilibrium) of a nonlinear finite 

element algorithm will enhance the fatigue damage analysis of complex structures such as wind 

turbine foundations. Further, it will provide for appropriate design verification, rather than having 

to rely on the use of rudimentary approaches. The development of a residual capacity-based and 

deformation evolution-based analysis approach will lead to a new fatigue life theorem. 

Although various reports, analyses, inferences, and so on have been provided in the past for the 

design of structural elements susceptible to fatigue damage, the actual mechanisms governing 

behaviour while in service are quite complex and at present are not well understood. Hence, 

further investigation is imperative. 

1.7 Study Scope and Objectives 

The main focus of this research program is aimed towards the development and implementation 
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of plain concrete damage models, steel fibre concrete damage models, and steel reinforcement 

crack propagation models into the governing equations of strut and tie models and the Disturbed 

Stress Field Model algorithm for fatigue analysis of reinforced concrete structures. 

In order to develop such an approach for the fatigue analysis and resistance design of 

conventional reinforced concrete and steel-fibre reinforced concrete elements, an experimental 

campaign is described at the structural and materials levels. 

Damage models are implemented into the monotonic stress-strain equations for concrete and steel 

fibre concrete for fatigue analysis. A modified localised reinforcement crack growth model is also 

used to account for the reinforcement area reduction at its intersection with a concrete crack. The 

accumulation of irreversible compressive strain in concrete or steel fibre is accounted for, using 

a fatigue offset strain model. 

The research program presented in this thesis can be subdivided into the following objectives: 

1) Development of robust fatigue damage models, building on previously existing models, to 

account for controlling factors under fatigue loading such as stress ratio, frequency of fatigue 

loading and fatigue waveform. 

2) Development of a constitutive model and damage parameters for plain and steel-fibre 

reinforced concrete under fatigue loading in addition to an irreversible strain accumulation 

model. 

3) Investigation of the behaviour of reinforced concrete and steel fibre reinforced concrete 

beams under fatigue loading. 

4) Implementation of the proposed models into the analysis algorithm of strut and tie models 

and the Disturbed Stress Field Model (Vecchio, 2000) for the analysis of fatigue-damaged 
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structures. Further, results from the experiments conducted will be corroborated with results 

obtained using nonlinear finite element analysis (VecTor2). 

1.8 Thesis Contents 

In the second chapter, the behaviour of concrete under fatigue loading in uniaxial compression is 

presented. Tests methodology and specimens details used in developing a secondary strain rate 

model and damage parameters are also presented (published in ACI Materials Journal). 

In addition to the proposed irreversible strain accumulation model, simplified constitutive models 

for normal and high strength concrete are developed and discussed in Chapter 3 (published in 

ASCE Materials Journal). 

Chapter 4 presents an overview of the behaviour of steel fibre concrete under fatigue loading. 

Damage parameters and corresponding evolution models are developed (published in ASCE 

Materials Journal). 

Small-scale deep beams were tested by varying the fatigue loading parameters, including the steel 

fibre volume ratio and the reinforcement ratio. The test procedures and results are presented in 

Chapter 5. In addition, the enhancing influence of steel fibre in reinforced concrete beams is 

discussed (ACI Structural Journal (in-press)). 

The proposed models are further implemented into the constitutive, compatibility and equilibrium 

equations of strut and tie (stress-path) models and the DSFM algorithm for finite element analysis. 

These are presented in Chapters 6 and 7, respectively (Engineering Structures (in-press) and 

ASCE Structural Journal (submitted), respectively). 

In Chapter 8, the experimental results obtained from the tested beams are corroborated with finite 

element analysis results obtained using VecTor2 (submitted to ASCE Structural Journal). 
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Lastly, the conclusions from the experimental and analytical studies are presented in Chapter 9. 

In addition, considerations for future investigations are given. 
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CHAPTER 2 

CONCRETE DAMAGE UNDER FATIGUE LOADING IN UNIAXIAL COMPRESSION 

The material in this chapter was previously published as follows: 

Isojeh B., El-Zeghayar M., and Vecchio F.J (2017). “Concrete Damage under Fatigue Loading 

in Uniaxial Compression.” ACI Materials Journal, Vol. 114, No. 2, pp. 225-35. 

2.1 Abstract 

Despite rigorous efforts in the derivation of various fatigue damage models for concrete, damage 

predictions of sufficient accuracy are still limited to loading conditions similar to those of the 

experiments used for developing the models. Most models are void of important factors affecting 

the fatigue behaviour of concrete such as frequency, stress ratio, and loading waveform, and the 

approaches used in developing such models tend to be rudimentary. Therefore, further 

investigation is required. 

In this study, damage models are developed for residual concrete strength and fatigue secant 

modulus using experimental data from tested cylindrical specimens, a damage function, and a 

stress-life model in the literature. The number of cycles leading to failure, required for normalising 

the fatigue cycles for each specimen, is obtained using a proposed secondary strain rate model. 

The aforementioned influencing factors incorporated into the damage function result in robust 

models that account for variations in loading parameters. 

2.2 Introduction 

During fatigue loading, the properties of concrete undergo alterations which result in damage. The 

progressive damage of a concrete element can be observed from the evolution of various 

deformation parameters, such as total strain, residual strain, stiffness degradation, strength 
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degradation, heat dissipation due to micro-cracking, crack growth, and speed of sound in concrete 

(Shah, 1984; Torrenti et al., 2010). Based on previous investigations on the fatigue behaviour of 

concrete, the damage evolution for each parameter is nonlinear (Papa and Taliercio, 1993; Vega 

et al., 1995; Taliercio and Gobbit, 1996; Song et al., 2005; Tamulenas et al., 2014). 

The fatigue behaviour of concrete is influenced by various factors, unlike the fatigue behaviour 

of steel reinforcing bars. Investigations conducted by Aas-Jakobsen (1970), Murdock et al. 

(1955), Hilsdorf and Kesler (1966), Awad (1971), and Oh (1991) have shown that the increase in 

maximum fatigue stress results in a decrease in the number of cycles to failure, while a higher 

minimum stress level corresponds to an increase in the number of cycles to failure. According to 

Ople et al. (1966) on the matter of stress gradient (eccentricity in fatigue loading), the number of 

cycles to failure increases as the eccentricity of loading increases. 

As reported in previous investigations, an overestimation of the fatigue life will occur if a fatigue 

model developed using a higher frequency of loading compared to that of the real structure is used 

in an analysis or design. Investigations conducted on the influence of frequency by Graf et al. 

(1936), Spark et al. (1973), Raithby and Galloway (1974), Holmen (1982), Naik (1993), and Zhang 

et al. (1996) all indicate that the number of cycles leading to failure decrease as the frequency of 

loading decreases. This behaviour has been observed to be more pronounced as the maximum 

fatigue stress level increases. For higher fatigue stress levels, the behaviour of concrete depends 

on the fatigue cycles and on the duration of loading where creep effects become significant, leading 

to a reduction in the fatigue life (Hilsdorf and Kesler, 1966). To the contrary, Takhar et al. (1974), 

based on statistical analysis, concluded that there was no significant difference between tests 

conducted at a loading frequency of 20 cycles per minute and 60 cycles per minute for stress levels 

of 0.8 and 0.9 (fractions of average compressive strength). 
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It has also been reported in the literature that the shape of the waveform used in fatigue loading 

influences the fatigue life. However, the influence is more prominent at maximum stress levels 

equal to or greater than 0.8, or at maximum stress levels that result in failure at cycles less than 

or equal to 1000. From observations, the number of cycles leading to failure with a sinusoidal 

waveform will be about half of the number of failure cycles for a triangular waveform, while the 

number of cycles to failure for a rectangular waveform will be about one-sixth of the number of 

cycles to failure for a sinusoidal waveform under the same stress level (Torrenti et al., 2010; 

RILEM, 1984). 

The impact of stress reversal under fatigue loading was investigated by Zhang et al. (1996) on 171 

beams with seven stress ratios, including negative stress ratios. The ratios were combined with 13 

stress levels. The stress-life curves (S-N), obtained by plotting the stress level against the number 

of cycles to failure for each specimen, portrayed a reduction in the fatigue life of the concrete 

specimens as the stress ratio reduced. 

The effects of other factors such as shape of the specimen, water-cement ratio, aggregate type 

and gradation, concrete strength, curing conditions, age at loading, and moisture conditions, that 

affect concrete, can be removed by normalizing the stress levels with the ultimate capacity of 

concrete under static load (Raithby and Galloway, 1974; Hsu, 1984; Hooi, 2000; Lee and Barr, 

2002; Grebreyouhannes et al., 2008). This concept reduces the number of factors considered in 

analytical models for predicting the behaviour of concrete elements under fatigue load to the 

loading parameters alone (Torrenti et al., 2010). 

The perception of damage evolution of a material provides a conceptual basis by which the 

degradation of the mechanical properties of concrete and the corresponding physical deformation 
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can be correlated. Obtaining the damage evolution for parameters such as residual strength and 

secant stiffness may require discrete test points from a number of tested specimens (Cook and 

Chindaprasirt, 1980; Cook and Chindaprasirt, 1981; Cornelissen and Reinhardt, 1987; Zhang and 

Wu, 1997). To obtain the discrete test points, specimens are loaded cyclically to different numbers 

of cycles before failure; thereafter, the observed deformation parameter at given cycles are plotted 

against the normalised number of cycles. 

Due to the stochastic nature of concrete (CEB Bull 188, 198; FIB Model Code, 2000; Lohaus et 

al., 2012), the actual number of cycles to failure for each specimen is different even under the same 

magnitude of fatigue load. Hence, the use of S-N models in estimating the number of cycles to 

failure for normalising the specified tests cycles is inappropriate, and the corresponding models 

developed do not portray the actual parametric damage evolution (Schaff and Davidson, 1997; Zhu 

and Li, 2011; Paepegem and Degrieck, 2002). 

According to Sparks and Menzies (1973), Cornelissen et al. (1987), and Taliercio et al. (1996), a 

correlation exists between the secondary strain rate and the number of cycles leading to failure. As 

such, provided the secondary strain rate can be obtained for each specimen tested, the number of 

cycles to failure can be estimated. 

At the final damage states of concrete specimens, the fatigue secant modulus at failure has been 

reported to converge to about 60% of the initial fatigue secant moduli (Torrenti et al., 2010; 

Holmen, 1982). In a similar manner to the fatigue secant modulus, the strength of composite 

materials also deteriorates under fatigue loading. Hence, it has been reported that the same damage 

evolution model can be used for residual strength and stiffness (Paepegem and Degrieck, 2002). 

However, the initial stage of fatigue loading of concrete is characterised by a slight increase in 

strength (Talierco and Gobbit, 1996; Cook and Chindaprasit, 1981). This phenomenon is attributed 
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to the consolidation or the closing up of micro-voids in concrete at the initial stage of fatigue 

loading (Zhang and Wu, 1997). The increase in strength may also be attributed to the stochastic 

nature of concrete (CEB Bull 188., 1988; FIB Model Code, 2010; Lohaus et al., 2012). 

Once strength damage initiates, an increase in damage will be observed in subsequent cyclic 

loading; thereafter, loading a concrete specimen monotonically to failure will result in a lower 

compressive strength. 

In this investigation, the stress ratios for the experiments conducted are either equal to or greater 

than zero; hence, no fatigue stress reversal is considered. In addition, a sinusoidal waveform is 

used for all fatigue tests conducted. 

To obtain normalised fatigue cycles, the numbers of cycles to failure of tested specimens were 

estimated using the secondary strain rate concept. Building on a damage function formulated by 

Gao and Hsu (1998), modified robust damage models which incorporate influencing fatigue 

factors from an S-N model (Zhang et al., 1996; Zhang et al., 1998) are developed for concrete 

strength and residual fatigue secant modulus using data from tested specimens. 

2.3 Research Significance 

This investigation incorporates the concept of secondary strain rate for obtaining fatigue life in the 

formulation of improved damage models for concrete in compression. Further, key fatigue factors 

from an existing S-N model (frequency, stress ratio, loading waveform) are incorporated; hence, 

the combined models are suitable for a wide variety of fatigue loading conditions for concrete 

structures. The models proposed can be implemented into general concrete constitutive models for 

predicting strength and stiffness deterioration and improved fatigue analysis of concrete structures.  
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2.4 Experimental Investigation 

Experiments were conducted on concrete cylinders to develop a secondary strain rate model and 

to observe subsequent residual strengths and fatigue secant moduli as the number of fatigue 

loading cycles increased. The secondary strain rate is defined as the rate of change in maximum 

fatigue strain per unit cycle within the linear portion of the strain evolution profile (secondary 

stage). For the residual strength and fatigue modulus, each specimen was tested to a different 

number of cycles less than the actual number of cycles leading to failure. 

The tests were conducted using servohydraulic testing equipment having a loading capacity of 

1000 kN. The loading equipment was programmed to generate a pulsating load of a continuous 

sinusoidal waveform throughout the test duration. Each specimen was mounted with attached 

displacement transducers (LVDTs) as shown in Figure 2.1. The LVDTs were used to measure 

average strains in the specimens throughout the duration of the fatigue tests. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 – Fatigue loading setup. 
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 Table 2.1- Average compressive strength and corresponding strain. 

Batch (# of 

Specimens) 

Average Compressive 

Strength (MPa) 

Average Corresponding 

Strain (x 0.001) 

Mix ratio Wct-ratio 

1(5) 52.8 2.01 1:2:2* 0.5 

2(3) 55.8 2.00 1:2:2* 0.5 

3(3) 46.2 1.95 1:2:3* 0.5 

4(3) 23.1 1.52 1:2:4* 0.6 

*represents cement: sand: coarse aggregate by weight 

Concrete cylinders (38 specimens) with dimensions of 100 mm diameter x 200 mm height were 

subjected to uniaxial fatigue loading in compression. Prior to the fatigue tests, concrete 

specimens (at least three per batch) were tested statically to obtain the average compressive 

strength, as shown in Table 2.1. The stress levels (maximum and minimum stresses) for the 

fatigue tests were taken as percentages of the average compressive strength. 

The maximum stress level, the concrete strength, and the loading frequency were variables in 

this experimental investigation. Maximum stress levels of 0.69 to 0.80, as fractions of the 

average compressive strength, were used as the fatigue loads. Sixteen specimens were loaded to 

failure to observe the evolution of the maximum strain as indicated in Table 2.2, while 22 

specimens, as indicated in Table A-1 (Appendix A), were loaded to different numbers of cycles 

which were less than the number of cycles to failure at a constant maximum stress level of 0.74. 

The 22 specimens tested were used to observe the evolution of the strength and fatigue secant 

modulus of concrete. Although the value of 0.74 was chosen arbitrarily, it falls within the range 

for high-cycle fatigue. The 22 specimens tested under fatigue loading were subsequently loaded 

monotonically to failure. For the specified load levels, a frequency of 5 Hz was used for all 

batches. A frequency of 1 Hz was used for testing three specimens from the fourth batch. For all 

fatigue tests conducted, a constant minimum load of 5 kN was used. 
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Table 2.2 - Specimen fatigue parameters and test failure data. 

Specimen Compressive Strength 

(𝑓𝑐
′) MPa  

Stress Level 

(% of 𝑓𝑐
′ ) 

Frequency 

(Hz) 

Number of  Cycles 

to failure (𝑁𝑓) 

Log  𝑁𝑓 

E5 52.8  74 5 12210 4.09 

E8 52.8  74 5 10180 4.01 

E13 52.8  74 5 8720 3.94 

E21 52.8  74 5 8460 3.93 

E3 52.8  74 5 5640 3.75 

G4 46.2  74 5 4690 3.67 

G11 46.2  74 5 4600 3.66 

E10 52.8  69 5 25200 4.40 

E15 52.8  69 5 20500 4.31 

H16 55.8  80 5 747 2.87 

H17 55.8  80 5 3530 3.55 

I1 23.1  75 5 3220 3.51 

I5 23.1  75 1 4910 3.69 

I6 23.1  75 5 1560 3.19 

I8 23.1  75 1 3030 3.48 

I10 23.1  75 1 5010 3.70 

 

2.6.1 Test Specimens 

The concrete specimens were made from Portland cement (general use, GU), sand, and 

limestone aggregates (10 mm maximum size) with three different mixture proportions. The 

concrete for the first two batches, as indicated in Table 2.1, was cast using a mixture proportion 

of 1: 2: 2, (cement:sand:coarse aggregate by weight) with a water-cement ratio (w/c) of 0.5. 

For the third and fourth batches, mix proportion ratios of 1:2:3 with a w/c of 0.5 and 1:2:4 

with a w/c of 0.6 were used, respectively. The fineness modulus of the sand used was estimated 

to be 2.6. The slumps observed from the fresh concrete from all batches were 100 to 150 mm. 

The static strengths of concrete after curing for 28 days were obtained from each batch, while 

the fatigue tests were conducted 30 to 40 days after casting. The first, second, third and fourth 

batches were denoted as E, H, G, and I, respectively, as indicated in Table 2.1. The number 

added to each alphabet in the table indicates the number assigned to the specimen before 

testing. 
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  2.4.2 Results 

At the initial stage of fatigue loading, an increase in strain at a decreasing rate was observed due 

to the closing up of concrete pores and micro-cracks between aggregates and cement mortar. 

Subsequently, the rate of strain evolution was constant while micro-cracks within the cement 

mortar increased. Within the last stage of fatigue damage evolution, the micro-cracks merged 

to form macro-cracks. Similar to static loading, these cracks (hairlines) were obvious on the 

surfaces of the concrete specimens and were approximately parallel to the direction of loading. 

Further, the ends of these macro-cracks merged and developed a failure plane which resembled 

a fault (Figure 2.2). The numbers of cycles leading to failure were recorded for the 16 specimens 

tested and are given in Table 2.2. The standard deviations (in terms of the logarithm of the 

number of cycles to failure, 𝑁𝑓) observed for the four different stress levels (74%, 75%, 69% 

and 80%) are 0.17, 0.21, 0.06, and 0.48, respectively. The respective mean values are 3.86, 3.51, 

4.36, and 3.21. However, the standard deviation of the error (Log 𝑁𝑓) between the experimental 

data and the model by Zhang et al. (1998) is 0.26 and the model prediction (in logarithm) is 3.80 

for a 74% stress level. 

 

 

 

 

 

 

Fig. 2.2 - Concrete specimen in undamaged and damaged states.  
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2.4.3 Maximum Strain Evolution 

The strain evolutions for the 16 specimens tested to failure under fatigue loading were plotted 

against the normalised number of cycles, as shown in Figure 2.3. The shapes or profiles of the 

strain evolutions were similar, irrespective of the concrete strength and stress level. The three 

stages of the strain evolution shown in Figure 2.3 for the stress levels used are also in agreement 

with previously reported observations (Torrenti et al., 2010; Papa and Taliercio, 1993; Vega et 

al., 1995; Tarliercio and Gobbit, 1996; Song et al., 2005). The first stage, within 10% of the total 

number of cycles to failure, indicates a nonlinear deformation of concrete at a decreasing rate. 

The second stage is characterized with a constant rate of deformation within a range of 

approximately 70% of the fatigue life, while the last stage is characterized with an increasing 

rate of damage leading to failure. This was observed to be within the last 30% of the fatigue life. 

 

 

Fig. 2.3 – Maximum strain evolution. 
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2.5 Model Formulation 

A major challenge in the development of residual strength and fatigue modulus models involves 

the estimation of the expected fatigue life for each specimen, because the applied fatigue load is 

usually stopped after a given number of cycles before failure occurs. In the literature, S-N models 

are generally used to normalise the tests cycles. As such, the plot of the residual strength against 

the number of cycles to failure obtained is often not appropriate. This is due to the fact that the 

actual number of cycles to failure of some of the specimens may be higher or lower than the value 

estimated using an S-N model. As such, an approach for estimating the number of cycles to failure 

for each specimen is required. 

2.5.1 Relationship between Secondary Strain Rate and Number of Cycles to Failure 

The secondary strain rates (𝜀𝑠𝑒𝑐) for 11 specimens (high strength concrete) out of the 16 

specimens tested to failure were all estimated, as illustrated in Figure 2.4 (the values for each 

specimen are given in Appendix B). The logarithms of the fatigue life (𝑁𝑓) were plotted against 

the secondary strain rates (𝜀𝑠𝑒𝑐) as indicated in Figure 2.5. Using the experimental data, a model 

was proposed (Equation 2.1). Figure 2.5 also shows a comparison of the model with other models 

in the literature. The coefficients in the models were obtained based on best fit curves. To show 

the predictability of the model, data from fatigue tests at different loading parameters from 

different researchers were obtained and included in the plot, as shown in Figure 2.6 (Taliercio 

and Gobbit, 1996; Sparks and Menzies, 1973; Oneschkow, 2012). In addition, a prediction 

interval (using 95% confidence interval) is also shown in Figure 2.6 (Log-Log plot). However, 

due to scarce data for very high cycles to failure in the literature, fatigue strain evolution tests 

involving very high fatigue life are also required for corroboration.  

                                           𝑁𝑓    = 0.0009 (𝜀𝑠𝑒𝑐)−0.972                                                            (2.1) 
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The proposed model was used to estimate the failure cycles for the 22 specimens to obtain a plot 

of the residual concrete strength against the corresponding normalised number of cycles for each 

specimen. The plot of the normalised residual strength against the normalised number of cycles 

in Figures 2.7 and 2.8 were obtained using the proposed model (Equation 2.1) and the Aas-

Jakobsen’s (1970) model (Equation 2.2), respectively. It can be observed from the figures that 

the actual degradation path is well represented using the proposed model. 

                                        
∆𝒇

𝒇𝒄
′   = 1-𝛽 (1 − 𝑅)𝐿𝑜𝑔 𝑁𝑓                                                                    (2.2) 

 

Fig. 2.4 – Plot of maximum strain against number of cycles. 

In Equation 2.2,  𝛽 is a material parameter and R is the ratio of the minimum stress level to the 

maximum stress level. The ratio of ∆𝑓 to 𝑓𝑐
′ is the stress level which is the applied loading stress 

divided by the average compressive strength of the concrete considered. On the other hand, the 

residual strength of concrete corresponds to the actual stress at which a fatigue-damaged specimen 

will fail when loaded monotonically under static condition. After considerable damage of concrete 

due to fatigue loading, the residual strength of concrete is usually lower than the actual 

compressive strength in its undamaged state. 
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Fig. 2.5 – Logarithm of number of cycles to failure against the secondary strain rate. 

 

 

Fig. 2.6 – Verification of strain rate model for high number of cycles. 
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of concrete specimens in compression. However, based on the damage path depicted by the 

experimental data points, obvious strength degradation began within the secondary stage of the 

damage evolution (Figure 2.7). Figure 2.9 and Equations 2.3 and 2.4 describe the approach taken 

for estimating the static and fatigue secant moduli of concrete (E and 𝐸𝑠𝑒𝑐, respectively) for each 

of the 22 specimens tested (Appendix A). 

 

Fig. 2.7 – Normalized residual strength against normalized cycles (secondary strain rate 

approach). 

 

Fig. 2.8 – Normalized residual strength against normalized cycles (S-N model).
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Fig. 2.9 – Static and fatigue secant moduli. 

 

Fig. 2.10 – Degradation of residual fatigue secant modulus. 
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faster rate compared to the residual strength degradation. The degradation of the normalised 

fatigue secant moduli is also shown in Figure 2.10. Towards failure, an abrupt drop was observed 

in the residual fatigue moduli data points. 

2.5.3 Damage Evolution Model for Concrete Strength and Fatigue Secant Modulus 

 From the fundamentals of damage mechanics, the rate of fatigue damage per cycle is a function of 

the number of cycles, stress level, and a damage variable. From Gao and Hsu (1998), the rate of 

change of damage per fatigue cycle is expressed as: 

                                            
𝛿𝐷

𝛿�̅�
 = F(𝑁, ∆𝑓, 𝐷)= 𝑘1exp (

𝑠 ∆𝑓

𝑓𝑐
′ )𝑁K                              (2.5) 

By integrating Equation 2.5 with respect to N, 

                                            D = 𝑘1exp (
𝑠 ∆𝑓

𝑓𝑐
′ ) 

𝑁 K+1

(K+1) 
                                           (2.6) 

At failure, damage (D) =𝐷𝑐𝑟.  

                                               𝐷𝑐𝑟 = 𝑘1 exp(
𝑠 ∆𝑓

𝑓𝑐
′ )

(𝑁𝑓)
 K+1

(K+1) 
                               (2.7) 

Rearranging Equation 2.7,  

                                             
∆𝑓

𝑓𝑐
′    = 

1

𝑠
𝑙𝑛

𝐷𝑐𝑟(K+1)

𝑘1
−

K+1

𝑠
𝑙𝑛𝑁𝑓                      (2.8) 

To account for the influence of loading parameters such as frequency, waveform and stress ratio, 

a modified Aas-Jacobsen S-N model (Aas-Jacobsen, 1970; Zhang et al., 1998), (Equation 2.9), 

which considers various factors affecting the fatigue behaviour of concrete, was implemented.  

                                               ∆𝑓/𝑓𝑐
′ = 𝐶𝑓[1 − 𝛽2(1 − 𝑅)𝐿𝑜𝑔 𝑁𝑓 − 𝛾2𝐿𝑜𝑔(𝜁𝑁𝑓𝑇)]                     (2.9) 

where                                              𝛽2= 0.0661-0.0226R                                                                                 (2.10) 

and                                          𝛾2 = 2.47 x 10−2  

𝜁 is a dimensionless coefficient which is taken as 0.15 for a sinusoidal cycle (Torrenti et al., 2010; 
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Zhang et al., 1998), 𝐶𝑓 accounts for the loading frequency, and 𝛾2 is a constant which accounts 

for high stress level.        

The modified S-N model for predicting failure cycles is expressed in a form similar to Equation 

2.8; hence: 

                                            ∆𝑓/𝑓𝑐
′ = 𝐶𝑓[1 − 𝛾2 𝑙𝑜𝑔(𝜁𝑁𝑓𝑇)] − 0.434 𝐶𝑓(𝛽2(1 − 𝑅)) 𝑙𝑛 𝑁𝑓   (2.11) 

where                                   log𝑁𝑓= 0.434 ln 𝑁𝑓 

Comparing Equations 2.8 and 2.11, 

                                            
(K +1) 

𝑠
 = 0.434 𝐶𝑓 (𝛽2(1 − 𝑅))                                                     (2.12) 

                                            K + 1 = 0.434 𝑠 𝐶𝑓 (𝛽2(1 − 𝑅))                 (2.13) 

                                            𝐶𝑓 (1 − 𝛾2 𝑙𝑜𝑔 (𝜁𝑁𝑓𝑇)) = 
1

𝑠
𝑙𝑛

 𝐷𝑐𝑟 (K +1) 

𝑘1
                                     (2.14) 

                                             𝐷𝑐𝑟 Exp (−𝑠𝐶𝑓 (1 − 𝛾2 𝑙𝑜𝑔(𝜁 𝑁𝑓 𝑇)) = 
𝑘1 

K +1
                              (2.15) 

By substituting Equations 2.13 and 2.15 into Equation 2.6, and expressing the modified damage 

model in a form similar to the initially proposed model by Gao and Hsu (1998), then: 

                                             D =  𝐷𝑐𝑟  Exp [𝑠 (
∆𝑓

𝑓𝑐
′ − 𝑢)]𝑁𝑣                                         (2.16)                                     

                                  u = 𝐶𝑓 (1 − 𝛾2 𝑙𝑜𝑔(𝜁 𝑁𝑓 𝑇))                                        (2.17)         

                                             v = 0.434 s 𝐶𝑓(𝛽2(1 − 𝑅))                              (2.18)  

From Zhang et al. (1996) on influence of loading frequency, 

                                             𝐶𝑓 = a𝑏−𝑙𝑜𝑔𝑓+ c                     (2.19) 

where a, b and c are 0.249, 0.920 and 0.796 respectively, and f is the frequency of the fatigue 

loading. The residual strength of concrete and modulus damage at a given stress level can be 

obtained using the damage model. As observed, the damage model does not require the values of 
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the constants K and 𝑘1.  

Using the damage model (Equation 2.16), parameters in the constitutive equations can be 

modified to account for fatigue damage. From calibration using the test data, the values of the 

parameter s (stress ratios between 0 and 0.5) for concrete strength and modulus damage can be 

obtained from Figure 2.11. From the experiments conducted, the degraded fatigue modulus 

tends towards 60% of the initial modulus (Torrenti et al., 2010; Holmen, 1982) (Figure 2.10). 

As such, the critical damage value 𝐷𝑐𝑟 for the concrete fatigue secant modulus is taken as 0.4. 

As observed from the experimental data in Figure 2.12, the residual strength of concrete at 

failure tends towards 0.65; hence, the critical damage value for the residual strength of concrete 

is taken as 0.35. 

 

Fig. 2.11 – Estimation of damage parameter s. 
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and Davidson, 1997; Zhu and Li, 2010; Edalatmanesh and Newhook, 2013) were plotted. The 

residual strength models are shown in Figure 2.12. 

 

Fig. 2.12 – Normalized concrete strength degradation model. 

 

Fig. 2.13 – Normalized fatigue secant modulus degradation. 
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the fact that it is assumed by Schaff et al. (1997) that failure will occur at the point where the 

concrete strength degrades to the maximum fatigue stress applied. On the other hand, the 

proposed model assumes that failure will occur at a critical damage value based on the 

experimental observations. Figure 2.13 also shows the fatigue modulus damage evolution 

superimposed on the experimental data. 

2.5.4 Influence of Loading Parameters on the Fatigue Damage of Concrete 

The loading parameters (maximum stress level, frequency and stress ratio) were varied in order 

to observe their effects on the damage evolution of concrete strength using the proposed damage 

model. The fatigue life that corresponds to the critical damage was estimated using Equation 

2.9. Figure 2.14 portrays a delay in damage as the maximum stress level decreases; hence, an 

increase is seen in the number of cycles to failure. Figures 2.15 and 2.16 indicate delays in 

damage as the frequency and stress ratio increase, respectively. Using the appropriate damage 

parameter for fatigue modulus (Figure 2.11), a similar trend as seen in the residual strength can 

also be observed. 

 

Fig. 2.14 – Effect of stress level on fatigue damage of concrete compressive strength. 
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Fig. 2.15 – Effect of frequency on fatigue damage of concrete compressive strength. 

 

 

Fig. 2.16 – Effect of stress ratio on fatigue damage of concrete compressive strength. 
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The Palmgren-Miner rule (Palmgren, 1924; Miner, 1945) is commonly used for fatigue damage 

accumulation when considering variable fatigue loading. The damage per stress level is 

estimated as the ratio of the number of cycles to the estimated fatigue life. The summation of all 

estimated damage values gives the total damage. As a criterion for failure, the summation should 

be equal to 1.0 or a given critical value. 

Typically, the rate of damage accumulation is assumed to be linear; however, a majority of the 

tests conducted and reported in the literature show that the fatigue behaviour of concrete is 

nonlinear. In addition, it has been oberved that the Palmgren-Miner rule does not account for 

loading sequence; hence, overly-conservative or unconservative predictions have been obtained 

using the Palmgren- Miner rule (Papa and Taliercio, 1996; Vega and Bhatti, 1995; Taliercio and 

Gobbit, 1996, Song et al., 2005). 

A procedure similar to that proposed by Schaff et al. (1997) is described below and is illustrated 

in Figures 2.17 and 2.18. However, experiments on variable fatigue loading of plain concrete 

specimens are required to verify the results obtained from this approach. As an alternative to the 

estimation of the number of cycles leading to failure using the proposed strain-rate approach or 

stress-life (Zhang et al., 1998) approach, a method described by Thun et al. (2011) can also be 

used. 

Irrespective of the magnitude of the current stress level (𝑆𝑖), the number of cycles (equivalent 

number of cycles) that will induce damage equal to a previous damage value can be obtained using 

the damage model (Equation 2.16). In Figures 2.17 and 2.18, the stresses 𝑆1, 𝑆2, and 𝑆3 are 

applied for 𝑁1, 𝑁2, and 𝑁3 cycles respectively. The final damage after the application of 𝑆3 for 

𝑁3 cycles can be estimated thus: 
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Fig. 2.17 - Stress-cycle diagram for variable amplitude loading. 

 

 

Figure 2.18 - Damage evolution for variable loading. 

Step 1: Initially, the damage (𝐷1) due to the first stress level (𝑆1) and the corresponding number 

of cycles (𝑁1) is estimated using the proposed damage model (Equation 2.16). 

Step 2: N is calculated by substituting 𝐷1 and the second stress level (𝑆2) into the damage model 
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(Equation 2.16). The value of N obtained is equal to the equivalent cycles 𝑁𝑒𝑞𝑣2 for the second 

load stage. This step converts the previous damage into equivalent cycles. 

Step 3: To calculate the damage (𝐷2) after the second stress level (𝑆2) fatigue loading, the 

number of cycles (𝑁2) for the second stress level is added to 𝑁𝑒𝑞𝑣2 (equivalent cycles). By 

substituting the summed cycles (𝑁2 + 𝑁𝑒𝑞𝑣2) into the damage model and using the second stress 

level, 𝐷2 for the residual strength is estimated.  

Step 4: The third stress level (𝑆3) is substituted into the damage model in order to obtain the 

equivalent cycles 𝑁𝑒𝑞𝑣3. Subsequently, the value of N in the damage model is replaced by the 

summation of 𝑁𝑒𝑞𝑣3 and 𝑁3  as described for 𝐷2   in Step 3. 

Step 5: By substituting the summed number of cycles (𝑁3 + 𝑁𝑒𝑞𝑣3) and the third stress level 

(𝑆3) in the damage model, 𝐷3 can be estimated. 

Based on this concept, the value of the estimated damage takes into account the previous damage. 

For more variable fatigue loading, this procedure continues until the last variable load is reached. 

The procedure described for concrete strength under variable fatigue loading can also be used 

for the residual fatigue secant modulus; hence, similar to residual strength of concrete, the 

degradation of the concrete fatigue secant modulus can also be predicted appropriately under 

different loading conditions. 

2.7 Conclusions 

Based on the results of the experimental and analytical work conducted, the following 

conclusions were derived: 
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1. The behaviour of concrete elements under fatigue loading can vary greatly, and depends 

on various factors which should be incorporated in the fatigue analysis of concrete for 

meaningful predictions and results. 

2. In the development of damage models, the use of secondary strain rates to estimate failure 

cycles is a reasonable alternative to the use of S-N models. 

3. The residual strength and fatigue secant modulus of concrete do not deteriorate to zero as 

expected in theory; hence, the use of critical damage values is appropriate as observed from 

experimental results. 

4. The evolution of the maximum strain is phased into three stages (normalized profiles in 

Figure 2.3). The three stages were observed in all specimens tested, although the gradients of 

the evolutions were influenced by the loading parameters (e.g., stress level, frequency). 

5. The proposed damage models for concrete residual strength and fatigue modulus give 

reasonable correlations to the observed experimental data and represent an improvement on 

previously available models as shown in Figure 2.12. 

6. Although an approach which accounts for the sequence effect of loading has been 

proposed for variable fatigue loading, the predictability of this approach requires verification 

using variable fatigue loading tests of concrete. 

7. Further experiments and verifications, especially for a very high number of cycles to 

failure, are required in order to more fully establish the validity of the proposed models. 

2.8 Notation 

The following symbols are used in this chapter: 



50 
 

a: material parameter 

b: material parameter 

c: material constant 

𝐶𝑓 : frequency factor 

D : damage  

𝐷𝑐𝑟 : critical damage 

𝐸: fatigue secant modulus 

𝐸𝑆𝑒𝑐 : static secant modulus  

f : frequency  

𝑓′
𝑐
 : compressive strength 

 K: constant  

𝑘1: constant  

N : number of load cycles  

𝑁𝑒𝑞𝑣: equivalent cycles 

𝑁𝑓 :  numbers of cycles at failure   

s : constant parameter 

𝑆𝑚𝑎𝑥: maximum stress level  

R: stress ratio 

𝑇 : period of fatigue cycle 

u: damage parameter 

v : damage parameter  

𝛽 : material constant 

 𝛽2 : material constant 



51 
 

𝛾2: material constants   

∆𝜀 : fatigue strain range  

∆𝑓 : maximum stress level  

𝜀𝑐𝑣 : strain corresponding to the stress range (𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛) using the monotonic stress-strain curve     

𝜺𝑆𝑒𝑐 : secondary strain rate 

𝜁 : dimensionless coefficient 

𝜎𝑚𝑎𝑥: maximum stress level  

𝜎𝑚𝑖𝑛 : minimum stress level     
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CHAPTER 3 

SIMPLIFIED CONSTITUTIVE MODEL FOR FATIGUE BEHAVIOUR OF 

CONCRETE IN COMPRESSION 

The material in this chapter was previously published as follows: 

Isojeh B., El-Zeghayar M., and Vecchio F.J (2017). “Simplified Constitutive Model for Fatigue 

Behaviour of Concrete in Compression.” ASCE Journal of Materials in Civil Engineering, DOI: 

10.1061/(ASCE)MT.1943-5533.0001863. 

3.1 Abstract 

In the literature, three basic assumptions are used to modify monotonic constitutive models in 

order to simplify the fatigue analysis of concrete. First, the fatigue hysteresis loop at failure is 

assumed to intersect the monotonic stress-strain envelope. Second, it is assumed that the peak 

stress of a fatigue-damaged concrete element intersects the monotonic stress-strain envelope. 

Third, the centerlines of the fatigue hysteresis loops are assumed to converge at a common point. 

Although the modifications supposedly lead to improved predictions, experimental verifications 

of these assumptions are currently insufficient to justify their implementation in the fatigue 

analysis of complex and large concrete structures where considerations of safety and cost 

effectiveness are paramount. From experimental verifications conducted to ascertain the 

conservative level of these assumptions, it was found that the first and second assumptions seem 

reasonable, while the third assumption is inaccurate and thus is in need of improvement. As 

such, a new convergence point is proposed. The constitutive models for high and normal strength 

concrete in compression are also modified as functions of the irreversible strain and residual 

strength. Further, a model is proposed for the irreversible strain accumulation, and its 

corroboration with experimental results shows good agreement. 
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3.2 Introduction 

In the design of fatigue-prone concrete structures, fatigue life models for concrete are used to 

verify the resistance of critical components. Basically, the verification ensures that fatigue 

failure will not occur during service life (Su and Hsu, 1998). 

One such model used is the stress-life model (S-N curve). An S-N curve is a plot of normalized 

stresses (with material strength) against the corresponding numbers of cycles at which failure 

occurs. Provided that the induced stress in the concrete element, corresponding ultimate strength, 

and other influencing factors such as frequency are taken into consideration, the number of cycles 

to failure can be estimated. 

Investigations conducted on the influence of frequency on the fatigue life of concrete by Sparks 

and Menzies (1973), Raithby and Galloway (1974), Holmen (1982), Zhang et al.(1996), and 

Medeiros et al. (2015) all indicate that the number of cycles leading to failure decreases as the 

frequency of loading decreases. This behaviour has been observed to be more pronounced as the 

maximum fatigue stress level increases (Torrenti et al., 2010). 

Although the influence of loading parameters can be observed in the estimated number of cycles 

leading to failure, stress-life models do not account for the progressive degradation of concrete 

properties under fatigue loading. Hence, the corresponding influence of frequency in progressive 

damage cannot be observed (Zanuy et al., 2007; Tamulenas and Gelazius, 2014). In order to 

account for the progressive degradation of concrete, two alternative approaches have been used. 

In the first approach, certain assumptions are made for the relationship between monotonic 

stress-strain envelopes and evolving fatigue hysteresis loops. One such assumption is that the 

failure of a concrete specimen occurs at the instant when a fatigue stress-strain hysteresis loop 
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intersects the softening portion of a monotonic stress-strain curve (Figure 3.1) (Karsan and Jirsa, 

1969; Otter and Naaman, 1989; Cachim et al., 2002; Petryna et al., 2002; Torrenti et al., 2010). 

In subsequent sections, the monotonic stress-strain curve will be referred to as the stress-strain 

envelope. 

The peak stress point from a fatigue-damaged stress-strain curve is also assumed to intersect the 

descending portion of the stress-strain envelope (Petryna et al, 2002; Xiang et al., 2007). From 

this assumption, a constitutive model which considers the damage evolution of concrete residual 

strength can be developed for concrete. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1- Relationship between monotonic stress-strain curve and fatigue hysteresis loops. 

According to Park (1990), the centerlines of the hysteresis loops always pass through a common 

point irrespective of the stress level or stress range. Similarly, Xiang et al. (2007) also assumed 

that the initial tangential moduli of a damaged concrete element meet at a common point, 

although different from the point assumed by Park (1990). 

In Figure 3.1, 𝜀, 𝜀𝑑, and 𝐸𝑓𝑎𝑡 are the total strain, irreversible strain, and fatigue secant modulus, 

respectively. Provided the damage evolution models for any two of the parameters (total strain, 
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irreversible strain and fatigue secant modulus) are known, the damage evolution of the unknown 

parameter can be developed using the assumptions (Park et al., 1990; Xiang et al., 2007; Torrenti 

et al., 2010). 

Analytical results reported in the literature using the aforementioned approach and assumptions 

are acceptable (Park, 1990; Eligehausen et al., 1992; Petryna et al., 2002; Xiang and Zhao, 2007; 

Zuradzka, 2008). However, available experimental investigations on these assumptions are 

insufficient to ascertain their validity and to justify their conservative form in the fatigue analysis 

of concrete structures. 

The second approach involves the use of damage mechanics based on the thermodynamics of 

irreversible processes. In this approach, a damage variable or matrix is used to represent 

microcracks and microvoids. The damage matrix may be assumed to depend on the orthotropic 

nature of fatigue microcracks (Chaboche, 1981; 1988a, Lemaitre, 1986; Chaboche, 1988, 

Lemaitre and Chaboche, 1990; Vega et al, 1995; Zhang and Cai, 2010). 

The damage strain energy release rate required in this approach is derived from the strain energy 

with respect to the damage variable. In addition, the elastic strain is derived from the strain energy 

with respect to the applied stress. 

A damage-evolution function can be developed based on an incremental theory of plasticity in 

which multiple surfaces in stress space or strain energy release space are defined (Dafalias and 

Popov, 1977; Suaris et al., 1990; Al-Gadhib et al., 2000). However, a simplified concept which 

involves experimental data and a phenomenological approach can also be implemented to obtain 

models for damage evolution (Vega et al., 1995). 
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Verification studies via experiments with models developed from the second approach have also 

shown acceptable predictions. However, the approach involves extensive analysis. Since 

concrete is not homogeneous, constant and sufficient accuracy using this approach cannot be 

guaranteed. Further, the implementation of other salient factors in the derived fatigue-damage-

evolution models and the modification of the approach for variable fatigue loading will require 

more assumptions and further complexity in analysis. 

In this chapter, the assumptions reported in the literature are verified experimentally and a 

constitutive model for concrete elements under fatigue loading in compression is developed. 

The irreversible strain accumulation required in the constitutive model is proposed to be a 

function of the residual strength and fatigue secant modulus damage. The damage models for 

concrete strength and secant modulus used in the irreversible strain and constitutive models were 

developed previously (Chapter 2). 

3.3 Experimental Study 

Tests were conducted in order to verify the three basic assumptions used for simplifying the 

behaviour of concrete under fatigue loading. Monotonic tests were initially conducted on 

concrete cylindrical specimens in order to obtain the average compressive strength. Thereafter, 

percentages of the average strength were used as fatigue loads. 

In the first group of fatigue tests, 22 specimens were tested to different numbers of cycles at a 

constant stress level and subsequently subjected to monotonic loading. The obtained stress-strain 

curves from monotonic loading were plotted alongside the stress-strain envelope to observe the 

intersection of the peak stress of the stress-strain curves with the softening portion of the stress- 

strain envelope. In the second group of fatigue tests, 16 specimens were tested to failure under 
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constant fatigue loading, and the hysteresis loops were plotted. The centerline of each loop was 

extended in order to observe a convergence point. The intersection of the hysteresis loop at 

failure with the stress-strain envelope was also verified. The test procedures, the specimen 

tested, and the test observations are discussed subsequently.  

Servohydraulic testing equipment with a loading capacity of 1000 kN was used to conduct fatigue 

tests on concrete cylinders (100 mm diameter x 200 mm height). In all tests, the waveform of 

the applied fatigue loading was sinusoidal in nature. In order to measure the progressive average 

strains throughout the tests, LVDTs were mounted on opposite sides of each specimen. Figure 

3.2 shows the test set-up and LVDTs attached to a concrete specimen. 

Fig. 3.2 - Fatigue loading set-up. 

3.3.1 Test Specimens 

The concrete specimens were made from Portland cement (general use, GU), sand, and 

limestone aggregates (10 mm maximum size) with three different mix ratios. The concrete from 

the first two batches (Table 3.1) were cast using a mix proportion of 1: 2: 2 with a water/cement 

ratio of 0.5, indicating cement, sand, and coarse aggregate by weight respectively. Mix 
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proportion ratios of 1:2:3 with a water/cement ratio of 0.5 and 1:2:4 with a water/cement ratio 

of 0.6 were used for the third and fourth batches respectively. The static strengths of concrete 

after curing for 28 days were obtained for each batch (Table 3.1), while the fatigue tests were 

conducted 30 to 40 days after casting. 

  Table 3.1 - Average Compressive Strength and Corresponding Strain. 

Batch (# of 

Specimens) 

Average Compressive 

Strength  (MPa) 

Average Corresponding 

Strain (x 0.001) 

Mix 

Ratio 

1(5) 52.8 2.01 1:2:2 

2(3) 55.8 2.00 1:2:2 

3(3) 46.2 1.95 1:2:3 

4(3) 23.1 1.52 1.2.4 

Percentages of the average compressive strengths of the four batches (69% to 80 %) were used 

as maximum stress levels for the fatigue tests conducted on 16 specimens to failure (Table 3.2). 

The 22 specimens loaded to different numbers of cycles less than the number of cycles leading to 

failure at a constant maximum stress level of 0.74 (Table 3.3) and a frequency of 5 Hz are given 

in Table 3.3. A constant minimum load of 5 kN was used for all the tests conducted. The 

approach for estimating the fatigue secant modulus will be discussed in a subsequent section. 

Table 3.2 - Percentage of Average Compressive Strength for Fatigue Loading. 

Batch (# of 

Specimens) 

% of Average Comp. 

Strength (MPa) 

Average Compressive 

Strength  (MPa) 

Freq. 

(Hz) 

1(5) 74 52.8 5 

1(2) 69 52.8 5 

2(2) 80 55.8 5 

3(2) 74 46.2 5 

4(2) 75 23.1 5 

4(3) 75 23.1 1 

The progressive strain readings of the concrete cylinders (100 mm diameter x 200 mm height) 

tested under uniaxial constant fatigue loading in compression were obtained using a data 

acquisition system. The specimens tested to failure were used to verify Park’s (1990) assumption 
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and that of the intersection of the hysteresis loop with the stress-strain envelope at failure. The 

22 specimens tested to different numbers of cycles before failure were used to verify the 

assumption of the intersection of the peak stress with the softening portions of the stress-strain 

envelope. 

The servohydraulic testing equipment used was unable to properly capture the softening of 

concrete after attaining peak strength due to the insufficient stiffness of the MTS (Material 

Testing Systems) set-up used; hence, the average compressive strength and the corresponding 

average peak strain values obtained from monotonic tests were substituted into Popovics’ (1973) 

and Hognestad’s (1954) stress-strain equations for high and normal strength concrete, 

respectively. The stress-strain curves generated were used as the stress-strain envelopes required 

to verify the intersection of the peak stresses for the statically loaded fatigue-damaged 

specimens. However, the stress-strain curves obtained from the experiments were also included 

in the plots. 

3.3.2 Failure Modes 

Figure 3.3 shows specimens in various damaged states. In all, hairline cracks parallel to the 

applied loading direction were initially observed. Thereafter, the cracks widened and finally 

failed in the form of faults. 

 

Fig. 3.3 - Specimens in damaged states. 
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3.3.3 Experimental Results and Verification 

3.3.3.1 Fatigue Degradation 

The fatigue stress-strain hysteresis loops for the concrete cylinders tested are shown in Figures 

3.4 to 3.7 for some of the tested specimens. The monotonic stress-strain curves obtained from 

the experiments conducted and from Popovics’ equation for high strength concrete (≥ 40 MPa) 

were plotted as envelopes for the hysteresis loops. In the case of normal strength concrete (< 40 

MPa), stress-strain curves generated from Hognestad’s constitutive equation were used. 

 

 

 

 

 

 

 

 

Fig. 3.4 - Fatigue degradation ST3 (𝑓𝑐
′ = 52.8 MPa) & H16 (𝑓𝑐

′ = 55.8 MPa).         

   
 

 

 

 

 

Fig. 3.5 - Fatigue degradation E5 (𝑓𝑐
′ = 52.8 MPa) & E10 (𝑓𝑐

′ = 52.8 MPa). 
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The fatigue hysteresis loops for each specimen tested were plotted using stress-strain values at 

intervals of cycles. As the specimen degradation became substantial, the intervals were reduced. 

  

 

 

 

Fig. 3.6 - Fatigue degradation I1 & I6 (𝑓𝑐
′ = 23.1 MPa) at 5 Hz.                   

 

 

 

 

Fig. 3.7 - Fatigue degradation I6 & I5 (𝑓𝑐
′ = 23.1 MPa) at 1 Hz. 
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along the approximate major axes (Figures 3.4 to 3.6). On the other hand, the shapes of the 
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were approximately linear and subsequently became concave with further increases in the 

number of cycles (Figure 3.7). This observation reveals the influence of the loading frequency 

on the shapes of the fatigue hysteresis loops for plain concrete in compression. 

From Figures 3.4 to 3.7, the last hysteresis loop at failure approached or intersected the softening 

portion of the stress-strain envelope. Generally, each last loop evolved between the softening 

portion of the experimental stress-strain curve and the stress-strain models used (Popovics’ and 

Hognestad’s). Hence, the assumption of the intersection of the last loop with the softening 

portion of the stress-strain envelope can be considered realistic. 

In order to verify the assumption proposed by Park (1990), the centerline of each hysteresis loop 

plotted was extended to cross a horizontal line drawn at an ordinate of −𝑓𝑐
′ ( 𝑓𝑐

′ is the compressive 

strength value) as shown in Figures 3.4 to 3.7 (others are given in Appendix C). The required 

slopes (fatigue secant moduli) for the hysteresis loops with concave reloading paths were 

obtained by extending centerlines drawn between ordinate points (0.25𝑓𝑐
′) and tangents at lower 

points on the hysteresis loops.   

The point A indicated in Figures 3.4 to 3.7, with a coordinate of (-0.5𝜀𝑐
′ , −𝑓𝑐

′) (𝜀𝑐
′  is the strain 

corresponding to the peak stress), corresponds to the convergence point proposed by Park (1990). 

As observed, Park’s convergence point underestimates the fatigue modulus of degraded concrete. 

This is due to the assumption that the initial concrete fatigue secant modulus is equal to the static 

secant modulus. Based on the observed results, the fatigue secant modulus of concrete is 

generally higher than the static secant modulus. From the observed hysteresis loops (Figures 3.4 

to 3.7), the initial centerline meets a coordinate point at approximately (-0.3𝜀𝑐
′ , −𝑓𝑐

′). Subsequent 

centerlines deviate from the point as the irreversible strain accumulates. As the damage becomes 
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substantial (more inclined loops), the centerlines tend towards the initial convergence point. 

Hence, from the geometry of the stress-strain plots (Figures 3.8 and 3.9), an assumed 

convergence point of (-0.3𝜀𝑐
′ , −𝑓𝑐

′) is proposed.  

 

Fig. 3.8 - Fatigue degradation (high frequency). 

 

Fig. 3.9 - Fatigue degradation (low frequency). 
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to the minimum stress point on each hysteresis loop (Figures 3.8 and 3.9). 

As the cycles increased, the distance between each centerline and the point corresponding to the 

minimum stress level on the fatigue hysteresis loops increased progressively. This is attributed 

to the subsequent inclination of the loops and a strain evolution due to the minimum applied 

stress under static condition. 

The strain due to the minimum stress level under static condition (i.e., at the lower turning point 

of the fatigue loading) is a function of the static secant modulus evolution. However, at zero 

minimum stress level, the value is null. Based on the proposed assumption and from the 

geometries in Figure 3.8 or Figure 3.9, a model was proposed for the irreversible fatigue strain 

(𝜀𝑑) as follows: 

 

For 0.3𝑁𝑓 ≤N≤ 𝑁𝑓   (𝑁𝑓 is the number of cycles to failure and N is the fatigue loading cycles) 

                                                  𝜀𝑑 = 𝜀 - ∆𝜀                         (3.1) 

where                                       𝜀𝑑 =𝜀𝑑𝑜 + 𝜀𝑑1 + 𝜀𝑑2 

∆𝜀 is the fatigue strain range, 𝜀𝑑𝑜 is the strain due to loops centerlines convergence,  𝜀𝑑1 is the 

strain due to the hysteresis loop inclination, and 𝜀𝑑2 is the strain  due to the minimum stress at the 

turning point of fatigue loading. 

                                          𝜀𝑑𝑜 = −(
𝑓𝑐

′+(𝜎𝑚𝑎𝑥 𝑅)

𝐸
) − 0.3 𝜀𝑐

′                      (3.2) 

                                                 𝜀𝑑1 = 𝑘2𝑞 (
𝐷𝑓𝑐

√𝐷𝑐𝑒
)                                                   (3.3)  

         𝜀𝑑2 = 
(𝜎𝑚𝑎𝑥 𝑅)

𝐸𝑠𝑒𝑐
                             (3.4) 

E is the fatigue secant modulus, 𝑘2 is 1.0 for high strength concrete and 2.0 for normal strength 

concrete, q in Figures 3.8 and 3.9 is equal to −0.3 𝜀𝑐
′ , R is the stress ratio, 𝜎𝑚𝑎𝑥 is the maximum 
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stress level, and 𝐸𝑠𝑒𝑐 is the degraded static secant modulus. The models for  𝐷𝑓𝑐 (concrete strength 

damage) and 𝐷𝑐𝑒 (fatigue secant modulus damage) used were previously proposed by Isojeh et al. 

(2017) and are given in Section 2.5 (Chapter 2). 

As reported in the literature, the first stage of deformation under fatigue loading is characterized 

by cyclic creep. As such, the irreversible strain for any number of cycles less than 30% of the 

cycles leading to failure (𝑁𝑓) is estimated as a function of the irreversible strain at 0.3, where the 

irreversible strain at 0.3 is estimated using Equations 3.1 to 3.4. Hence, for N < 0.3𝑁𝑓,  

                                                   𝜀𝑑 =  𝜀𝑑3 (
𝑁

0.3𝑁𝑓
)
𝛿

                                          (3.5) 

𝜀𝑑3 is the irreversible strain (𝜀𝑑) value at 0.3𝑁𝑓. The value of 𝛿 (fatigue creep constant) can be 

taken as 0.3. The implementation of the irreversible strain model into constitutive models for 

normal and high strength concrete will be discussed in a subsequent section. 

3.3.3.3 Strength Degradation 

The results of the 22 cylindrical specimens tested for strength degradation are presented in Table 

3.3. Figures 3.10 to 3.15 show the residual strengths and corresponding strain evolutions after 

loading each specimen to the number of cycles specified in Table 3.3. As observed from the stress- 

strain plots shown in Figure 3.10 and the maximum strain evolution plots shown in Figure 3.11, 

an obvious degradation of concrete strength began after a substantial number of cycles had been 

applied to a specimen, as in the case of specimen ST2. 

From Figures 3.10 and 3.11, there was no obvious strength deterioration within the primary phase 

and within a large portion of the secondary phase of damage for the strain evolution. The obvious 

strength deterioration in specimen ST2 corresponds to the tertiary stage of damage. From Figures 
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3.10, 3.12 and 3.14, the assumption that the peak stress of the degraded stress-strain curve after 

fatigue loading intersects the stress-strain curve envelop at a point on the softening portion is 

considered reasonable. 

 

Fig. 3.10 - Residual strength (Batch 1). 

 

Fig. 3.11 - Strain evolution corresponding to residual strength for Batch 1. 

0

20

40

60

0 1 2 3 4

C
o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

Strain (x 10-3)

POPOVIC'S MODEL

UNDAMAGED STRESS-STRAIN CURVE (1B)

E22 (430 CYCLES)

ST2 (3480 CYCLES)

E17 (7727 CYCLES)

E1 (8157 CYCLES)

0.4

0.8

1.2

1.6

2

0 2 4 6 8 10

M
ax

im
u
m

 s
tr

ai
n
 (

x
 1

0
-3

)

Number of cycles (x 103)

E22 (430 CYCLES)

ST2 (3480 CYCLES)

E17 (7727 CYCLES)

E1 (8157 CYCLES)



72 
 

 
 

Fig. 3.12 - Residual strength (Batch 2). 

 

 

 
 

Fig. 3.13 - Strain evolution corresponding to residual strength for Batch 2. 
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Fig. 3.14 - Residual strength (Batch 3). 

 

 

Fig. 3.15 - Strain evolution corresponding to residual strength for Batch 3. 
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Table 3.3 - Strength and Secant Modulus Degradation Test Data. 

Specime

n 

Initial 

compressive 

strength  𝒇𝒄
′  

Number of 

cycles before 

static loading 

Residual 

strength after 

static loading 

(MPa) 

Residual 

fatigue 

modulus 

(MPa) 

Corresponding 

static secant 

modulus 

(MPa) 

E22 52.8 430 54.9 68900 41900 

E9 52.8 430 54.4 58100 38500 

E20 52.8 860 55.1 65100 40200 

E11 52.8 860 53 58800 37100 

E4 52.8 5150 55.3 62000 39000 

E17 52.8 7730 52.3 55200 35000 

E1 52.8 8160 53.4 53300 35500 

ST2 52.8 3480 46.5 44200 30500 

G3 46.2 5550 41.7 33400 23500 

G7 46.2 5880 38.6 30100 21600 

G8 46.2 18100 36.3 31400 21900 

G9 46.2 6180 32.9 25800 17600 

H1 55.8 5000 51.4 50200 31800 

H3 55.8 1200 58.1 61800 39700 

H9 55.8 3000 56.2 57600 36800 

H4 55.8 6120 45.6 45100 29200 

H5 55.8 5840 49.2 43900 28800 

H6 55.8 7900 44.7 42800 28300 

H7 55.8 4680 36.1 37200 a 

H11 55.8 6710 52.5 54300 34600 

H14 55.8 9870 46.8 38800 26700 

H15 55.8 8660 37.9 33300 a 

aFailed before reaching maximum fatigue load applied 

Figure 3.16 and Equations 3.6 and 3.7 describe the procedure for estimating the static and fatigue 

secant moduli of concrete, E and 𝐸𝑠𝑒𝑐, respectively, for each of the 22 specimens tested. The results 

are shown in Figure 3.17. From Figure 3.17, it can be observed that the ratios are fairly constant 

throughout the evolution and the damage evolution for both are similar. Hence, the value of the 

ratio of the fatigue secant modulus to the static secant modulus can be assumed to be between 1.3 

and 1.6. Based on this observation, and provided that the initial static secant modulus for concrete 

is known, the value of the fatigue secant modulus can be taken as 1.5 and 1.45 times the static 

secant modulus for high and normal-strength concrete, respectively. In Equations 3.6 and 3.7, 𝜎𝑚𝑖𝑛 
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= minimum stress level, ∆𝜀 = fatigue strain range, and 𝜀𝑐𝑣 = strain corresponding to the stress range 

(𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛) on the monotonic stress-strain curve.  

                                                    E =
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

∆𝜀
                                (3.6) 

                                        Esec = 
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

𝜀𝑐𝑣
                         (3.7) 

 

Fig. 3.16 - Static and fatigue secant moduli. 

 

Fig. 3.17 - Plot of the ratio of the fatigue secant modulus (e) to the static secant modulus against 

normalized number of cycles. 
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of a concrete element under a monotonic loading, provided the concrete peak stress (or 

compressive strength), induced effective strain, and the strain corresponding to the peak stress are 

known. Based on the assumption of the intersection of the peak stress of a damaged concrete 

specimen with the softening portion of the stress-strain envelope, the Hognestad parabolic 

equation can be used to obtain the strain corresponding to the degraded strength and, as such, a 

damage constitutive model can be developed for concrete under fatigue loading by modifying 

the peak strength and the strain corresponding to the peak stress (Figure 3.18). The Hognestad’s 

equation is modified thus 

 

                                                            (
εc2

εp
)
2

−
2εc2

εp
+

𝑓𝑐2

𝑓𝑝
 = 0                         (3.8) 

𝑓𝑐2 is the principal compressive stress, 𝑓𝑝 is the peak concrete compressive stress (equal to 𝑓𝑐
′) , 𝜀𝑝 

(equal to 𝜀𝑐
′) is the compressive strain corresponding to 𝑓𝑝, and 𝜀𝑐2 is the average net strain in the 

principal compressive direction. 

Based on the assumption (1 − 𝐷𝑓𝑐) 𝑓𝑝 = fc
∗, and 𝑓𝑐2= fc

∗                                         

     (
𝜀2
∗

εp
)
2

−
2𝜀2

∗

εp
+

(1−𝐷𝑓𝑐) 𝑓𝑝

𝑓𝑝
 = 0                       (3.9) 

(
𝜀2
∗

εp
)
2

−
2𝜀2

∗

εp
+ (1 − 𝐷𝑓𝑐) = 0                  (3.10) 

 𝜀∗
2 is the total strain at peak stress intersection point with stress-strain envelope, and fc

∗ is the 

degraded concrete strength. 

Solving the equation for the total strain corresponding to the new degraded strength gives 

 𝜀2
∗= εp (1+√𝐷𝑓𝑐)             (3.11) 

From Figure 3.18, it can be observed that the value of  𝜀2
∗ also includes the strain offset ( 𝜀𝑑), hence 

the strain corresponding to the peak stress of the degraded concrete strength 𝜀𝑐
∗ is given as: 
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  𝜀𝑐
∗ =𝜀2

∗ - 𝜀𝑑              (3.12) 

𝜀𝑐
∗ = εp (1+√𝐷𝑓𝑐) - 𝜀𝑑            (3.13) 

where 𝜀𝑑 can be obtained from Equations 3.2 to 3.4,  εp is equal to the concrete compressive strain 

corresponding to the peak stress of undamaged concrete, and 𝐷𝑓𝑐 (concrete strength damage factor) 

can be estimated as described by Isojeh et al. (2017a) (also given in Chapter 2, Section 2.5). 

 

Fig. 3.18 - Modified Hognestad’s stress-strain curve for damaged concrete. 

3.4.2 High Strength Concrete 

Popovics stress-strain model was modified for fatigue-damaged concrete for high strength 

concrete. The approach is similar to that for normal strength concrete (see Figure 3.19). However, 

to obtain the strain corresponding to the degraded strength, an iterative method is required such as 

the Newton-Raphson method; thus 

                                          𝑓𝑐2 =𝑓𝑝
𝑛(𝜀𝑐2/𝜀𝑝)

(𝑛−1)+(𝜀𝑐2/𝜀𝑝)
𝑛𝑘                         (3.14) 

where, according to Collins et al. (1997): 

                                                      n = 0.80-𝑓𝑝/17 (in MPa)                     (3.15) 
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                                                      k = 0.6 −
𝑓𝑝

62
                𝑓𝑜𝑟    𝜀𝑐2 < 𝜀𝑝 < 0                          (3.16) 

n is a curve fitting parameter for stress-strain response of concrete in compression, and k is a post-

decay parameter for stress-strain response of concrete in compression.   

 

Fig. 3.19 - Modified Popovic’s stress-strain curve for damaged concrete. 

From Equation 3.14, 𝜀𝑐2/𝜀𝑝 can be assumed to be t and 𝑓𝑐2 = (1 − 𝐷𝑓𝑐) 𝑓𝑝; hence: 

                                                      (1 − 𝐷𝑓𝑐)  = 
𝑛𝑡

(𝑛−1)+𝑡𝑛𝑘                                  (3.17) 

Rearranging,                                𝑓(𝑡𝑖) = n-1+𝑡𝑛𝑘- 
𝑛𝑡

(1−𝐷𝑓𝑐)  
 = 0                     (3.18) 

Using Newton-Raphson’s method and differentiating Equation 3.18 with respect to t: 

                                           𝑚′ = nk𝑡𝑛𝑘−1 - 
𝑛

(1−𝐷𝑓𝑐)  
                                     (3.19) 

where 𝑚′ is the differentiation of Equation 3.18. 

                                                        𝑡𝑖+1 =𝑡𝑖 – 
𝑓(𝑡𝑖)

𝑚′
                           (3.20) 

𝑡𝑖 is the initial value of t assumed and 𝑡𝑖+1 is the value of the next step computed using Equation 

3.20. Provided |
𝑡𝑖+1−𝑡𝑖 

𝑡𝑖 
| is small enough, then the value of t =𝑡𝑖+1. Hence, 𝜀2

∗ and 𝜀𝑐
∗ can be obtained 

as described for normal concrete and in Figure 3.19.  
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3.5 Verification of Proposed Model for Irreversible Strain 

       The model developed for fatigue irreversible strain was corroborated using the experiment results 

from Batches 1 and 4 for high and normal strength concrete, respectively. The irreversible strain  

 

Fig. 3.20 - Irreversible fatigue strain for high strength concrete (stress level: 0.74). 

 

Fig. 3.21 - Irreversible fatigue strain for normal strength concrete. 
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evolution for seven high strength concrete specimens, tested under fatigue loading at a 

maximum stress level and minimum force of 0.74 and 5 kN, respectively, were plotted as shown 

in Figure 3.20. The specimens were all tested at a frequency of 5 Hz. 

Figure 3.21 shows the irreversible strain plot for normal-strength concrete specimens. As 

previously indicated, the irreversible strain model incorporates residual strength and secant 

modulus damage models which, in turn, are functions of loading parameters such as frequency. 

Specimen I5 and I8 were tested at a frequency of 1 Hz, while specimen I6 was tested at 5 Hz. Due 

to the stochastic nature of concrete observed in the number of cycles to failure at a stress level of 

0.75, the maximum stress level corresponding to the number of cycles at failure was estimated for 

each specimen using a backward approach from Zhang et al.’s (1998) S-N model. The stress levels 

for Specimens I5, I8 and I6 were observed to be 0.73, 0.75, and 0.80 respectively. Each stress 

level was further used to estimate the progressive damage for residual strength and secant 

modulus per cycle and implemented into Equations 3.2 to 3.5 for each cycle. The procedure for 

estimating the irreversible strain is described subsequently in Figure 3.22. A program was written 

to generate the irreversible strain per loading cycle. 

3.6 Conclusions 

From the investigations conducted, the following can be deduced: 

 The intersections of the fatigue hysteresis at failure and the stress-strain curve of a 

fatigue-damaged concrete with the stress-strain envelope were found to be realistic, 

taking into account the well-known stochastic behaviour of concrete. However, the 

common point at which the centerlines of fatigue hysteresis loops converge required 

modification in order to enhance the simplified constitutive model; 
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Fig. 3.22 - Steps for estimating the irreversible strain of concrete under fatigue loading in 

compression. 

 Having observed the fact that the fatigue secant modulus is generally higher than the 

corresponding static secant modulus, a more accurate fatigue-deformation prediction can 

From static analysis, estimate the initial stress (𝑓𝑐2𝑚𝑎𝑥) and (𝑓𝑐2𝑚𝑖𝑛) (maximum and 

minimum stress levels), and the initial static secant modulus; modify the value for the 

initial fatigue secant modulus using appropriate factors. 

STEP 1 

Estimate the number of cycles to failure due to 

the applied stresses and the loading conditions 

(frequency, waveform), using the modified 

model by Zhang et al. (1998). 

STEP 2 

Estimate the strength and secant modulus 

damage at 0.3𝑁𝑓 and for the required cycle (s) 

as illustrated in Isojeh et al. (2017) (Chapter 2). 

STEP 3 

Estimate the irreversible strain using Equations 

3.2 to 3.5 for the first cycle. For subsequent 

cycles under constant fatigue loading, go to 

 

     

 

    For variable fatigue loading, go to 

 

 

For both cases of loading, the previous damage 

before the next cycle should be converted to an 

equivalent cycle, as illustrated in Isojeh et al. 

(2017) (Chapter 2). 

STEP 4 
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be obtained using the modified convergence coordinate proposed; 

 The conducted investigation shows the influence of the loading frequency on the shape of 

the fatigue hysteresis loops. This should be accounted for in any hysteresis loop model. 

However, since high-cycle fatigue loading involves a large number of hysteresis loops, 

expressing the fatigue behaviour of concrete using maximum deformation evolutions 

saves computation time; 

 Using the proposed constitutive models for concrete under fatigue loading, the 

deformation evolution of a concrete element can be estimated per cycle since the 

progressive damage of concrete strength and stiffness, and the irreversible strain 

accumulation, are accounted for; 

 There is a reasonable correlation between the theoretical and the experimental plots for 

the irreversible strains. As such, the proposed irreversible strain models can be used for 

estimating the required fatigue prestrain, provided the progressive variation in loading is 

taken into account; 

 More investigation on the implementation of the proposed models into the fatigue analysis 

of reinforced concrete structures is required in order to study the interaction between 

fatigue-damaged concrete and other constituent materials. 

3.7 Notations 

The following symbols are used in this chapter: 

𝐷𝑐𝑒 : damage value for fatigue secant modulus  

 𝐷𝑓𝑐 : damage value for concrete strength 

𝐸: fatigue secant modulus 

𝐸𝑆𝑒𝑐 : static secant modulus  
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f : frequency  

𝑓𝑐2 : principal compressive stress 

𝑓𝑝 : peak concrete compressive stress 

𝑓′
𝑐
 : compressive strength 

𝑓∗
𝑐
 : degraded compressive strength 

k: post-peak decay parameter for stress-strain response of concrete in compression 

𝑘2 : strain factor (1.5 for high strength and 1.45 for normal strength concrete) 

n: curve fitting parameter for stress-strain response of concrete in compression 

N : number of cycles  

𝑁𝑓 :  number of cycles at failure  

𝑁𝑒𝑞𝑣: equivalent cycles 

q: abscissa of proposed convergence point 

R: stress ratio 

𝑆𝑚𝑎𝑥 : maximum stress level 

∆𝜀 : fatigue strain range  

∆𝑓 : maximum stress level 

𝛿 : fatigue creep constant 

𝜀 : total fatigue strain 

𝜀𝑐2 : average net concrete axial strain, in the principal compressive direction 

𝜀𝑐𝑣 : strain corresponding to the stress range (𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛) using the monotonic stress-strain curve  

𝜀𝑑𝑜 : irreversible strain due to loop centerline convergence   

𝜀𝑑1 : irreversible strain due to the hysteresis loop inclination 

𝜀𝑑2 : irreversible strain  due to the minimum stress level under static condition 
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𝜀𝑑3 : irreversible strain  at 0.3𝑁𝑓 

𝜀𝑑 : irreversible fatigue strain 

𝜀′
𝑐 : strain corresponding to peak stress  

𝜀∗
2 : total strain at peak stress intersection point with stress-strain envelope 

𝜀𝑝 : concrete compressive strain corresponding to 𝑓𝑝  

𝜎𝑚𝑎𝑥 : maximum stress level  

𝜎𝑚𝑖𝑛 : minimum stress level   
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CHAPTER 4 

FATIGUE BEHAVIOUR OF STEEL-FIBRE CONCRETE IN DIRECT TENSION 

The material in this chapter was previously published as follows: 

Isojeh B., El-Zeghayar M., and Vecchio F.J (2017). “Simplified Constitutive Model for Fatigue 

Behaviour of Concrete in Compression.” ASCE Journal of Materials in Civil Engineering, DOI: 

10.1061/(ASCE)MT.1943-5533.0001949. 

4.1Abstract 

An investigation was conducted to study the behaviour of plain concrete and steel fibre reinforced 

concrete under direct tension fatigue loading. Tests were conducted on dogbone specimens with 

varying amounts of steel fibre volume content (0%, 0.75%, and 1.5%). A new concept was 

introduced in deriving material damage parameters for plain and steel fibre concrete. The 

parameters developed were implemented into a damage evolution function to enable the 

prediction of concrete strength and fatigue secant modulus deterioration of steel fibre reinforced 

concrete. As such, the damage evolution models developed for steel fibre concrete can be 

implemented into steel fibre reinforced concrete constitutive models for the analysis of fatigue-

damaged concrete elements. From the experimental results, it was found that the deformation 

profiles for plain and steel fibre concrete were similar, and that the well-known relationship 

between the fatigue life and secondary strain rate of concrete in compression also exists for plain 

concrete and steel fibre concrete in tension. In addition, under the same loading parameters, the 

fatigue life of steel fibre concrete was found to increase as the steel fibre content increased from 

0% to 1.5%. 

4.2 Introduction 

The deterioration of a concrete element evolves as cracked planes emanate in concrete under 
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fatigue loading. In reinforced concrete elements, the initiation of macrocracks results in 

localized stress increments in the embedded reinforcement. Depending on the magnitude of the 

induced stress, a crack may initiate on a reinforcing bar at its intersection with the cracked 

concrete plane and subsequent fatigue loading cycles may result in widening of the concrete 

cracks. Ultimately, fracture of the reinforcement may occur as the reinforcing bar cracks 

propagate. 

The presence of concrete cracks and excessive opening under fatigue loading may result in 

serious durability issues such as accelerated reinforcement crack growth (arising from a more 

corrosive environment) and reduced stiffness of the overall structural element. As such, a majority 

of fatigue-prone concrete structures such as highways, airport pavements, offshore structures, 

and wind turbine foundations are usually designed to ensure cracking of concrete is held to a 

minimum (Vega et al., 1995; Guo, 2014). 

Because cracks are inevitable in some concrete structures, developing a means of ensuring that 

their evolution is prevented by crack-bridging is imperative. However, designs of fatigue-prone 

concrete structures against excessive cracking under tensile fatigue loading require adequate 

knowledge of the fatigue life of concrete in tension and its corresponding deformation 

evolutions. 

Reports in the literature have shown that steel fibre possesses crack-bridging attributes which 

restrain the opening of cracks under fatigue loading. As such, its use has been employed in 

various structural elements such as concrete pavements, bridge decks, and machine foundations 

(Zhang et al., 1999). Experimental investigations on steel fibre concrete portraying crack-

bridging and enhanced fatigue life attributes have been reported in the literature using flexural 
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fatigue tests on steel fibre concrete prisms. Test reported by Ramakrishnan et al. (1989), 

Chenkui and Guofan (1995), Nanni (1991), Chang and Chai (1995), and Naaman and Hammoud 

(1998) all indicate enhanced fatigue life through crack arrests. 

To predict the fatigue life of plain concrete elements, stress-life models have been developed in 

the literature for concrete under tension and compression fatigue loading (Tepfers, 1979; Oh, 

1986; Torrenti et al., 2010; FIB, 2010). Such models relate the ratio of the maximum stress level 

(ratio of applied stress to concrete strength) to the number of cycles resulting in fatigue failure. 

However, a concrete material parameter obtained from experiments and other known loading 

parameters such as the stress ratio (ratio of the minimum stress level to the maximum stress 

level) are required in such models for reasonable predictions. 

4.3 Material Parameter in Aas-Jakobsen’s S-N Model 

It widely accepted that the Aas-Jakobsen and Lenshow linear model (Equation 4.1) can be used 

to estimate the fatigue life of plain concrete in tension, compression, and flexure. The model 

shows the relationship between the fatigue strength of concrete after a given number of cycles 

and the ratio of the minimum to maximum stress level. The material parameter (𝛽) required in 

the model proposed by Aas-Jakobsen and Lenshow was 0.064. Oh (1986), having conducted 

flexural tests on plain concrete, proposed a material parameter of 0.069. To account for other 

plain light-weight concrete, Tepfers and Kutti (1978) proposed a material parameter of 0.0685. 

                                                       Smax = 1-𝛽 (1 − 𝑅)𝐿𝑜𝑔 𝑁𝑓                                                  (4.1) 

In Equation 4.1, Smax is the ratio of the maximum stress level to the concrete compressive strength, 

𝑁𝑓 is the number of cycles to failure, and  𝑅 is the stress ratio (minimum stress level (𝜎𝑚𝑖𝑛) to 

maximum stress level (𝜎𝑚𝑎𝑥)).    
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As a means of predicting the fatigue life of steel fibre concrete using the Aas-Jakobsen stress- 

life model, Singh and Kaushik (2001) developed material parameters for steel fibre concrete with 

fibre volume contents of 0.5%, 1.0% and 1.5% using flexural fatigue tests, obtaining values of 

0.0536, 0.0425, and 0.0615, respectively. Although the attempt seems reasonable, the material 

parameters obtained indicated a lower fatigue life as the steel fibre volume increases from 1.0% 

to 1.5%. The proposed material parameters also exhibited higher fatigue life for steel fibre 

concrete with a volume content of 0.5% compared with steel fibre concrete with a volume content 

of 1.5%. These contradict the trend reported by previous investigators (Chang and Chai, 1995; 

Chenkui and Guofan, 1995). 

As an alternative to the estimation of fatigue life, strain evolution models have been used in the 

literature. According to Sparks and Menzies (1973), Cornelissen and Reinhardt (1987), and 

Taliercio and Gobbit (1996), the fatigue life of a concrete element can be predicted from its strain 

evolution because a correlation was found to exist between the secondary strain rate and the 

number of cycles to failure. From experimental investigations reported in the literature, this 

approach is not significantly affected by the stochastic nature of concrete. However, the use of 

such models still requires the fatigue stress levels. 

Equation 4.1 can be expressed as: 

                                                          Log (1-Smax) = Log 𝛽+ VLog (Log Nf)                             (4.2) 

 where V= (1-R) k, and k is a constant. 

From the correlation between the secondary strain rate and the number of cycles to failure, 

                                                          Log (LogNf) = A+ B Log𝜀𝑠𝑒𝑐                                         (4.3) 

where 𝜀𝑠𝑒𝑐 is the secondary strain rate, and A and B are constants to be obtained from experiments. 

A power law correlation (nonlinear) was initially proposed by Sparks and Menzies (1973); 
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however, the correlation between the number of cycles resulting in fatigue failure and the 

secondary strain rate is expressed in a linear form (Equation 4.3) by the authors in order to simplify 

the analysis required for deriving the material parameter 𝛽 for plain and steel fibre concrete. The 

corroboration of the model with experimental data is presented in a subsequent section. 

A relationship between Log (1-Smax) and the secondary strain rate (𝜀𝑠𝑒𝑐) can be given thus: 

                                                          Log (1-Smax) = C + D Log 𝜀𝑠𝑒𝑐                                             (4.4) 

C and D are constants obtained from experiments. 

From Equations 4.3 and 4.4, 

                                                         Log 𝜀𝑠𝑒𝑐 = 
 Log (LogNf)−A 

B
                      (4.5) 

                                                         Log 𝜀𝑠𝑒𝑐 = 
Log (1−Smax)−C

D
                                                     (4.6) 

From Equations 4.5 and 4.6, 

                                                         Log (1-Smax) = 
(C B)−(A D) 

B
 + 

D

B
 Log (LogNf)                         (4.7) 

                                                         T0 = 
(C B)−(A D) 

B
 

By comparing Equation 4.2 and Equation 4.7, the material parameter required in the S-N model 

can be obtained thus: 

                                                           𝛽 = 10T0                                                                           (4.8)  

In this investigation, direct tension fatigue tests are conducted using dogbone specimens. The 

dogbone specimens were initially developed by past researchers at the University of Toronto 

and elsewhere for direct tension tests under monotonic loading. Herein, the deformation 

evolution in terms of maximum strain evolution, strain rate, and hysteresis loops are plotted for 

the given steel fibre volume contents (0%, 0.75%, and 1.5%). The material constant 𝛽 is 

estimated for plain concrete and compared with previous values in the literature. Parameter 
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values are then developed for steel fibre volume contents of 0%, 0.75% and 1.5%. In addition, 

conservative damage models are proposed for the residual strength and fatigue secant modulus 

of steel fibre concrete. 

4.4 Experimental Program 

Experiments on the fatigue behaviour of plain and steel fibre reinforced concrete in direct 

tension were conducted using dogbone specimens with dimensions of 500 mm (length) x 200 

mm x 70 mm. Eight plain concrete specimens and 10 specimens reinforced with 0.75% and 1.5% 

steel fibre volume content were tested under fatigue loading. Two batches of concrete were cast 

for each fibre volume content (0.75% and 1.5%), whereas three batches were cast for plain 

concrete. At least two dogbones from each cast were tested under monotonic loading before the 

fatigue tests in order to observe the average tensile strength per batch. Percentages of the 

observed tensile strengths were used for the fatigue tests conducted between one and two months 

after casting. The average tensile strengths are given in Table 4.1. 

Table 4.1- Compressive Strength of Plain and Steel Fibre Concrete. 

Batch 

no. 

Average 

compressive 

strength (MPa) 

Standard 

deviation for 

compressive 

strength 

Average tensile 

strength (MPa) 

Steel fibre 

volume 

(%) 

Days  Date of cast  

(day/month/

year) 

Date of test 

(day/month/

year) 

1 63.1 1.34 3.5 0 34 12/11/2015 16/12/2015 

2 65.6 0.76 3.6 0 54 18/11/2015 11/1/2016 

3 74.2 2.4 3.7 0 40 18/3/2016 27/4/2016 

4 59.6 3.96 3.2 0.75 32 22/1/2016 23/2/2016 

5 52.2 4.91 3.5 0.75 34 26/2/2016 31/3/2016 

6 51.4 2.04 4.5 1.5 39 4/3/2016 12/4/2016 

7 56.2 3.88 4.1 1.5 46 11/3/2016 26/4/2016 

A design compressive strength of 50 MPa, having a mix ratio of 1:2:2 and water-cement ratio of 

0.5 was used for the cast. The mix ratio represents cement, fine aggregate (fineness modulus 2.6) 

and coarse aggregate (10 mm maximum size). High strength end-hooked steel fibres with volume 

contents of 0.75% and 1.5% (Dramix RC80/30BP) and an ultimate tensile stress capacity of 3070 
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MPa were used. The geometrical properties of the fibre included a 30 mm fibre length, a diameter 

of 0.37 mm, and an aspect ratio of 79. Table 4.1 also contains the compressive strengths and the 

corresponding standard deviation per batch of concrete cylinders tested under monotonic loading. 

Figure 4.1 shows the test set-up for the fatigue test in tension. The specimen shown in Figure 4.2, 

specifically for fatigue loading in direct tension, is a modification of dogbone specimens used for 

direct tension monotonic tests at the University of Toronto. Under monotonic loading, some 

specimens have been observed to fail because of bond slip between concrete and the threaded bars.  

 

 

 

 

 

 

 

 

 

Fig. 4.1: Test set-up. 

This was prevented by attaching crossbars or anchorage bars in order to enhance the bond between 

concrete and steel reinforcement (see Figure 4.2). Figure 4.2(a) shows the front elevation of the 

specimen (wider face), Figure 4.2(b) shows the side view of the specimen, and Figure 4.2(c) shows 
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one of the test specimens. LVDTs (Linear Variable Displacement Transducers) (attached on the 

four faces of each specimen) for measuring displacement and the attached mounting rigs are also 

indicated in Figure 4.2. 

The tests were conducted using an MTS (Material Testing Systems) servo-hydraulic testing 

equipment with a loading capacity of 245 kN. The ends of the threaded rods of the dogbone 

specimens were connected to the testing equipment as shown in Figure 4.1. A pulsating load of a 

continuous sinusoidal waveform, which acted to induce tensile stresses in the vertical direction of 

the specimen, was used throughout the investigation. Each specimen was mounted with attached 

linear variable displacement transducers (LVDTs) as shown in Figure 4.2. The LVDTs were used 

to measure average strains in the specimens throughout the duration of the fatigue tests. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 – Test specimen. 
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concrete dogbones. During fatigue loading, a frequency of 5 Hz (Hertz) and a minimum fatigue 

load of 2 kN were used for all specimens tested. 

4.5 Fatigue Test Results 

The results obtained from the experiments are presented in Table 4.2. The results are 

subsequently discussed in terms of the failure modes, hysteresis loops, maximum strain evolution, 

and secondary strain rates. 

Table 4.2 - Direct Tension Fatigue Test Results 

Specimen 

name 

Steel fibre 

volume (%) 

Stress level No. of cycles to 

failure 

Secondary strain 

rate ( x 10-8) 

TOF1 0 0.79 1540 1.32 

TOF2 0 0.78 1900 1.23 

TOF3 0 0.81 450 4.20 

TOF7 0 0.80 641 - 

TOF9 0 0.80 4052 2.04 

TKF1 0 0.77 29269 0.15 

TKF3 0 0.73 14566 0.03 

TKF4a 0 0.75 21244 0.10 

TT2 0.75 0.77 47182 0.09 

TT4b 0.75 0.77 - - 

TT5 0.75 0.90 64 11.10 

TT6 0.75 0.82 4664 0.22 

CF1 0.75 0.87 238 8.90 

CF2 0.75 0.79 18335 0.12 

CF3 0.75 0.88 302 4.36 

CF4 0.75 0.83 1528 1.35 

CF5 0.75 0.90 62 38.90 

CF6 0.75 0.81 5740 0.21 

X2 1.5 0.87 915 1.67 

X3 1.5 0.80 2998 0.50 

X5 1.5 0.83 4553 0.19 

X6 1.5 0.75 30391 0.06 

X7 1.5 0.78 9834 0.08 

DAB1c 1.5 - 200 6.37 

DAB2 1.5 0.83 4326 0.40 

DAB3 1.5 0.91 42 28.90 

DAB6 1.5 0.86 1029 1.54 

DAB7c 1.5 - 736 2.11 
a, b,c : unable to capture deformation data appropriately 

4.5.1 Failure mode 

Under fatigue loading, failure in tension for plain concrete specimens was observed to be localized 
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(discrete). More cracks (smeared) were observed around the failure plane for specimens reinforced 

with steel fibre (see Figure 4.3). In all tests, fracture (separation of each specimen into two parts 

(Appendix D)) occurred at the necked region of each specimen. In some cases, the failure plane 

coincided with the end of the embedded threaded rod. The estimated applied loading stresses were 

modified by deducting the cross-sectional area of the threaded rod. 

 

 

 

 

 

 

 

 

Fig. 4.3 - Test specimens after failure (a) plain concrete; (b) steel fibre. 

4.5.2 Progressive Deformation 

The evolutions of the maximum strain were obtained by averaging the LVDT data from the two 

wide faces of each specimen. As in the case of the maximum strain evolutions obtained for 

concrete specimens tested under compression fatigue loading (Holmen, 1982), the evolution of 

the maximum strain of concrete tested under tension fatigue loading can also be phased into 

three stages as reported in the literature. Further, similar evolution profiles were observed for 

plain and steel fibre reinforced concrete under fatigue loading in direct tension. As shown in 

Figure 4.4, the initial phase portrayed a nonlinear evolution of strain at a decreasing rate 

(approximately 10% to 20% of fatigue life). 
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A constant rate of deformation within a range of approximately 70% of the fatigue life 

characterised the second phase, whereas the third phase (within 30% of fatigue life) exhibited an 

increasing rate of damage leading to failure. However, in some steel fibre reinforced concrete 

specimens, further resistance and increased cycles to failure were observed after sudden increases 

 

 

 

Fig. 4.4 - Fatigue maximum strain evolution for plain and steel fibre concrete. 
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in the deformation within the final phase of damage. This was attributed to crack-bridging ability 

of the steel fibres between the cracked concrete faces. 

 

 

 

Fig. 4.5 - Fatigue hysteresis loops for plain and steel fibre concrete. 
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In the literature, constitutive models for concrete in tension are usually assumed to be elasto- 

damage models (Petryna et al, 2002, Maekawa et al., 2006). On the other hand, the behaviour 

of concrete in compression is assumed to be consistent with an elasto-plastic damage model. In 

Figure 4.5, the evolutions of the hysteresis loops of deformation indicate accumulation of 

irreversible strains from the onset of fatigue loading. The evolutions for plain and steel fibre 

reinforced concrete were also observed to be similar. These indicate that the fatigue damage 

constitutive model for concrete in tension is also elasto-plastic in nature; however, because of the 

insignificant value of the accumulated tensile strains and the computation time saved in analysis, 

the use of elasto- damage models for concrete in tension may be justified. 

Although it is well known that the fatigue life of plain concrete in tension and compression are 

similar, this observation was ascertained to also extend to the profiles of corresponding damage 

evolutions. Further, the progressive deformations and the damage evolution profiles due to 

fatigue loading of steel fibre concrete specimens were also analogous to those of plain concrete. 

4.6 Material Parameters for Concrete and Steel-Fibre 

As previously indicated, the material parameters for plain and steel fibre concrete can be obtained 

using Equation 4.8 provided the coefficients (A, B, C, and D) can be obtained experimentally. 

To obtain A and B, the average maximum tensile strains (obtained from LVDTs) were plotted 

for each specimen as described in Figure 4.6. The secondary strain rates were obtained as the 

gradient of the plots (Figure 4.7). 

The correlation between the number of cycles to failure and the secondary strain rates was 

verified using the data from the specimens tested (Figure 4.8(a)). Because the frequencies of 

loading used for plain and fibre reinforced concrete were similar, it was observed that all data 
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points tend to fall along a given curve. The 95% confidence and prediction intervals are also 

shown in Figure 4.8(b). Experiment data from previous investigations on the fatigue behaviour 

of concrete in compression were also plotted as shown in Figure 4.8(c) (Sparks and Menzies, 

1973; Taliercio and Gobbit, 1996; Oneschkow, 2012; Isojeh et al., 2017). As observed, the 

profiles for the correlation between the number of cycles and the secondary strain rates are similar 

for concrete in tension and compression because both fit a power law curve. 

 

Fig. 4.6 - Maximum strain versus number of fatigue loading cycles. 
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Fig. 4.7 - Secondary strain rate for plain and steel fiber concrete. 
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Fig. 4.8 - Plot of number of cycles to failure against secondary strain rate. 
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Fig. 4.9 - Plot of Log (Log Nf) versus Log 𝜀𝑠𝑒𝑐. 
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Fig. 4.10 - Plot of Log (Log Nf) versus Log 𝜀𝑠𝑒𝑐. 
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concrete with 0.75% and 1.50% fibre volume content. As observed, the material parameter 

obtained for plain concrete is similar to that observed in the literature; hence, the approach 

developed for the determination of the material parameter (𝛽) and the estimated parameters for 

steel fibre is reasonable. 

Table 4.3 - Material parameter for plain and steel fibre reinforced concrete. 

Fibre volume content 

% Vf 

Coefficient 

 A 

Coefficient 

B 

Coefficient 

C 

Coefficient 

D 

Material parameter 

𝛽 

0 -0.2979 -0.0996 -1.1843 -0.0637 0.0968 

0.75        -0.759 -0.1559 -1.8997 -0.1374 0.0588 

1.50 -0.7045 -0.1479 -2.0726 -0.1564 0.0470 

 

The values of A, B, C, and D may vary depending on the loading parameters selected. However, 

for loading parameters different from those used in this investigation, the combination of the 

parameters (A, B, C, and D) used in obtaining the material constant (𝛽) in Equation 4.8 will 

result in a value similar to the actual material constant in the Aas-Jakobsen and Lenshow linear 

model. 

4.7 Damage Evolution for Steel Fibre Residual Strength and Secant Modulus 

Modified damage evolution models have been proposed previously by the authors for concrete 

residual strength and fatigue secant modulus (Equation 4.9) (Isojeh et al., 2017) (Chapter 2). 

The models are functions of the maximum stress level, critical damage value, damage parameter 

s, and material parameter 𝛽. The critical damage is the percentage reduction in concrete strength 

or fatigue secant modulus at failure. The values were reported to be 0.35 and 0.40 for concrete 

strength and fatigue secant modulus, respectively. Using these values for steel fibre concrete 

will give reasonable and conservative models. 
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Fig. 4.11 – (a) Damage parameter s for secant modulus of steel fibre concrete; (b) residual 

strength of steel fibre concrete. 
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                                 𝐶𝑓 = a𝑏−𝑙𝑜𝑔𝑓+ c                                 (4.11) 

where N is the number of cycles, s is the damage parameter, 𝐷𝑐𝑟 is the critical damage value, and 

𝐶𝑓 accounts for fatigue frequency.  

 

 

Fig. 4.12 - Damage evolution for steel fibre concrete: (a) residual strength; (b) fatigue secant 

modulus. 

Test data from Zhang et al. (1996) were used to obtain optimized values of the parameters (a,b, 

and c) in Equation 4.11. These are given as 0.283, 0.941 and 0.715, respectively. The residual 

0

0.15

0.3

0.45

0.6

0 10 20 30

S
ec

an
t 

m
o
d
u
lu

s 
d
am

ag
e 

(D
)

Number of cycles ( x 103)

0% Vf

0.75% Vf

1.5% Vf

R=0;  
∆𝑓

𝑓𝑐
′ = 0.8

0

0.1

0.2

0.3

0.4

0 10 20 30

R
es

id
u
al

 s
tr

en
g
th

 d
am

ag
e 

(D
)

Number of cycles ( x 103)

1.5% Vf

0.75% Vf

0% Vf

R=0;  
∆𝑓

𝑓𝑐
′ = 0.8

(a) 

(b) 



110 
 

strength and fatigue secant modulus degradation can be estimated by substituting the material 

parameter 𝛽 for steel fibre concrete into the damage model. 

The parameter s in the damage model depends on the stress ratio R and can be estimated from 

Figure 4.11 for stress ratio values between 0 and 0.5. The damage evolution of plain and steel 

fibre reinforced concrete strength and fatigue secant modulus (0%, 0.75%, and 1.5% Vf) under 

fatigue loading at a maximum stress level of 0.8, stress ratio of zero, and a frequency of 5 Hz, 

are given in Figure 4.12. As observed, as the steel fibre volume content increased from 0 to 1.5% 

Vf, the number of cycles leading to failure increased with corresponding delays in progressive 

damage. 

4.8 Conclusions 

Fatigue tests were conducted to study the progressive behaviour and to develop damage and 

material parameters for steel fibre concrete under fatigue loading. To achieve this, a new concept 

was used to develop the required material parameters for plain and steel fibre reinforced 

concrete. From a comparison of the deformation evolution profiles in this investigation with 

those from compression fatigue tests in the literature, similarities were observed for tension and 

compression fatigue loading. Further, fatigue life was found to increase as the steel fibre volume 

content in concrete increased from 0% to 1.5%. The concept used in deriving the material 

parameter seems appropriate since the value obtained for plain concrete agrees well with values 

in the literature. The damage models which incorporate the estimated material and damage 

parameters for steel fibre concrete can be implemented into constitutive models to enhance 

fatigue analyses of steel fibre concrete structures. 
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CHAPTER 5 

FATIGUE RESISTANCE OF STEEL-FIBRE REINFORCED CONCRETE DEEP 

BEAMS 

The material in this chapter was accepted for publication, as follows: 

Isojeh B., El-Zeghayar M., Vecchio, F.J. “Fatigue Resistance of Steel-Fibre Reinforced 

Concrete Deep Beams.” ACI Structural Journal (in-press). 

5.1 Abstract 

An investigation into the fatigue resistance of small-scale steel-fibre reinforced concrete deep 

beams, with steel-fibre volume ratios of 0%, 0.75% and 1.5%, is reported. The behaviour of steel 

fibres in enhancing the fatigue life of deep beams and reducing the congestion of reinforcement 

in concrete structures is studied, and the possibility of obtaining optimised structural sections 

which are cost effective using steel-fibre reinforced concrete is verified. Evolutions and 

inclinations of average principal strains and bond strength between concrete and steel 

reinforcing bars within the shear spans are also examined. The use of steel fibres, especially with 

a volume ratio of 1.5%, was observed to reduce the progressive strain values in concrete and 

steel reinforcing bars, hence resulting in enhanced fatigue life. No significant evolution profile 

was observed for the inclination of the principal directions, while the use of adequate anchorage 

preserved the bond strength between concrete and steel reinforcement. In all specimens, fracture 

of the longitudinal reinforcing bars occurred at failure, and fibre pull-out was more prevalent 

than fibre breakage. 

Keywords: deep beam, fatigue, steel fibre, strain evolution, strength, wind turbine foundations. 
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5.2 Introduction 

In practice, some elements of fatigue-sensitive structures such as wind turbine foundations, 

offshore structures, transfer girders, and pile caps, are generally designed as deep beams. Due to 

the dynamic nature of loading while in service, these structures are susceptible to fatigue failure 

resulting from reinforcement fracture, crushing of concrete struts coupled with irreversible 

compressive strain accumulation, or excessive opening of concrete cracks. As such, it is 

expedient that designs guard against the occurrence of such failure modes during the service life 

of the structure (Teng et al., 1998; Teng et al., 2000; Isojeh and Vecchio, 2016). 

In the literature, the fatigue failure resistance of deep beams has been shown to be enhanced using 

increased amounts of vertical or longitudinal reinforcement. The use of horizontal or inclined 

web reinforcement has also been reported to enhance the fatigue life of deep beams (Teng et al., 

1998; Teng et al., 2000). Although the provision of more reinforcing bars and the use of inclined 

reinforcement have been shown to enhance fatigue performance, the congestion of 

reinforcement (ACI 318/ACI 346) during construction has prompted further investigation of 

other possible means. As well, the need for optimised designs involving cost-effective and 

reduced sizes of fatigue-prone structures necessitates the consideration of other enhanced 

concrete composites (Chenkui and Guofan, 1995; RILEM Proceeding 31). 

Steel-fibre reinforced concrete exhibits improved properties such as increased toughness, 

ductility, and crack-bridging attributes which result in the increase of the load resistance capacity 

when compared to conventional reinforced concrete. The enhancing performance of steel fibres, 

especially after cracking of concrete, has been attributed to the ability of the fibres to delay crack 

growth by bridging the crack surfaces (Lee and Barr, 2004; ACI 544; ACI 506). 
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At the material level, flexural fatigue tests conducted on steel-fibre reinforced concrete prisms by 

Ramakrishnan et al. (1989), Nanni (1991), Chenkui and Guofan (1995), Chang and Chai (1995), 

and Naaman and Hammoud (1998) all indicate enhanced fatigue life and reduced progressive 

deformation when compared with plain concrete prisms. It has also been reported that steel-fibre 

reinforced concrete beams subjected to fatigue stresses below the observed endurance limit 

exhibited increases in strength when subsequently subjected to monotonic loading. 

In steel-fibre reinforced concrete beams also containing conventional longitudinal 

reinforcement, the influence of steel-fibre crack-bridging reduces the induced stresses in the 

longitudinal reinforcing bars; hence, the number of cycles at which fracture will occur in the 

steel reinforcing bars is increased compared to conventional reinforced concrete without steel 

fibres (Ramakrishnan et al., 1989). Experimental investigations on the fatigue behaviour of steel-

fibre reinforced concrete beams are scarce and, prior to the investigation reported in this paper, 

no fatigue tests conducted on steel-fibre reinforced concrete beams with shear-span to effective 

depth ratios less than 2.5 had been reported. However, tests conducted by Kormeling et al. 

(1980) on beams governed by flexure showed the enhancing effects of steel fibres on fatigue 

life, progressive deflection, and crack width growth. 

The significant influence of steel fibres in reinforced concrete beams under fatigue loading has 

been reported by Kwak et al. (1991) through tests conducted on steel-fibre reinforced concrete 

beams with shear-span to effective depth ratio of 2.5. The fatigue failure mechanism of steel fibres 

using different volume ratios was observed to be a result of fibre fracture rather than pull-out. 

Parvez and Foster (2013, 2015) investigated the influence of steel fibres on the fatigue behaviour 

of small-scale and large-scale reinforced concrete beams governed by flexure. The final failure 

mechanism in all beams was fracture of the longitudinal reinforcement. Generally, it was 
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reported that steel reinforcing bar fracture propagation governed the fatigue life of under- 

reinforced beams. Further, the fatigue life of beams with steel fibres was enhanced and the 

measured deformations and stresses were observed to decrease as the volume ratio increased 

from 0% to 0.8%. 

Although Parvez and Foster (2015) reported that the reduction in steel reinforcing bars strain 

after some cycles was a result of debonding which led to the loss of tension stiffening, no 

practical results showing the strain variation or bond slip between concrete and a steel reinforcing 

bar were reported. The segmental protection of the strain gauges on the reinforcing bars may 

have resulted in debonding between concrete and steel reinforcement. However, further 

investigation is required in order to observe the bond behaviour under fatigue loading of well-

anchored embedded reinforcement. 

As part of a long-term research program on the improvement of the design and analysis of wind 

turbine foundations using steel-fibre reinforced concrete, this investigation considers the 

behaviour of shear-critical beams under fatigue loading by observing the principal strain and 

shear strain evolutions within the planes of the shear spans. Further, the inclination of the 

principal strains and the bond behaviour between concrete and steel reinforcement are 

considered. 

5.3 Research Significance 

This investigation considers the influence of steel fibres in enhancing the fatigue life of shear- 

critical deep beams. A new approach is presented drawing on a comparison between conventional 

reinforced and steel-fibre reinforced concrete deep beams using the progressive   average principal 

strain and shear strain evolutions within the shear-span. Tests have not been previously reported 
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for elements with a shear-span to effective depth ratio of less than 2.5. The observed results show 

that the fatigue life of deep beams can be enhanced using steel fibres, and optimized designs of 

steel fibre fatigue-prone structures can be extended to deep beams.   

5.4 Experimental Investigation 

5.4.1 Test Specimens 

Deep beams with dimensions of 175 x 250 x 700 mm were used in this experimental investigation 

(Figure 5.1). The supports were prepared such that no lateral restraint was permitted. To achieve 

this, the roller between the two grooved plates (Figure 5.1) was made smaller than the groove size.  

The properties of the beams tested are given in Tables 5.1 and 5.2. The reinforcement provisions 

used for the beams surpassed the minimum required in CSA (2004) A23.3-04 11.2.8.1 and 

11.2.8.2 for shear, and 10.5.1.2 for flexure, Eurocode 2-1-1(2004) 9.2.1.1 and 9.2.1.1 for shear and 

flexure respectively, and ACI 318-14 to 346-09 Section R9.6.3.1 and R9.6.1.2 for shear and 

flexure respectively. 

As a means of ensuring that bond fatigue failure was deliberately averted, adequate anchorage 

was provided based on code requirements CSA (2004) - N12.13.1, N12.13.2 (shear 

reinforcement anchorage), and N12.5.2 (flexural reinforcement anchorage). The bar bending 

detail used for anchorage also satisfied EC 2-1-1 (2004) clause 8.5(1) and (2) for shear 

reinforcement and 2-1-1 clause 8.4.1 (1) P for longitudinal reinforcement requirements. The 

anchorage also satisfied ACI 318-14 to 346-09 Table 25-3-1 and Table 25.3.2 for longitudinal 

and shear reinforcement respectively. 

Two different steel-fibre volume ratios, 0.75% and 1.50%, were examined. High strength end- 

hooked steel fibres (Dramix RC80/30BP) were used. The geometrical properties of the fibres 



120 
 

included a 30 mm fibre length, a diameter of 0.37 mm, and an aspect ratio of 79. The ultimate 

tensile stress capacity of the steel fibres was 3070 MPa. Longitudinal reinforcement ratios of 

0.45% and 0.90% and shear reinforcement ratios of either 0% or 0.20% were provided in beams 

having steel-fibre volume ratios of 0.75% and 1.50% in this investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.1 - Details of deep beam specimen. 
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respectively. Similarly, C and C’ are assigned to the control beams (beams without steel fibres) 

reinforced with 2-10M and 2-15M reinforcing bars, respectively. 

Table 5.1- Average compressive strength of concrete. 

Concrete 

Batch 

Volume of 

steel fibre 

(Vf %) 

No. of 

Specimens 

Average compressive 

Strength (𝑓𝑐
′)  

MPa  

 

Standard Deviation 

(compressive 

strength) 

Coefficient of Variation 

(compressive strength) 

1 0 𝑉𝑓
1 13 62.6  6.0 8.5 

2 0 𝑉𝑓
2 18 55.1 2.5 4.6 

3 0.75 𝑉𝑓 23 55.3  5.2 9.5 

4 1.5 𝑉𝑓 24 55.8  5.1 9.1 

5 1.5 𝑉𝑓* 8 55.6  2.1 3.7 

where: 

Vf % = steel fibre volume content (in percentage) 

0 𝑉𝑓
1: batch without steel fibre for control beam specimens tested under fatigue loading. 

0 𝑉𝑓
2: batch without steel fibre for specimens tested under monotonic loading. 

𝑉𝑓
∗ = steel fibre volume for B80-0N1.5 and A97-0F1.5 

 

Table 5.2: Specimen description.  

Concrete 

Batch 

Volume 

of Steel 

Fibre  

Vf (%) 

Specimen 

Identification 

Number 

Design 

𝑓𝑐
𝑑 MPa 

 

𝜌𝑙(%) 𝜌𝑣 (%) Maximum 

Fatigue 

Load  

(% Pu) kN 

Minimum 

Fatigue 

Load 

 (% Pu) kN 

No. of 

cycles to 

Failure (N) 

2 0 C’S 50  0.9 0.2 Monotonic - - 

2 0 CS 50  0.45 0.2 Monotonic - - 

1 0 C’-70-0 50 0.9 0.2 70 1.3 210,000 

3 0.75 B70-0F0.75 50  0.9 0.2 70 1.3 3,000,000a 

4 1.5 B70-0F1.5 50  0.9 0.2 70 1.3 3,000,000a 

1 0 C-80-0 50  0.45 0.2 80 1.8 47,000 

3 0.75 A80-0F0.75 50  0.45 0.2 80 1.8 66 000 

4 1.5 A80-0F1.5 50  0.45 0.2 80 1.8 320 000 

5 1.5 A97-0F1.5 50  0.45 0.2 97 1.8 81 000 

1 0 C-70-0 50  0.45 0.2 70 1.8 72 000 

3 0.75 A70-0F0.75 50  0.45 0.2 70 1.8 123 000 

3 0.75 A70-0N0.75 50  0.45 0 70 1.8 260 000 

4 1.5 A70-0F1.5 50  0.45 0.2 70 1.8 410 000 

1 0 C’-80-0 50  0.9 0.2 80 1.3 62 000 

5 1.5 B80-0N1.5 50  0.9 0 80 1.3 650 000 

where: 

Vf (%) = steel fibre volume content (in percentage) 

𝑓𝑐
𝑑 = design compressive strength of concrete 

𝜌𝑙  (%) = longitudinal reinforcement ratio (in percentage) 

𝜌𝑣 (%) = shear reinforcement ratio (in percentage) 
a = specimen did not fail at the specified number of cycles 
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A and B represent steel-fibre reinforced concrete beams with 2-10M and 2-15M reinforcing bars, 

respectively. The numbers 70-0, 80-0, 97-0 represent the maximum load level used for the fatigue 

tests. The letter N denotes no shear reinforcement, while F0.75 and F1.5 represent the steel fibre 

volume contents used. 

5.4.2 Materials 

A design compressive strength of 50 MPa was selected, with a maximum aggregate size of 10 mm. 

The slump readings obtained during concrete casts were between 80 and 150 mm. After casting, 

the specimens were removed from the curing room at 28 days and placed in a dry compartment. 

The average compressive strengths of concrete cast for the tests are given in Table 5.1. The value 

given in the fourth column of Table 5.1, for the fatigue loading phase, is equivalent to the average 

compressive strength within the time frame for testing the beams. 

Canadian standard 15M, 10M, and D4 bars were used as reinforcement. The D4 reinforcing bars 

were used for the shear reinforcement. In the beams with shear reinforcement, 2-10M reinforcing 

bars were also provided as the top (hanger) bars. 

The average yield strength obtained for the 15M, 10M, and D4 reinforcing bars were 430 MPa, 

480 MPa, and 610 MPa respectively. The yield strength of the cold-worked steel rebar 

corresponded to the 0.2% offset strains. Although the expected yield plateau was absent in the 

cold-worked D4 stress-strain curve, the stresses observed in the shear reinforcement were 

sufficiently low to justify their use. 

5.4.3 Test Procedure 

Initially two beams, C’S and CS as indicated in Table 5.2, were tested under monotonic loading. 

The corresponding failure loads observed were 390 kN and 270 kN respectively (Figure 5.2). The 
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longitudinal reinforcement ratios were varied in order to observe different failure mechanisms. 

The failure mode of C’S was observed to be crushing of the compression strut. A combination of 

shear and flexure was observed in CS, as the fracture of the reinforcing bars occurred at the mid-

span region. As indicated in the sixth and seventh column of Table 5.2, percentages of the failure 

load observed from the monotonic tests were used for the fatigue tests conducted. Each specimen 

was subjected to fatigue loading without an initial application of monotonic loading. 

 

Fig. 5.2 - Load versus deflection under monotonic loading (Beams C’S and CS). 

The fatigue tests were conducted using servo-hydraulic testing equipment having a loading 

capacity of 350 kN. The loading equipment was used to generate a pulsating load of a continuous 

sinusoidal waveform throughout the test duration. All fatigue tests were conducted at a 

frequency of 5 Hz, and a constant minimum load of 5 kN was used in order to prevent backlash 

due to inertia of the actuator under dynamic loading. The stress ratio resulting from this 

minimum load is considered to be insignificant (i.e., approximately equal to 0.0). 

5.4.4 Instrumentation 

Figure 5.1 shows the details of the beam specimen dimensions and instrumentation. The attached 

LVDTs were used to measure the evolution of the average strains within the shear span. Using 
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a Mohr’s circle of strain, the average shear strains, the average principal strains, and the 

inclination of the principal tensile strain relative to the x- and y-directions within the shear spans 

of each beam were obtained from strain transformations of the LVDT data (Figure 5.3). In Figure 

5.3, 𝜀1 is the principal tensile strain, 𝜀2 is the principal compressive strain, 𝑒𝑎, 𝑒𝑏, and 𝑒𝑐 are 

the corresponding strains in the directions of the LVDTs, 𝛾𝑥𝑦 is the average shear strain, 𝜀𝑥 and 

𝜀𝑦 are the average strains in the horizontal and vertical directions, respectively, and 𝜃 is the 

inclination of the average principal tensile strain. A program was developed to generate the 

deformation evolutions from the laboratory data.  

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 - LVDTs strain transformation.  

 

 

Considering the West LVDTs, (𝛾𝑥𝑦 is positive) 

                                                      𝜀𝑥 = 𝑒𝒄 - 𝑒𝒃+ 𝑒𝒂                                                                         

 where 𝜀𝑦 = 𝑒𝒃  

                                                      𝛾𝑥𝑦 = 𝑒𝒂- 𝑒𝒄                                                                                   (5.1) 
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where 𝜀𝑦 = 𝑒𝒃  

                                                      𝛾𝑥𝑦 = 𝑒𝒄 - 𝑒𝒂                                                                                  (5.2)  

The average principal concrete strains were obtained thus: 

                                                      𝜀1,2 = 
1

2
(𝜀𝒙 + 𝜀𝒚) ± 

1

2
(√(𝜀𝑥 − 𝜀𝒚)

2
+ 𝛾𝑥𝑦

2)                                    (5.3) 

The averages of the strain values obtained from the East and West sets of LVDTs were used. 

The values for the evolution of 𝜃, the inclination of the principal tensile strain direction, was 

estimated using 𝛾𝑥𝑦 (shear strain), 𝜀𝑥 (average strain in the horizontal direction) and 𝜀𝑦 (average 

strain in the vertical direction). 

5.5 Test Results and Discussions 

The number of cycles leading to failure for each specimen tested under fatigue loading is given 

in Table 5.1. The experimental results are expressed in terms of failure modes, principal strain 

evolutions, shear strain evolutions, mid-span deflections, and residual strengths of beams that 

did not fail after 3,000,000 cycles (see Figures 5.4 to 5.16). These are discussed subsequently. 

5.5.1 Failure Mode 

In all beam specimens tested, except specimens B70-0 F0.75 and B70-0 F1.5 which sustained 

3,000,000 million cycles without failure, fracture of the longitudinal reinforcing bars was 

observed. An increase in the fatigue life was observed for the beams as the fibre volume content 

increased (as shown in columns 2 and 9, Table 5.2). In the steel-fibre reinforced concrete beams, 

a combination of pull-out and fracture of steel fibres were also observed. However, steel fibre 

pullout was more prevalent, especially in beams reinforced with 1.5% steel-fibre volume ratio 

compared to beams with 0.75% steel-fibre volume ratio. This is attributed to lower stresses 
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induced in steel fibres with 1.5% steel-fibre volume ratio at crack-bridges; hence bond resistance 

between steel fibres and concrete governed. On the other hand, fracture of steel fibre 

predominated due to high stresses. Throughout the tests conducted, no fracture of shear 

reinforcement was observed (see Appendix E and F). This observation is consistent with those 

reported in the literature for conventional reinforced concrete deep beams (Teng et al., 1998; 

Teng et al., 2000). 

The strain induced in the longitudinal reinforcing bars was observed to reduce as the steel-fibre 

volume ratio increased from 0.75% to 1.5%. (e.g., see Figure 5.4 for beams with 2-10M rebars). 

The strain evolution for beam A70-0NF0.75 reinforced with 2-10M reinforcing bars was 

truncated after 10,000 cycles due to a malfunction of the strain gauge attached to the longitudinal 

reinforcement. The reinforcement strain evolutions shown in Figure 5.4 were obtained from the 

region at which fracture occurred, hence in close proximity to the maximum strain along the 

longitudinal reinforcement. As also reported in the literature on flexural beams (Parvez and 

Foster, 2013, 2015), the reduced strain or stress values (attributed to the addition of steel fibres) 

resulted in the enhanced fatigue life of the steel-fibre reinforced concrete beams. 
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Fig. 5.4 - Longitudinal reinforcement strain versus number of cycles at maximum load (2-10M 

rebars). 

 

                         Fig. 5.5 - Load versus deformation plot after fatigue loading. 
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Fig. 5.6 - Crack pattern and inclination of principal tensile strain (15M-70%Pu). 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Fig. 5.7 - Crack pattern and inclination of principal tensile strain (10M-80% Pu).
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Fig. 5.8 - Crack pattern and inclination of principal tensile strain (10M-70%Pu). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.9 - Crack pattern and inclination of principal tensile strain (15M-80%Pu). 
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As shown in the deformation evolution plots (Figures 5.10 to 5.15, and Appendix G) for 

conventional and steel-fibre reinforced concrete beams, after significant fracture of the 

longitudinal reinforcement, collapse of the steel-fibre reinforced concrete beams did not occur 

immediately thereafter. The presence of steel fibres resulted in the beams resisting more cycles 

under high deformation before final fracture. This is attributed to the crack-bridging ability of 

steel fibres. 

Since specimens B70-0 F0.75 and B70-0 F1.5 did not fail after 3,000,000 cycles, the beams 

were further subjected to monotonic loading (Figure 5.5). The observed residual strength for the 

two beams were higher than the capacity of the conventional reinforced concrete beam without 

fatigue damage. This further shows that reduced section sizes obtainable in steel-fibre reinforced 

concrete beams can be used to achieve the same fatigue life as in larger conventional reinforced 

concrete beams. 

 

Fig. 5.10 - Average shear strain evolution (2-15M). 
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Fig. 5.11 - Mid-span deflection (2-15M). 

 

Fig. 5.12 - Mid-span deflection (2-10M). 

 

Fig. 5.13 - Average shear strain evolution (2-10M). 
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Fig. 5.14 - Average principal compressive strain evolution (2-15M). 

 

 



 

 

 

 

 

 

 

 

 

 

Fig. 5.15 - Average principal tensile strain evolution (2-15M). 

5.5.2 Crack Pattern 

During fatigue loading, flexural and shear-flexural cracks were initially observed on the surfaces 

of the beams reinforced with 2-10M reinforcing bars (under-reinforced beams). Inclined and 

diagonal cracks accompanied such cracks in a few of the 2-10M reinforced beams and in beams 

reinforced with 2-15M reinforcing bars. Final fatigue failure observed in each specimen 

occurred at a major crack plane that developed from the onset of the fatigue tests. The failure 

regions are shown in Figures 5.6 to 5.9 with thick crack patterns. 

After fracture of the longitudinal reinforcement, sudden collapse of the steel-fibre reinforced 
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concrete beams did not occur immediately thereafter. The presence of steel fibres resulted in the 

beams resisting more cycles under high deformation before final fracture. 

Specimen A70-0NF0.75 failed after about 260,000 cycles (more than twice the number of cycles 

to failure for specimen A70-0F0.75 with shear reinforcement). As observed in Figure 5.4, the 

two specimens started approximately at similar longitudinal reinforcement strain values. The 

increase in fatigue life of the specimen without shear reinforcement may be attributed to stress 

redistribution (leading to reduced strain in the reinforcement) as a result of more fatigue cracks 

on the surface of specimen A70- 0NF0.75 (see Figure 5.8 and Appendix E). Active bridging 

contribution of the fibres intersecting the cracks occurred while the stresses in the reinforcement 

intersecting the initial governing concrete crack reduced. The initial cracked concrete plane 

traversing reinforcing bars in A70-0NF0.75 closed up after a considerable number of cycles as 

a result of the subsequent significant cracks at other regions. This redistribution halted the crack 

propagation of the reinforcing bars at the intersection with the initial cracked concrete plane. On 

the other hand, a discrete crack was observed from the onset of the fatigue loading of beam A70-

0F0.75. The behaviour of the beam (reinforcement crack propagation) was governed by this 

plane because significant concrete cracks were not observed afterwards.   

The approximate orientations of the fatigue failure planes were estimated from strain 

transformations of the LVDT data obtained from the experiments. The obtained evolutions 

further show that the accuracy of the instrumentation used was acceptable. From Figures 5.6 to 

5.9, no significant change in the orientation of the principal strain evolution was observed except 

at the initial stage of loading, at the point of reinforcement fracture, and at failure. 
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5.5.3 Shear Strain Evolution/Mid-Span Deflection 

Under fatigue loading of the shear-critical beams (specimen C’S), shear forces are transferred 

through compression struts to the supports and irreversible compressive strain accumulates due 

to the induced compressive stress within the shear span. To maintain equilibrium, the horizontal 

tensile forces are resisted by the longitudinal reinforcement. 

With the addition of steel fibres to the beams reinforced with 2-15M rebars, the shear span 

deformations (shear strains) were observed to reduce as the steel-fibre volume ratio increased 

from 0% to 1.5% ( see Figure 5.10). As well, insignificant increases in the mid-span deflections 

were observed (see Figure 5.11). This improvement was a result of crack-bridging of the inclined 

cracks within the shear span; hence, retarding the shear strains. However, the obvious increase 

in the deflection evolution of specimen B80-0NF1.5 was also attributed to the fact that there was 

no shear reinforcement and no top reinforcing bars (hanger bars). 

After fatigue cracks develop at the mid-span in the conventional under-reinforced concrete deep 

beams with 2-10M rebars (specimen CS), the aforementioned mechanism in which shear force 

is transferred through compression strut to the support under fatigue loading no longer holds. 

This is attributed to the fact that the beams are subsequently governed by the reinforcement 

crack propagation at the intersection with the mid-span cracks, hence resulting in increased 

rotation. 

Beams governed by flexure (beams reinforced with 2-10M rebars) were observed to exhibit 

reduced mid-span deflections under fatigue loading as the steel-fibre volume ratio increased 

from 0% to 1.5% (see Figure 5.12). On the other hand, the shear-span deformation (shear strain 

evolution) also increased, hence corresponding to an increase in the capacity for shear force 
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transfer through concrete struts (see Figure 5.13). 

Under high fatigue loads (80% of static capacity of CS beam), a steel-fibre volume ratio of 1.5% 

reduced both the mid-span deflection and shear-span deformation of beam A80-0F1.5 compared 

to beams A80-0F0.75 and C80-0 (Figures 5.12 and 5.13). Although the use of 0.75% steel fibre 

volume ratio enhanced the fatigue life, it was ineffective in reducing the shear-span deformation 

and mid-span deflection under high fatigue loading when compared with the control beam C80-

0. This was attributed to early pull-out and fracture of the steel fibres under high loads. 

At a fatigue loading of 97% of the static capacity of the CS beam, the fatigue life of A97-0F1.5 

was observed to be higher than the fatigue life obtained using 0.75% steel-fibre volume ratio 

and fatigue loading of 80% of the static capacity of beam CS. In addition, the shear-span 

deformation and mid-span deflection were observed to be lower when compared to those of 

beams A80-0F0.75 and C80-0. More steel fibres at the intersection with the concrete crack in beam 

A97-0F1.5 resulted in lower induced bond stresses between fibres and concrete and lower induced 

stresses in the fibres when compared with beams A80-0F0.75 and C80-0. These results further 

demonstrate the enhancing influence of steel-fibre volume ratio of 1.5% under high fatigue 

loading. 

5.5.4 Average Principal Strain Evolution 

As previously indicated, various tests have been conducted in order to observe the fatigue 

resistance properties of steel-fibre reinforced concrete. However, the majority of tests have been 

conducted on specimens in flexure and compression. Although tests in flexure indicated fatigue 

life enhancement with steel fibres, there have been conflicting observations on the behaviour in 

compression (RILEM Proceeding 31). Considering the beams governed by crushing of concrete 
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under static loading (using specimens reinforced with 2-15M rebars), the observed strain 

transformations of the LVDT data show substantial reduction in the values of the average 

compressive and tensile  strain  evolutions  under fatigue loading  as  the steel-fibre volume  

ratio increased from 0% to 1.5% (see Figures 5.14 and 5.15). On the other hand, the increase in 

the tensile and compressive strain evolutions in beams reinforced with 2-10M rebars indicate that 

more stresses are transferred to the support through the compression strut, since lower 

deflections were observed. 

5.5.5 Bond Behaviour 

In the literature, investigations conducted on the influence of bond deterioration under fatigue 

loading were based on beams with non-anchored reinforcing bars. Such specimens were 

deliberately allowed to fail by bond slip under fatigue loading (Hawkins, 1974). However, the 

beams tested in this investigation were provided with adequate anchorage based on code 

provisions. 

Under fatigue loading, provided one of the following is observed, severe damage to the bond 

between concrete and steel reinforcement will not occur (Figure 5.16): 

- The evolutions of the concrete and reinforcement strains (both in the direction of the 

reinforcement) are approximately parallel. 

- The evolution of the difference between the concrete strain evolution and reinforcement 

strain evolution is approximately constant. 

The average strain evolution of concrete in the horizontal direction and the strain gauge reading 

on the longitudinal reinforcing bars were obtained for the beams tested. Obtaining full evolution 

readings was not successful for all the beams since some connections of the strain gauges 
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malfunctioned when intersected by concrete cracks. However, results obtained from beams 

tested (with 2-15M rebars) at 70% of the static capacity are presented in Figure 5.16. From the 

figure, reasonable integrity of bond between concrete and steel reinforcement within the shear 

span can be inferred; however, the use of high strength concrete also contributed to the bond 

integrity. 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 5.16 - Evolution of concrete and reinforcement strain variation. 

5.6 Conclusion 

The influence of steel fibres in enhancing the fatigue life of deep beams was investigated by 

comparing conventional reinforced concrete deep beams with steel-fibre reinforced concrete deep 
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were varied. A new approach was used in estimating the deformation evolution within the shear 

spans of each beam tested. Based on the results of the test program, the following conclusions are 

drawn: 

1. Deep beams with a shear-span to effective-depth ratio below 1.5 (1.25 was used for this 

investigation) may fail by the fracture of the longitudinal reinforcement rather than of the shear 

reinforcement. This is attributed to the low magnitude of stresses induced in the shear 

reinforcement. These observations have also been previously reported in the literature for deep 

beams. 

2. The fatigue life of reinforced concrete deep beams with shear reinforcement can be enhanced 

using steel fibres. In addition, depending on the reinforcement ratio, the corresponding 

deformations are reduced with the inclusion of steel fibres. 

3. The use of steel fibres proved to be effective in enhancing the fatigue life and reducing the 

deformation of beams without shear reinforcement. However, it is recommended that larger 

beams be tested in order to confirm this observation. 

4. Based on the observed results of the experiments conducted, the design of fatigue-critical 

structures can be optimised with reduced section sizes using steel-fibre reinforced concrete. The 

beneficial effect will be more substantial in large structures that are designed with reduced 

volumes of steel fibre concrete. 
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CHAPTER 6 

HIGH-CYCLE FATIGUE LIFE PREDICTION OF REINFORCED CONCRETE DEEP 

BEAMS 

The material in this chapter was previously published as follows: 

Isojeh B., El-Zeghayar M., Vecchio, F.J. (2017). “High-Cycle Fatigue Life Prediction of 

Reinforced Concrete Deep Beams.” Engineering Structures Journal, Vol. 150, pp. 12-24. 

6.1 Abstract 

Concrete elements deteriorate as a result of the continuous application of compressive fatigue 

loads. Irreversible deformation accumulates; hence, the effects on embedded steel reinforcing 

bar capacity and concrete resistance should be accounted for in the fatigue analysis of concrete 

structures. Experimental investigations were conducted to study the fatigue behaviour of eight 

small-scale reinforced concrete deep beams with a shear span to effective depth ratio of 1.25. 

Percentages of the diagonal cracking load from monotonic tests were used as fatigue loads. The 

deformation evolution within the shear spans of the deep beams were obtained by estimating the 

average principal strain and shear strain evolutions from the strain transformation analysis of 

LVDT (Linear Variable Displacement Transformer) data. Mid-span deflections and 

reinforcement strain evolutions with proximity to a major concrete crack location were obtained. 

In all beams, failure occurred with fracture of the longitudinal reinforcement at the intersection 

with the major concrete crack. Maximum strain evolutions for shear reinforcement measured at 

regions around the bends were observed to be lower than the strain evolutions observed in the 

longitudinal reinforcement. This was attributed to the governing arch mechanism common with 

deep beams. 

The strut and tie method was modified to predict the fatigue life of the deep beams tested by 
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introducing fatigue damage parameters into the constitutive models for concrete. To achieve 

this, the irreversible compressive fatigue strain in concrete is considered as a pseudo-load. The 

crack initiation life and the progressive crack growth of steel reinforcement are accounted for 

using strain-life models and linear elastic fracture mechanics, respectively. Within the developed 

algorithm, failure will occur when one of the evolving forces in either the concrete strut or steel 

reinforcement approaches the corresponding residual resistance capacity. 

Keywords: strut and tie, fatigue, fracture mechanics, strain-life, high-cycle, damage 

6.2 Introduction 

Investigations of the behaviour of reinforced concrete elements subjected to fatigue loading 

began in the twentieth century. Due to complex observations in the performances of the 

constituent materials, further interest in this field of study has evolved. From previous studies 

(Okamura et al. (1981); Okamura and Ueda (1982); and Ueda (1982), failure of reinforced 

concrete elements due to the fracture of reinforcement at its intersection with concrete cracks, 

crushing of concrete, and excessive evolutions of diagonal tension cracks have been reported as 

modes of fatigue failure.  

6.2.1 Mechanism of Fatigue Failure 

The failure mechanisms observed in previous tests conducted on reinforced concrete beams were 

reported to be significantly influenced by the shear span to effective depth ratio (a/d), the stress 

ratio (ratio of the minimum stress to maximum stress), the reinforcement ratio, and the 

magnitude of fatigue load (Hawkins, 1974; Teng et al., 1998; Teng et al., 2000). Fracture of the 

tensile reinforcement was observed to occur in the region of maximum moment within the beams 

when subjected to smaller fatigue loads. On the other hand, shear failure due to diagonal 

cracking occurred under high fatigue loads (Chang and Kesler, 1958). The use of different 
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reinforcement ratios have also been reported to influence the failure mechanisms (Stelson and 

Cernica, 1958). For example, while beams with lower reinforcement ratios are governed by 

fracture of the reinforcement, heavily reinforced concrete members may fail due to crushing of 

concrete or diagonal tension cracks. 

Reports on fatigue tests conducted on beams with shear reinforcement and having shear span to 

effective depth ratios greater than 2.0 showed increases in the shear reinforcement strains as 

diagonal or inclined cracks emanated (Okamura et al., 1981; Okamura and Ueda, 1982; Ueda, 

1982). The fatigue load transfer was described as involving a truss mechanism in which shear 

forces were transmitted by the shear reinforcement from one surface of an inclined compression 

strut to an adjacent strut. Depending on the average induced strains or stresses in the 

reinforcement intersecting the diagonal cracks, localized crack growth in the shear 

reinforcement and widening of concrete cracks occurred. Fracture of the shear reinforcement 

typically occurred thereafter. However, beams with shear span to effective depth ratios lower 

than 2.0 were governed by arch mechanism and did not exhibit shear reinforcement fracture at 

failure (Higai, 1983). 

Okamura et al. (1981), Okamura and Ueda (1982), and Ueda (1982) reported that the increase 

in the shear reinforcement strain was proportional to the logarithm of the number of cycles 

leading to fracture, especially at bends. As the shear reinforcement fractured, collapse of the 

beams occurred where the remaining stirrup legs intersecting the widened inclined cracks were 

insufficient to withstand the applied maximum fatigue load. As such, the fatigue behaviour of 

shear reinforcement in terms of its maximum strain evolution up to yield was considered as a 

fatigue limit state. Models developed and reported by Hawkins (1974), Ruhnau (1974), 

Okamura et al. (1981), and Higai (1983) for estimating the strain within a shear span at any 
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given cycle up to failure are used in the literature and codes of practice for this purpose. 

Fatigue failure of deep beams with shear span to effective depth ratios of 1.0 and 1.5 were observed 

to fail under fatigue loading by crushing of concrete compressive struts, diagonal tension, or 

fracture of the longitudinal reinforcement. No fracture of the shear reinforcement was observed 

in any of the specimens (Teng et al., 1998; Teng et al., 2000). In the tests conducted by Teng et 

al. (2000), high-strength deformed steel bars and plain round steel bars were used as shear 

reinforcement in each shear span per beam. Deformations and crack patterns on both shear spans 

revealed no substantial difference. It was also observed that the shear reinforcement in the deep 

beams did not yield at failure. 

An illustration of the behaviour of shear reinforcement in deep beams under fatigue loading can 

be observed from Higai’s (1983) report on moving load tests. According to Higai (1983), as the 

distance between the moving load and the support reduced, the observed shear strength increased 

remarkably. Local compressive concrete stresses were also observed to develop in the vertical 

direction within the shear span, thus decreasing the principal tensile stress in the concrete. In 

addition, it was reported that strains in the stirrups decreased as the distance between the support 

region and loading point reduced. These observations are analogous to clamping or transverse 

compression stresses in deep beams under static loads (Bentz et al., 2006; Mau and Hsu, 1987). 

However, further investigation is still required in order to more fully understand the fatigue 

deformation of deep beams. 

6.2.2 Design for Fatigue Resistance 

Deep beam can be designed appropriately and conservatively under static loads using the strut 

and tie modelling approach. Basically, the required concrete section sizes and amount of 
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reinforcement (dimensions of load transfer path) are obtained from the stresses estimated from 

the static loading conditions at failure (Ultimate Limit State) (Goransson and Nordenmark, 

2011). Under fatigue loading, the stresses induced in the load transfer paths are estimated from 

the proposed or given fatigue load (usually lower than the expected load at failure). The stresses 

in these paths are further normalised with the material strengths in order to obtain stress levels 

needed in fatigue models. As a means of fatigue damage resistance verification, the normalized 

stresses from fatigue loads are implemented into their corresponding fatigue stress-life models to 

obtain the number of cycles that will result in local deformation by crushing (in the case of 

concrete) or fracture (in the  case of steel). For an appropriate design, the number of cycles leading 

to failure obtained is ensured to be more than the number of cycles expected for service life. To 

achieve this, the volumes of the materials (section size and amount of reinforcement) are 

generally increased, if need be (Goransson and Nordenmark, 2011). 

The use of S-N models does not account for damage evolution of the structural element (Zanuy 

et al., 2007; Tamulenas et al., 2014). The norm in fatigue design of structures using stress-life 

models neglects the influence of irreversible strain accumulation in concrete which may be 

significant in fatigue life prediction. Further, knowledge of the deformation evolution within the 

shear spans of deep beams in terms of shear strains, principal tensile strains, and principal 

compressive strains under fatigue loading is expedient in understanding the behaviour of deep 

beams under fatigue loading, since their resistance capacities may be governed by the behaviour 

within the shear spans. 

In this chapter, the influence of load level, stress ratio, and longitudinal reinforcement ratio on 

the fatigue behaviour of deep beams with shear-span to effective depth ratio of 1.25 are 

investigated experimentally. An approach is developed using strut and tie analysis for predicting 
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the fatigue life of deep beams. The evolution of irreversible strain accumulation, concrete 

strength and stiffness degradation, and reinforcement crack growth are accounted for in this 

approach. 

6.3 Experimental Program 

6.3.1 Test Specimens 

In this investigation, beams with dimensions of 175 x 250 x 700 mm and an a/d value of 1.25 

were used for fatigue tests (Figure 6.1). The properties of the beams tested are given in 

Table 6.1 (columns 1 to 7). The reinforcement provisions used for the beams surpassed the 

minimum required in CSA (2006) A23.3-04 11.2.8.1 and 11.2.8.2 for shear, 10.5.1.2 for flexure, 

EC2-1- 1(2004) 9.2.1.1 and 9.2.1.1 for shear and flexure respectively, and ACI (318-346) Section 

R9.6.3.1 and R9.6.1.2 for shear and flexure respectively. 

Adequate anchorage was provided based on code requirements in CSA (2006)-N12.13.1, 

N12.13.2 (shear reinforcement anchorage), N12.5.2 (flexural reinforcement anchorage). The 

anchorage provisions also satisfied EC2-1-1 (2004) clause 8.5(1) and (2) for shear reinforcement 

and EC2-1- 1 clause 8.4.1 (1) P for longitudinal reinforcement. ACI (318-346) Table 25-3-1 and 

Table 25.3.2 for longitudinal and shear reinforcement, respectively were also used as provision 

benchmarks. Longitudinal reinforcement ratios of 0.45%, 0.90%, and 1.40% were provided, 

while 0.20% was used as the shear reinforcement ratio. 

From Table 6.1, the first three beams (CONT-1 to -3) having longitudinal reinforcement ratios 

of 0.45%, 0.90%, and 1.40%, respectively, were tested monotonically, in order to obtain the load 

corresponding to the diagonal cracking load. Once the cracking load was attained, results from 

further increases in loading were not required. Percentages of the maximum diagonal cracking 
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load were then used to define the fatigue loads for other beams with similar longitudinal 

reinforcement ratios. 

The names attached to each beam tested under fatigue loading are indicative of the loading and 

reinforcement conditions; for example, C80-20-0 is assigned to a beam reinforced with 2-10M 

and subjected to fatigue maximum and minimum loads of 80% and 20% of diagonal cracking 

load. The last value, zero, signifies a 0.45% longitudinal reinforcement ratio. In the case of beams 

C75-0-1 and C75-0-2, C75-0 signifies maximum and minimum fatigue loads of 75% and 

approximately 0%, respectively. The last numeral (1 or 2) represents 0.9% or 1.40% longitudinal 

reinforcement ratio, respectively. 

6.3.2 Materials 

A design compressive strength of 50 MPa (high strength concrete), having a mix design of 1:2:2 

(cement: fine aggregate: coarse aggregate) and a water/cement ratio of 0.5 was selected. This 

comprised a maximum aggregate size of 10 mm and fine aggregate with a fineness modulus of 

2.6. Slump readings between 80 and 150 mm were obtained during casting. At 28 days, the 

specimens were removed from the curing room and placed in a dry compartment afterwards. 

Canadian standard 15M, 10M, and D4 bars were used as reinforcement. The D4 reinforcing bars 

were used for the shear reinforcement, and 2-10M reinforcing bars were used for the hanger 

bars. 

The average yield strength obtained based on coupon tests for the 15M, 10M, and D4 reinforcing 

bars were 430 MPa, 480 MPa, and 610 MPa respectively. The yield strength of the cold-worked 

D4 steel rebar corresponded to the 0.2% offset strain. 
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6.3.3 Test Setup 

The setup for the fatigue tests consisted of a servo-hydraulic testing facility having a loading 

capacity of 350 kN. Each beam was simply supported and the load was applied symmetrically 

through the load cell (Figure 6.1). Strain gauges were attached to regions assumed to be cracking 

regions under fatigue loading. Hence, it was expected that under fatigue loading, provided diagonal 

inclined cracks occurred, the strain evolution in the shear and longitudinal reinforcing bars would 

be observed. The surfaces of the reinforcement were initially filed lightly and cleaned with acid 

and base solutions. Subsequently, the strain gauges (5 mm size) were glued to the reinforcement 

surfaces. In order to prevent damage when in contact with concrete, the surfaces of the strain 

gauges were protected using aluminum foil. The wires connecting the strain gauges in the 

concrete were labelled appropriately and connected to data acquisition system channels. As the 

tests resumed, strain readings were obtained progressively up to the instant of failure. 

Table 6.1- Specimens Description. 

C1 C2 C3 C4 C5 C6 C7 C8 

Specimen 

name (#) 

f'c 

(MPa) 
𝜌𝑙 

(%) 

𝜌𝑣 

(%) 

Max. 

load (% 

Pcr) kN 

Min. 

Load 

(kN) 

Cracking 

load Pcr 

(kN) 

Number of 

cycles to 

failure (Nf) 

CONT-1 52.8 0.45 0.20 100 - 156.70 - 

CONT-2 55.8 0.90 0.20 100 - 121.98 - 

CONT-3 54.3 1.40 0.20 100 - 139.39 - 

C80-0 (a) 46.6 0.45 0.20 80 5.0 - 460,000 

C80-0 (b) 54.8 0.45 0.20 80 5.0  420,000 

C75-0 (a) 57.1 0.45 0.20 75 5.0 - 770,000 

C75-0 (b) 53.3 0.45 0.20 75 5.0  850,000 

C70-0 52.2 0.45 0.20 70 5.0 - 1,500,000* 

C80-20-0 58.1 0.45 0.20 80 31.3 - 2,550,000b 

C75-0-1 52.4 0.90 0.20 75 5.0 - 3 000 000a 

C75-0-2 46.1 1.40 0.20 75 5.0 - 3 000 000a 

a Test stopped without failure. 

 *Number of cycles at first rebar fracture (final failure: 1,800,000). 
b Number of cycles at first rebar fracture (final failure: 2,730,000) 

**No failure (Stresses lower than endurance limit value or stress intensity factor lower than 

the threshold value) 
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The mid-span deflection per cycle was obtained using an attached LVDT positioned under the 

beam. The LVDTs attached to the concrete surfaces were used to obtain deformations in their 

respective directions. The observed deformations were subsequently used to estimate the average 

principal strains and shear strains per fatigue loading cycle. As indicated in the fifth and sixth 

columns of Table 6.1, percentages of the diagonal cracking loads observed from the monotonic 

tests were used as maximum and minimum loads for the fatigue tests conducted, respectively. Each 

specimen was subjected to fatigue loading without prior application of monotonic loading. 

 

 

 

Fig. 6.1 - Beam specimen setup. 

6.3.4 Test Procedure 

Initially, the three control beams CONT-1, -2, and -3 as indicated in Table 6.1 and Figure 6.2, 

were tested under monotonic loading in order to obtain the diagonal cracking load (column 7). 

From Figure 6.3, it can be observed that the capacities of CONT-2 and CONT-3 were 

approaching the limit of the testing machine; hence, each test was stopped having achieved the 

Frame 

Hose connection to 

actuator 

Beam specimen Load cell 
Simply supported with rollers 

placed in between grooved plates. 



151 
 

aim (obtaining the diagonal cracking load). Since the LVDTs attached to the surface of the 

beams could capture the cracking load, subsequent load values were not required. The diagonal 

cracking load for CONT-1 was observed to be higher than the values obtained for CONT-2 and 

CONT-3. This was attributed to the fact that heavily-reinforced deep beams are governed by 

shear deformations; hence, initial cracks under loading may be within the shear spans. On the 

other hand, lightly reinforced concrete deep beams are governed by flexural cracks within the 

mid-spans. Higher loads may be required for cracks to form within the shear spans of lightly 

reinforced beams. 

For the fatigue loading, a pulsating load of a continuous sinusoidal waveform was generated 

from the loading equipment throughout the test duration. All fatigue tests were conducted at a 

frequency of 5 Hz and a minimum fatigue load of 5 kN was used, except for beam C80-20-0 

where the minimum fatigue load was taken as 20% of the diagonal cracking load. 

Although positive load ratios were considered in this investigation, structural components may 

be subjected to stress reversals (negative stress or load ratio) (Torrenti et al., 2010). Based on 

investigations conducted by Zhang et al. (1996), stress-life models obtained by plotting stress 

levels against the number of cycles to failure for different stress ratios, suggested a reduction in 

the fatigue life of concrete as the stress ratio reduced. 

Further, the beams and the reinforcements used in this investigation were corrosion free. 

However, beams subjected to corrosion are significantly dependent on the frequency of loading 

(Veeman et al., 2015). 

6.3.5 Instrumentation 

The LVDTs attached within the shear spans of each beam were used to measure the evolution 
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of the average deformation (Figures 6.1, 6.2, and 6.4). Average deformations in terms of the shear 

strains, the average principal strains, and the inclination of the principal tensile strain relative to 

the x- and y-directions within the shear spans of each beam were obtained from strain 

transformation of the LVDT data (Figure 6.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 - Details of deep beam specimen. 
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For the West LVDTs, (where 𝛾𝑥𝑦 is positive, and  𝜀𝑦 = 𝑒𝒃 ) 

                                                      𝜀𝑥 = 𝑒𝒄 - 𝑒𝒃+ 𝑒𝒂                  

                                                        𝛾𝑥𝑦 = 𝑒𝒂- 𝑒𝒄                                                                                  (6.1) 

For the East LVDTs, (𝛾𝑥𝑦 is negative, and  𝜀𝑦 = 𝑒𝒃 )  

                                                           𝜀𝑥 = 𝑒𝒄 - 𝑒𝒃+ 𝑒𝒂 

                                                      𝛾𝑥𝑦 = 𝑒𝒄 - 𝑒𝒂                                                                                (6.2)  

The average principal concrete strains using Mohr circle of strains were obtained thus: 

                                                      𝜀1,2 = 
1

2
(𝜀𝒙 + 𝜀𝒚) ± 

1

2
(√(𝜀𝑥 − 𝜀𝒚)

2
+ 𝛾𝑥𝑦

2)                               (6.3) 

The values for the evolution of 𝜃, the inclination of the principal tensile strain direction relative 

to horizontal, was estimated using 𝛾𝑥𝑦 (shear strain), 𝜀𝑥 (average strain in the horizontal 

direction), and 𝜀𝑦 (average strain in the vertical direction).  𝜀1 and 𝜀2 are the average tensile and 

average compressive strain respectively. A program was developed to generate the deformation 

evolutions from the laboratory data.  

In order to obtain the load corresponding to the diagonal cracking load, readings were obtained 

from LVDTs measuring tensile strains (ea) as shown in Figure 6.4. From each reading, the load 

corresponding to the diagonal cracking was taken as the load at which the slope of the 

deformation curve began to change significantly. 

The results of the experiments conducted are presented subsequently. Figures 6.5 to 6.9 show mid-

span deflections, the crack patterns, principal strain evolutions (tensile and compressive) and shear 

strain evolutions. 
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6.4 Test Results 

The number of cycles leading to failure are given in Table 6.2. Specimens C75-0-1 and C75-0-

2 were stopped at 3,000,000 cycles since no signs of failure were apparent. Although beam C75-

0 failed at about 800,000 cycles, the fatigue load used was slightly higher compared to C75-0-1  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

Fig. 6.3 – Load versus deformation (strain) plots. 

 

and C75-0-2. It is well-known that fatigue life increases as the reinforcement ratio increases 
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the large difference between observed fatigue cycles when compared with beams C75-0-1 and 

C75-0-2. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 - LVDTs strain transformation.  

 

6.4.1 Mid-Span Deflection/ Stiffness Degradation 

The mid-span deflections of seven specimens are given in Figure 6.5. The applied fatigue load 

influenced the evolution of the mid-span deflection of the beams having the same reinforcement 

ratios (C70-0, C75-0 (A), C75-0 (B), and C80-0 (B)) (2-10M rebars). As the stress level 

increased, the deflection and the evolving rate increased. The specimens failed finally at 

1,800,000, 770,000, 850,000, and 420,000 cycles, respectively. 

Table 6.2 - Fatigue test results and predictions. 

C1 C2 C3 C4 

Specimen name (#) Number of cycles to 

failure Nf (Log Nf) 

Predicted number of 

cycles to failure Nf 

(Log Nf) 

Helgason et al. [24 ]/ 

AASHTO [25 ]predictions 

(Log Nf) 

C80-0 (a) 460,000 (5.7) 466,000 (5.7) 350,000 (5.5) 

C80-0 (b) 420,000 (5.6) 466,000 (5.7) 350,000 (5.5) 

C75-0 (a) 770,000 (5.9) 842,000 (5.9) 450,000 (5.7) 

C75-0 (b) 850,000 (5.9) 842,000 (5.9) 450,000 (5.7) 

C70-0 1,500,000* (6.2) 1,060,000 (6.0) 530,000 (5.7) 

C80-20-0 2,550,000b (6.4) 1,640,000 (6.2) ** 

C75-0-1 3 000 000a ** ** 

C75-0-2 3 000 000a ** ** 
a Test stopped without failure. 

 *Number of cycles at first rebar fracture (final failure: 1,800,000). 
b Number of cycles at first rebar fracture (final failure: 2,730,000) 

**No failure (Stresses lower than endurance limit value or stress intensity factor lower than the threshold value) 
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For similar maximum load levels (C80-0 and C80-20), an increase in the minimum load level 

(20% of diagonal cracking load) resulted in the reduction of the mid-span deflection and its rate 

of evolution, and an increase in fatigue life. The failure of specimen C80-20 occurred after 

2,730,000 cycles. By comparing beams reinforced with 10M and 15M rebars, it can be deduced 

that beams with higher longitudinal reinforcement ratios exhibited lower deflection. Although 

beam C75-0- 2 with 3-15M rebars exhibited a higher initial deflection (due to stochastic 

behaviour of concrete) compared to C75-0-1, the rate of increase of deflection with fatigue 

cycles was observed to be lower in C75-0-2 (see Figure 6.5). 

The crack patterns of beams C70-0, C80-20-0, C80-0, and C75-0(b) are shown in Figure 6.6. 

Inclined or shear-flexural cracks formed within the shear spans of C80-0 and C80-20-0 at the 

initial stage of fatigue loading. For beam C80-0, a flexural crack at the mid-span region was 

initially observed; however, the propagation of the inclined crack due to a high fatigue load range 

prevailed, while no progressive opening of the flexural crack at the mid-span occurred. 

 
 

Fig. 6.5 – Evolution of mid-span deflection.
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In other beams (C75-0, C70-0), flexural cracks occurred at the initial stage of fatigue loading. 

The applied fatigue load range was insufficient (low) to result in a shear-flexural crack at the initial 

stage. Although the development of inclined cracks away from the mid-span regions occurred 

afterwards due to the degradation of the tensile strength of concrete to a value corresponding to 

the induced tensile stress within the plane, the reinforcement fatigue damage within the mid-

span region had increased substantially before the emergence of inclined cracks and initiation 

of rebar damage growth (crack propagation); hence, the observed failure occurred within the 

mid-span region. In beam C80-20-0, the maximum fatigue load resulted in a diagonal crack at  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 - Crack pattern and shear-span fatigue degradation. 

the initial stage of fatigue loading; however, the damage concentration within the mid-span 

region was also attributed to the increased minimum fatigue load which resulted in a low fatigue 

load range. This behaviour supports the observation by Chang and Kesler (1958) regarding the 
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influence of fatigue load on failure regions. 

The degradation of the beams under fatigue loading can also be observed from the hysteresis 

loops obtained from each tested specimen (Figure 6.7). As the minimum fatigue load increased, 

the degradation or inclination of each hysteresis loop towards the abscissa tended to decrease 

(C80-0 and C80-20-0). As the fatigue load range increased, a corresponding increase in the 

degradation of the hysteresis loops was also observed. The large increase in mid-span deflection 

between hysteresis loops as indicated in C75-0, C70-0, and C80-20-0 indicates reinforcement 

fracture or substantial cracking. 

6.4.2 Shear-Span Deformation 

Within the shear span, the average shear strain, the average principal compressive strain 

evolution, and the average tensile strain evolution were monitored. In addition, the strain 

evolution on the reinforcing bars (shear and longitudinal) at regions within the shear spans 

were observed. As shown in Figure 6.8, the strain evolutions in the longitudinal reinforcing bars 

in beams C75-0-1 and C75-0-2 were higher than the strain evolutions in the shear reinforcement. 

This further supports the predominance of the arch mechanism (load transfer path) behaviour 

and the obvious reason for fracture of the longitudinal reinforcing bars instead of the shear 

reinforcement. The analysis involved in the prediction of the strain evolutions will be discussed 

in a subsequent section (including beam C80-0).  

From Figure 6.9, it can be observed that for beams with similar reinforcement ratios (C80-0, 

C75-0, and C70-0), the shear span deformations in terms of the average shear strain, and average 

principal compressive and tensile strain evolutions, increased as the fatigue load level increased. 

Since the fatigue behaviour of beams C75-0 and C70-0 was governed by reinforcement crack 
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growth at the mid-span after concrete cracking, the mechanism which involved the transfer of 

forces through the compression strut to the support was altered due to localised behaviour at the 

mid-span as the reinforcement crack propagated. As such, the compressive strain within the 

shear span and its corresponding evolution, along with the average shear and average principal 

tensile strains, for beams C75-0 and C70-0 were almost constant except towards failure (see 

Figure 6.9). 

 

 

Fig. 6.7 – Fatigue hysteresis loops 

6.5 Fatigue Life Verification using Strut and Tie Model 

Under monotonic loading, an insight into the flow of forces in a deep beam can be obtained using 
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strut and tie models. The internal flow of forces is represented using concrete compression struts 

 

 

 

Fig. 6.8 –Strain evolution in reinforcing bars 
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Fig. 6.9 – Average principal strain and shear strain evolutions. 
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 and reinforcement ties, meeting at nodes. Since this concept is based on the lower bound 

theorem, equilibrium conditions must be fulfilled and the yield condition is not violated. A 

mechanism occurs once plasticity develops. Stresses in concrete are limited to the crushing 

strength, while steel reinforcement is governed by the yield value (Muttoni et al., 1996; Collins 

and Mitchell, 1997). 

Under fatigue loading, the initial stresses in the steel and concrete are lower than the limiting 

capacity along the stress trajectory (see Figure 6.10). As the number of cycles increases, the 

induced stress in concrete increases, irreversible strain accumulates, and the limit strength 

decreases. Further, an increase in steel stress due to crack growth occurs. Provided models can 

be developed to account for the occurrence of a mechanism due to progressive deterioration, 

then the fatigue life of the structure can be predicted. 

From the experimental results reported herein, the collapse due to fatigue failure of each beam 

was governed by fracture of the longitudinal reinforcing bars under fatigue loading. It was 

postulated previously that this behaviour is attributable to the fact that load is transferred to the 

support from the loading point through arch mechanism and not by truss action common with 

beams having shear span to effective depth ratios greater than 2.0. 

In the analysis of fatigue loading, the deterioration of material properties such as concrete 

strength, steel residual area after crack growth, and the irreversible compressive strain 

accumulation can be accounted for in the constitutive, compatibility, and equilibrium equations 

of an analysis algorithm such as used with strut and tie models. As such, a reinforced concrete 

beam damaged due to fatigue may fail when reloaded statically up to the same fatigue load after 

a given number of cycles. At the point of failure, crushing of the concrete struts or fracture of 



163 
 

the reinforcing bars (shear or longitudinal, depending on the a/d value) may govern when the 

acting force in either the concrete or steel reinforcing bars becomes equal to the corresponding 

resistance capacity. The number of cycles at which this occurs is termed the fatigue life of the 

structural element. 

To further illustrate this concept, the number of cycles leading to failure for each beam tested 

in this investigation were predicted. The predicted number of cycles were compared with those 

obtained using Helgason et al. (1976) (used by AASHTO (2007)). The fatigue load used for the 

prediction was taken as the average load from the two curves for the CONT-1, CONT-2 and 

CONT-3 beams (Figure 6.2). 

6.5.1 Fatigue equilibrium equation 

From Figure 6.10, 

                                                                𝐹𝑜 = A(i) 𝐸𝑠 𝜀𝑥                                                                (6.4) 

                                                                𝑇𝑜 = 𝐴𝑣 𝐸𝑠  𝜀𝑣                                                                 (6.5)  

                                                          𝐷𝑖 = 𝑓𝑐2 w (𝑝𝑢 sin 𝜃 + 𝑑𝑎 cos 𝜃)                                       (6.6) 

 

Fig. 6.10 - Strut and tie model for a deep beam under fatigue loading. 
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Under fatigue loading, the irreversible strain (𝜀𝑑) is considered as a pseudo-load. The value is 

assumed to be zero at the first cycle (Isojeh and Vecchio, 2016). For subsequent cycles, 

                                                         𝐹𝑒𝑑 = 𝐸𝑐𝑓𝑎𝑡 𝜀𝑑 w (𝑝𝑢 sin 𝜃 + 𝑑𝑎 cos 𝜃)                             (6.7) 

In Figure 6.10 and Equations. 6.4 to 6.7, 𝐹𝑜 is the force in the longitudinal reinforcement, A(i) is 

the residual longitudinal reinforcement area (function of reinforcement crack growth),  𝐸𝑠 is the 

elastic modulus of the steel reinforcement,  𝜀𝑥 is the strain in the longitudinal reinforcement, 𝑇𝑜 is 

the force in the shear reinforcement within the shear span, 𝐴𝑣 is the area of shear reinforcement 

within the shear span,  𝜀𝑣  is the assumed strain in the shear  reinforcement, 𝐷𝑖 is the compressive 

force in the concrete strut, 𝑓𝑐2 is the compressive stress in the concrete strut (function of concrete 

damage evolution), w is the width of the beam,  𝑝𝑢 is taken as half of the loading plate length, 𝜃 

is the inclination of the compressive strut to the horizontal, 𝑑𝑎 is the depth of the nodal zone under 

the loading plate, 𝐹𝑒𝑑 is the pseudo-load due to irreversible strain accumulation,   𝐸𝑐𝑓𝑎𝑡 is the 

residual stiffness of concrete strut,  and  𝜀𝑑 is the irreversible fatigue strain.  

6.5.2 Fatigue Constitutive Models 

The fatigue constitutive models used for concrete under compression fatigue loading and the 

corresponding irreversible strain (𝜀𝑑) model have been previously developed by Isojeh et al., 

(2017a and b) and reported in Chapters 2 and 3. These models were used in this investigation for 

the fatigue damage analysis of concrete. Equations 6.8 and 6.9 are constitutive models for normal 

strength concrete using Hognestad’s equation. Using the Hognestad (1954) equation for concrete 

compressive stress –strain model, the stress in a fatigue-damaged strut is expressed as 

                                                         (
εc2

𝜀𝑐
∗ )

2

−
2εc2

𝜀𝑐
∗ +

𝑓𝑐2

𝑓𝑝(1−𝐷𝑓𝑐)
 = 0                        (6.8) 

                                                         𝜀𝑐
∗ = εp (1+√𝐷𝑓𝑐) - 𝜀𝑑                         (6.9) 
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𝑓𝑐2 is the principal compressive stress, 𝑓𝑝 is the peak concrete compressive stress (equal to 𝑓𝑐
′) , 𝜀𝑝 

is the compressive strain corresponding to 𝑓𝑝, 𝜀𝑐2 is the average net strain in the principal 

compressive direction, and 𝜀𝑐
∗ is the strain corresponding to the peak stress of the degraded 

concrete.  Models for 𝐷𝑓𝑐 and 𝜀𝑑 can be obtained from Isojeh et al. (2017a) and (2017b), 

respectively.  

The total fatigue life of the steel reinforcement can be assumed to constitute the crack initiation 

life (controlled by localised plasticity-crack nucleation) and the crack propagation life. For ductile 

materials, the crack initiation life is usually lower than the crack propagation life. However, the 

reverse is true for brittle materials. The strain-life approach which considers localised plasticity 

was used to obtain the crack initiation life, while fracture mechanics was used to estimate the crack 

propagation life from an initial crack length (Socie et al., 1984). The localised stress and strain on 

the reinforcement at the intersection with a concrete crack can be obtained using finite element 

analysis modelling or simply by Neuber’s rule (Equation 6.10). Neuber’s rule is often used to 

extrapolate elastic analysis so that stresses and strains associated with the effects of local yielding 

can be obtained. 

                                                                  𝜎𝜀 = 
(𝐾𝑡𝑆)2

𝐸
                                    (6.10) 

𝐾𝑡 is the stress concentration factor, and S is the nominal stress. 𝜎 and 𝜀 are the localised stress 

and strain, respectively. The mean value of 𝐾𝑡 (depending on the reinforcement geometries) was 

obtained as 1.9 from a table and chart given by Jhamb and MacGregor (1974) on stress 

concentration factors for reinforcing bars. In order to express the material properties of steel in the 

form of a cyclic stress-strain and strain-life curve, Masing’s (1926) model and the Smith-Watson-

Topper (SWT) approach expressed in Equations 6.11 and 6.12, respectively, were used (Smith et 



166 
 

al., 1970; Dowling and Thangjitham, 2000). The SWT model is empirically based and accounts 

for the effect of mean stresses on fatigue behaviour. The SWT model relates the product of the 

maximum stress and total strain amplitude (𝜎𝑚𝑎𝑥𝜀𝑎) to the fatigue life. The total strain consists of 

the summation of the elastic and plastic terms.  According to the model, the product of the stress 

amplitude and strain amplitude for a fully reversed test is equal to 𝜎𝑚𝑎𝑥𝜀𝑎 for a mean stress test 

(Lee et al., 2005). The parameters (mean test values) in the model 𝜎𝑓
′, 𝑏, 𝑐, 𝜀𝑓

′  are fitting constants 

which are essentially material properties.  

                                                                  𝜀𝑎 = 
𝜎𝑎

𝐸
 + (

𝜎𝑎

𝐻′)

1

𝑛′
                                           (6.11) 

                                                                   𝜎𝑚𝑎𝑥𝜀𝑎 = 
(𝜎𝑓

′)
2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎𝑓

′𝜀𝑓
′(2𝑁𝑓)

𝑏+𝑐
                 (6.12)  

The approach for estimating 𝜎𝑚𝑎𝑥, 𝜀𝑚𝑎𝑥 (maximum stress and strain at a notch) and 𝜎𝑎 (stress 

amplitude and corresponding strain) are illustrated in Boller and Seeger (1987) and Dowling and 

Thangjitham (2000). From Boller and Seeger (1987), the parameters in Equations 6.11 and 6.12 

common to the tests conducted in this investigation (mean test values) are given as 

b = -0.087, c = -0.58, 𝜀𝑓
′  = 0.59, 𝜎𝑓

′ = 720 MPa, 𝑛′ = b/c = 0.15, 𝐻′ = 
𝜎𝑓

′

𝜀𝑓
′ 𝑛′ = 779.3 MPa.  

 

Fig. 6.11 - Crack growth on a reinforcing bar surface.  

For the crack propagation life prediction, the residual area of the cracked reinforcement was 

estimated using the approach and formulas reported in Isojeh and Vecchio (2016), reproduced in 

Figure 6.11 and Equations 6.13 and 6.14: 
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                                                            A(𝑎𝑦) = 
𝜃

90
𝜋𝑟2 − 𝑟𝑠𝑖𝑛𝜃(2𝑟 − 𝑎𝑦)                                         (6.13)   

 

                                                            𝜃 = 𝑐𝑜𝑠−1 (
𝑟−0.5𝑎𝑦

𝑟
)                                                         (6.14) 

A(𝑎𝑦) is the area of the fractured surface of a steel reinforcing bar, 𝜃 is shown in Figure 6.11, 𝑎𝑦 

is the crack depth, and r is the radius of the reinforcing bar. The fracture mechanics models for 

estimating 𝑎𝑦, the initial crack, and the shape factor are considered subsequently.  

6.5.3 Reinforcement Crack Growth 

From the Paris crack growth law (Equation 6.15), the propagation of a reinforcing bar crack can 

be expressed as a function of the stress intensity factor range (∆K) (Equation 6.16). The parameter 

∆K is generally expressed as a function of the fatigue stress range (∆𝜎), crack size (a) and a 

shape factor (Y) for the reinforcing bar (Paris et al., 1960; Lee et al., 2005; Rocha and Bruhwiler, 

2012, Herwig et al., 2008). 

                                                              
𝑑𝑎

𝑑𝑁
 = C.∆𝐾𝑛                                           (6.15) 

                                                               ∆K = Y.∆𝜎.√𝜋𝑎                                                            (6.16) 

The crack depth (𝑎𝑗) for a given number of cycles is estimated from Equations 6.15 and 6.16 thus: 

                                                             𝑎𝑗 = (
𝑎𝑖

𝛼

1−[𝑁𝑖𝑗(𝐶.𝛼.𝜋
𝑛
2 .𝑌𝑛.∆𝜎𝑛.𝑎𝑖

𝛼)]
)

1

𝛼

                                    (6.17) 

where 𝛼 = (n/2)-1. 

𝑎𝑖 and 𝑎𝑗 are the smallest and largest crack depth for the interval of cycles considered (𝑁𝑖𝑗). 

However, the estimation of 𝑎𝑗 requires the value of 𝑎𝑖, which is the previous crack depth. Y is the 

shape factor. The initial minimum crack can be obtained iteratively from Equation 6.18 (Herwig, 

2008): 

                                                                𝑎𝑜 = 
1

𝜋
 (

∆𝐾𝑡ℎ

𝑌∆𝜎𝑙𝑖𝑚
)
2

                                                             (6.18) 
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where ∆𝜎𝑙𝑖𝑚 corresponds to the fatigue limit stress at which fatigue damage will not initiate, and 

∆𝐾𝑡ℎ is the threshold stress intensity factor. The crack does not propagate for stress intensity values 

lower than ∆𝐾𝑡ℎ. However, the threshold intensity factor was taken as 5 MPa √𝑚  (Farahmand 

and Nikbin, 2005) (m is in metres). An equation for the shape factor, recommended in BS 7910 

(2005) as a function of the crack depth, is given in Equation 6.19.  

                                                                  Y = 

1.84

𝜋
{𝑡𝑎𝑛(

𝜋𝑎

4𝑟
)/(

𝜋𝑎

4𝑟
)}

0.5

𝑐𝑜𝑠(
𝜋𝑎

4𝑟
)

∙ 

                                                                  [0.75 + 2.02 ∙ (
𝑎

2𝑟
) + 0.37 ∙ {1 − 𝑠𝑖𝑛 (

𝜋𝑎

4𝑟
)}

3

]        (6.19) 

where r is the radius of the reinforcing bar and a is the crack depth.  

The residual area of reinforcement A(i) required in Equation 6.4 was obtained by subtracting the 

area of the fractured surface from the initial reinforcing bar area. It was assumed that the stresses 

induced in the reinforcing bars on the same layer in a beam cross section are equal. As such, the 

progressive reduced area can be obtained by multiplying the initial area of reinforcement or 

reinforcement ratio by the ratio of a rebar’s residual area to its uncracked area.  

6.5.4 Compatibility Equation 

From a Mohr’s circle of strain, the relationship between the strain in the horizontal direction, the 

principal tensile strain and the principal compressive strain can be estimated from: 

                                                          𝜀𝑐1= 𝜀𝑥 + (𝜀𝑥 - 𝜀𝑐2) cot2𝜃                             (6.20) 

where  𝜀𝑐1 is the average effective principal tensile strain, 𝜀𝑥 is the average strain the horizontal 

direction, 𝜀𝑐2 is the average effective principal compressive strain, and  𝜃 is the inclination of the 

compression strut. The average strain in the vertical direction (required in Equation 5) within the 

shear span is estimated as: 
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                                                         𝜀𝑣 = 0.5 𝜀𝑐1(1- cos 2𝜃) + 0.5 𝜀𝑐2(1+ cos 2𝜃)                     (6.21) 

Since appropriate anchorage was ensured based on design specification, perfect bond was assumed 

in this investigation. Hence, the horizontal strain 𝜀𝑥 is taken as the strain in the longitudinal 

reinforcement, while the vertical strain 𝜀𝑣 is the strain in the shear reinforcement within the shear-

span. In this approach, it was also assumed that cracks do not propagate on the shear reinforcement 

as the number of cycles increases. This is attributed to the fact that the estimated forces in shear 

reinforcement are overly conservative since the contributions of other mechanisms such as 

aggregate interlock and clamping effects were neglected. This approach was used to estimate the 

number of cycles at which the fracture of the longitudinal reinforcing bars at the intersection with 

   

  

 

  

 

 

  

 

   

Fig. 6.12 - Algorithm for predicting the fatigue life of a deep beam. 
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considered while accounting for the progressive damage and area reduction of the strut and tie, 

respectively, until the governing failure criterion is reached. 

The fatigue life predictions for beams C80-0, C75-0, C70-0, and C80-20-0 are shown in Figures 

6.13 and 6.14 in addition to the predictions obtained using Helgason et al. (1976). The predictions 

using Helgason et al.’s model tend to be overly conservative compared to the predictions using the 

proposed approach. The numbers of cycles predicted in both cases are given in Table 6.2. From the 

models proposed by Helgason et al. (1976), an endurance limit is assumed below which failure will 

not occur. This simply means beam C80-20 will not fail under fatigue loading, hence leading to an 

unsafe fatigue life prediction. 

One of the motives of the proposed approach in this chapter was to develop a conservative means 

for fatigue life prediction. However, as the fatigue load range begins to reduce as in the cases of 

C70-0 and C80-20 in Figure 6.14, the range for acceptable predictions is expected to be wider 

since variations in the number of cycles to failure corresponding to small or insignificant changes 

in loading are significantly large due to the low induced stresses (as revealed in fatigue tests and 

in developed S-N curves for high and low stresses in the literature). This is attributed to the lower 

fatigue life prediction shown in Figure 6.14. In addition, for low fatigue loads and under-reinforced 

beams, fatigue damage tends to concentrate within the mid-span region; hence the effect of the 

irreversible strain in the compressive strut on the longitudinal reinforcing bars reduces. 

Conservatively, the influence of irreversible strains were fully considered in the predictions for the 

fatigue lives of beams C70-0 and C80-20; hence the lower fatigue life predictions. 

The strain in the longitudinal reinforcing bars (𝜀𝑥 ) per interval of cycles up to failure were also 

plotted and shown in Figure 6.8. As observed, the three phases of fatigue damage evolution are 
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well-defined within the fatigue life for beam C80-0. 

 

Fig. 6.13 - Fatigue life prediction from strut and tie model (C80-0 and C75-0). 

 

Fig. 6.14 - Fatigue life prediction from strut and tie model (C70-0 and C80-20). 

The first phase entails a nonlinear deformation. The second phase is characterized by a constant 

rate of deformation, and the last stage is characterized by an increasing rate of damage leading to 

failure.   The induced force in the steel reinforcement is estimated using Equation 6.4, while the 

residual capacity of the reinforcement is obtained from the product of the residual area and the 

yield strength. Failure becomes imminent when both evolutions converge (Figures 6.13 and 6.14). 
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The predicted results using the proposed approach are conservative and reasonably close to the 

experimental values; hence, the approach can be implemented in the prediction of the fatigue life 

of deep beams. 

The simple strut-tie model used in this investigation was based on the low value of the shear span 

to effective depth ratio and the actual load path of force transfer from the load point to the support of 

the tested specimens (see Figure 6.10). For larger spans which involve more struts and ties, the 

same concept of constitutive, compatibility, and equilibrium equation modification can be 

employed. In these cases, failure will occur in the region with the highest stress. 

The significance of this approach stems from the fact that the fatigue failure of beams with large 

shear span to effective depth ratios (governed by truss action) can also be predicted. In essence, 

the approach accounts for progressive crack development in reinforcement (shear or longitudinal) 

and concrete damage; hence, it represents an advantage over previous models which consider 

fracture of the shear reinforcement as the only fatigue limit state. 

Although a point load was considered in this investigation, in the case of distributed loading, the 

fanning concept of struts is used (Muttoni et al., 1996; Collins and Mitchell, 1997). In the same 

manner as described for the point load, the governing equations for equilibrium, compatibility, and 

stress-strain response can be modified using the referred damage evolution models; however, 

experimental verification of these is required. 

Small-scale beams have been considered in this investigation. The size effect on plain concrete 

under monotonic and fatigue loading is well known. The crack growth rate per fatigue loading 

cycle of plain concrete is higher for larger sizes (Bazant and Xu, 1991; Sain and Chandra, 2007). 

It is considered expedient that more tests be conducted on lightly-reinforced and sufficiently 
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reinforced large scale beams, and that the proposed approach be further scrutinized to ascertain its 

validity. 

6.6 Conclusions 

The behaviour of deep beams under fatigue loading has been investigated by conducting tests 

on small-scale deep beams. The progressive deformations within the shear spans and mid-spans 

were measured. In all, the rate of deformation was observed to increase as the stress level or stress 

range increased. It was observed that beams with increased longitudinal reinforcement ratios 

exhibited a higher fatigue life, hence supporting our current understanding of the fatigue 

behaviour of reinforced concrete structures. 

The fatigue behaviour observed was governed by the load transfer mechanism and the induced 

stresses within the load path. The specimens tested failed by fracture of the longitudinal 

reinforcement either within the shear span or in the mid-span region. The results obtained using 

the modified strut and tie analysis approach described in this chapter gave appropriate fatigue 

life prediction; hence, the approach provides a reliable means for the fatigue analysis of deep 

beams. 

Within the range of failure, the predicted results obtained for the specimens using the proposed 

approach were found to be conservative. An additional advantage of the proposed fatigue 

analysis approach stems from the fact that the progressive deformation and the actual mechanism 

of failure (crushing of concrete or fracture of steel), depending on the governing criterion, can 

be observed. 
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CHAPTER 7 

REINFORCED CONCRETE AND STEEL-FIBRE CONCRETE ELEMENTS UNDER 

FATIGUE LOADING: MODEL FORMULATION 

This material was submitted to ASCE Structural Journal, and is in review for publication as a 

technical paper. 

Isojeh B., El-Zeghayar M., Vecchio F.J. “Reinforced Concrete and Steel Fibre Concrete 

Elements under Fatigue Loading: Model Formulation.”  

7.1 Abstract 

The implementation of fatigue damage models into the governing equations of the Disturbed 

Stress Field Model algorithm for the fatigue analysis of reinforced concrete structures, within the 

context of nonlinear finite element analysis, is presented in this paper. The models account for 

concrete deterioration, localised reinforcement crack growth, and accumulation of irreversible 

compressive strain in conventional reinforced concrete or steel fibre reinforced concrete due to 

fatigue loading. As such, analyses involving fatigue damage can be expressed in terms of the 

deformation evolution and residual capacity. These concepts overcome the well-known 

limitations of stress-life models for fatigue analysis of reinforced concrete structures. The 

implementation using robust models previously proposed by the authors are described in this 

report. As a means of further illustration, the solution to the deformation of a shear element under 

pure shear fatigue loading is presented. The corroboration of the modified algorithm with 

experimental results for fatigue life and residual strength prediction are presented in Chapter 8. 

7.2 Introduction 

A majority of collapsed dynamics-susceptible structures are linked to fatigue damage. Hence, 
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fatigue limit state verification is required to complement ultimate and serviceability limit states 

in the structural design of these structures. As a norm, the fatigue resistance capacity of a 

reinforced concrete structure is typically verified from the stresses induced in the constituent 

materials, obtained from static analyses of the maximum and minimum fatigue loads that the 

structure may resist. The highest stress values at critical sections are normalised with the ultimate 

strengths of the materials and are substituted into corresponding fatigue stress-life models (S-N 

curves) in order to obtain the number of cycles leading to failure (Aas-Jakobsen, 1970). 

Experiments conducted and reported in the literature on the fatigue behaviour of concrete 

composites depict progressive parametric deterioration and accumulation of irreversible strains 

as governing mechanisms. In addition, cracks have been observed on reinforcing bars which 

evolve to final fracture (Salah El Din and Lovegrove, 1980; Okamura and Farghaly, 1981; 

Schlafli and Bruhwiler, 1998; Zanuy et al., 2009). 

The inability of S-N models to account for progressive deformation became evident as the need 

arose for the damage evolution of concrete after some given number of cycles and load history 

(Holmen, 1982). Further, the significant influence of accumulated irreversible strains on 

structural components has typically been neglected. 

In order to account for the progressive deformation under fatigue loading, constitutive models were 

developed for concrete composites and steel reinforcement by various researchers (Otter and 

Naaman, 1986; Otter and Naaman, 1988; Oh, 1991; Eligehausen et al., 1992; Park, 1990; Gao and 

Hsu, 1998; Teng et al., 2001; Petryna et al., 2002; Maekawa et al., 2006; Xiang and Zhao, 2007; 

Gebreyouhannes et al., 2008; Vega et al. 1995; Zanuy et al., 2009; Tamulenas et al., 2014). These 

simplified the prediction of the damage evolution of a structural component up to the instant of 
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collapse due to instability arising from concrete composite degradation and steel reinforcement 

fracture. However, a majority of the constitutive models developed for concrete are based on 

assumptions not adequately verified experimentally. In addition, significant fatigue-influencing 

parameters that were neglected limit the use of such models to structures having similar loading 

parameters as those used for developing such models (Isojeh et al., 2017a).  

Although stress-life models (Tilly and Moss, 1982; Hanson, 1983; JSCE, 1986; Petryna et al., 

2002) and the Palmgren-Miner rule (linear rule) (Palmgren, 1924; Miner, 1945) are used in 

modelling the progressive fatigue degradation of steel reinforcement, it is well-known that crack 

propagation in steel reinforcement is nonlinear. Since the main region of fatigue failure in 

reinforced concrete structures typically coincides with the location of concrete cracks 

intersecting the reinforcing bars, the progressive crack-growth of the reinforcement traversing 

the concrete crack plane should be well accounted for in order to appropriately predict the 

deformation within the concrete plane. Available models in the literature which incorporate the 

stress-life models and the Palmgren-Miner rule for steel reinforcement fatigue fracture do not 

capture this governing fatigue-damage mechanism and its corresponding evolution. 

In this paper, robust modified damage models, an irreversible strain model, and constitutive 

models which have been proposed by the authors are used (Isojeh et al., 2017a; Isojeh et al., 2017b; 

Isojeh et al., 2017c). In addition, the governing fatigue damage mechanism and local stress 

conditions at crack locations are adequately accounted for by implementing reinforcement 

crack-growth models developed from fracture mechanics. These models are incorporated into 

the monotonic models of the well-known Disturbed Stress Field Model (DSFM) as functions of 

fatigue loading cycles and other salient fatigue loading parameters; hence, as fatigue loading 

cycles increase, the residual capacity of a structural element and its progressive deformation can 
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be obtained from load-deformation plots and deflection evolutions. 

7.3 Disturbed Stress Field Model 

Solutions to engineering mechanics problems are obtainable provided associated equilibrium, 

compatibility and constitutive equations are satisfied. The capability of the Disturbed Stress 

Field Model  (Vecchio,  2000;  Vecchio,  2001)  in  predicting  the  behaviour  of  reinforced   

concrete structures subjected to different loading conditions, based on the aforementioned 

concept, is well documented (Vecchio, 2001; Vecchio et al., 2001; Facconi et al., 2014; Lee et 

al., 2016). As an extension of the Modified Compression Field Theory (Vecchio and Collins, 

1986), the DSFM, founded on a smeared-rotating crack model, includes the consideration of 

deformation within concrete crack planes. The formulations of the DSFM can be adapted to allow 

for the consideration of the damage of concrete and the corresponding crack growth on steel 

reinforcement (longitudinal and transverse) intersecting a concrete crack under fatigue loading. 

The modification of these models are considered subsequently. 

7.3.1 Equilibrium Condition 

An orthogonally reinforced element under external forces (Figure 7.1) is in equilibrium as a 

result of the resistance from the induced average material stresses in the concrete composite and 

steel reinforcement. In the cracked state, the verification of equilibrium at the crack locations is 

required to ensure stresses are adequately transferred between cracks (Figure 7.2). 

7.3.2 Equilibrium of Average Stresses 

In Figure 7.1, the normal stresses are denoted by 𝜎𝑥 and 𝜎𝑦 and the shear stress as 𝜏𝑥𝑦. 

Considering the average stresses in the element under static loading condition, the equilibrium 

condition based on the superposition of concrete and steel reinforcement stresses can be 
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expressed as shown in Equations 7.1 to 7.3. 

 

  

Fig. 7.1 - Steel fibre reinforced concrete element (a) Loading conditions; (b) Mohr’s circle for 

average stresses in concrete. 

                                                    𝜎𝑥 = 𝑓𝑐𝑥 + 𝜌𝑥𝑓𝑠𝑥                                                                                (7.1) 

                                                    𝜎𝑦 = 𝑓𝑐𝑦 + 𝜌𝑦𝑓𝑠𝑦                                                                               (7.2) 

                                                     𝜏𝑥𝑦 = 𝑣𝑐𝑥𝑦                                                                                        (7.3) 

where 𝜌𝑥 and 𝜌𝑦 are the reinforcement ratios in the x- and y- directions, respectively. 

The stresses in the concrete or steel fibre concrete (𝑓𝑐𝑥, 𝑓𝑐𝑦, and 𝑣𝑐𝑥𝑦) can be obtained using Mohr’s 

stress circle (Figure 1(b)) with known principal stresses (𝑓𝑐1, 𝑓𝑐2). The principal stresses are 

obtained from constitutive models which are functions of concrete parameters such as strength, 

stiffness, and induced strains. Since these parameters (strength and stiffness) degrade and strains 

accumulate under fatigue loading, the material stresses change correspondingly.  Constitutive 

models which account for fatigue degradation will be considered in a subsequent section. 

(a) (b) 
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7.3.3 Equilibrium of Stresses at a Crack 

Under static loading, stresses in the reinforcement at crack locations are higher than the values 

between cracks (average values) since the concrete tensile stress is zero at such locations. As a 

result, shear stresses also develop on the crack surfaces at crack locations. 

Since fatigue crack propagation is a function of the stress values, its initiation tends to occur at a 

reinforcement region traversing the concrete cracks where the stresses are high. From Figures 

7.2(a) and 7.2(b), the general static equilibrium equations which involves steel fibre are given 

thus (Lee et al., 2016): 

 

 

 

 

 

 

 

Fig. 7.2 - Equilibrium conditions: (a) Parallel to crack direction; (b) Along crack surface. 

 

Fig. 7.3 - Equilibrium conditions along crack surface after reinforcement crack propagation. 

(a) 
(b) 
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                                                𝑓𝑐1 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠2𝜃𝑛𝑖 + (1-𝛼𝑎𝑣𝑔)𝑓𝑓𝑐𝑜𝑠𝜃𝑓                     (7.4) 

                                               𝑣𝑐𝑖,𝑐𝑟 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑓𝑠𝑐𝑟𝑖 – 𝑓𝑠𝑖). 𝑐𝑜𝑠𝜃𝑛𝑖  𝑠𝑖𝑛𝜃𝑛𝑖  - (1-𝛼𝑎𝑣𝑔)𝑓𝑓 𝑠𝑖𝑛𝜃𝑓        (7.5) 

In Equations 7.4 and 7.5, (1-𝛼𝑎𝑣𝑔)𝑓𝑓 represents the contribution from steel fibre bridging a crack. 

𝛼𝑎𝑣𝑔 relates the tensile stress in steel fibre to the average principal tensile stress, while 𝑓𝑓 is a 

function of the equivalent bond strength due to the mechanical anchorage of the steel fibre and the 

friction bond strength of steel fibre (Lee et al., 2016). 

As cracks propagate in the reinforcement traversing a concrete crack, the area of reinforcement 

intersecting the crack reduces, hence resulting in lower reinforcement ratio at the crack. To account 

for the progressive reinforcement ratio reduction due to fatigue loading, Equations 7.4 and 7.5 are 

modified thus (Figure 7.3): 

                                                 𝑓𝑐1 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑍𝑂𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠2𝜃𝑛𝑖  +  

                                                 (1-𝛼𝑎𝑣𝑔)𝑓𝑓√1 − 𝐷𝑓𝑐  𝑐𝑜𝑠𝜃𝑓                                                          (7.6) 

                                                 𝑣𝑐𝑖,𝑐𝑟 = ∑ 𝜌𝑠𝑖
𝑛
𝑖 (𝑍𝑂𝑓𝑠𝑐𝑟𝑖 - 𝑓𝑠𝑖). 𝑐𝑜𝑠𝜃𝑛𝑖  𝑠𝑖𝑛𝜃𝑛𝑖    

                                                - (1-𝛼𝑎𝑣𝑔)𝑓𝑓√1 − 𝐷𝑓𝑐  𝑠𝑖𝑛𝜃𝑓                                                        (7.7) 

𝑍𝑂 and 𝐷𝑓𝑐 are parameters representing reinforcement crack growth and plain or steel fibre 

concrete strength degradation, respectively.  

7.3.4 Reinforcement Crack Growth Factor (𝑍𝑂) 

From the Paris crack growth law (Equation 7.8), the propagation of a reinforcing bar crack, up to 

a depth resulting in fatigue fracture, can be predicted using a parameter representing the stress 

intensity factor range (∆K) (Equation 7.9). This parameter is generally expressed as a function of 

the stress range (∆𝜎), crack size (a) and a shape factor (Y) for the reinforcing bar (Paris et al., 

1961; Rocha and Bruhwiler, 2012; Herwig et al., 2008).  
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𝑑𝑎

𝑑𝑁
 = C.∆𝐾𝑛                                                         (7.8) 

                                                   ∆K = Y.∆𝜎.√𝜋𝑎                                                                         (7.9) 

Equation 7.10 can be obtained from the integration of Equation 7.8 with respect to fatigue loading 

cycles, after substituting Equation 7.9 into Equation 7.8. Hence, the crack depth (𝑎𝑦) after a given 

number of cycles can be estimated.  

                                                   𝑎𝑦 = (
𝑎𝑖

𝛼

1−[𝑁𝑖𝑗(𝐶.𝛼.𝜋
𝑛
2 .𝑌𝑛.∆𝜎𝑛.𝑎𝑖

𝛼)]
)

1

𝛼

                                                (7.10) 

where 𝛼 = (n/2)-1; C = 2 x 10−13; and n = 3.0. 

𝑎𝑖 and 𝑎𝑦 are the previous and current crack depth for the interval of cycles considered (𝑁𝑖𝑗), 

respectively. In order to estimate 𝑎𝑦 using Equation 7.10, the value of 𝑎𝑖 must be known, which is 

the previous crack depth (Paris et al., 1961).  

An equation for the shape factor (Y), proposed in BS 7910 (1999) as a function of the crack depth, 

is given in Equation 7.11. The crack depth (𝑎𝑦) can be obtained iteratively by substituting the 

equation for the shape factor (Equation 7.11) into Equation 7.10. 

                                                    Y = 

1.84

𝜋
{𝑡𝑎𝑛(

𝜋𝑎

4𝑟
)/(

𝜋𝑎

4𝑟
)}

0.5

𝑐𝑜𝑠(
𝜋𝑎

4𝑟
)

∙ 

                                                    [0.75 + 2.02 ∙ (
𝑎

2𝑟
) + 0.37 ∙ {1 − 𝑠𝑖𝑛 (

𝜋𝑎

4𝑟
)}

3

]                       (7.11) 

 The initial crack depth (𝑎𝑖) expressed as 𝑎𝑜 at the onset of fatigue loading is obtained iteratively 

using Equation 7.12: 

                                                   𝑎𝑜 = 
1

𝜋
 (

∆𝐾𝑡ℎ

𝑌∆𝜎𝑙𝑖𝑚
)
2

                                                                        (7.12) 

r is the radius of the reinforcing bar and a is the crack depth, ∆𝜎𝑙𝑖𝑚 corresponds to the fatigue limit 

stress at which fatigue damage will not initiate, and ∆𝐾𝑡ℎ is the threshold stress intensity factor. 
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The crack does not propagate for stress intensity values lower than ∆𝐾𝑡ℎ. The ∆𝐾𝑡ℎ  value is taken 

as 158 N𝑚𝑚2 (Farahmand and Nikbin, 2008).  

 

Fig. 7.4 - Crack growth on a reinforcing bar cross section. 

The fractured surface area of a reinforcing bar can be assumed as shown in Figure 7.4. The crack 

depth (𝑎𝑦) evolves from an initiation point up to the instant when the reserve capacity of the 

reinforcement at the crack is no longer sufficient for tensile stress transfer.  

From Figure 7.4, the fractured area (A(𝑎𝑦) ) is estimated as: 

                                                       A(𝑎𝑦) = 
𝜃𝑟

90
𝜋𝑟2 − 𝑟𝑠𝑖𝑛𝜃𝑟(2𝑟 − 𝑎𝑦)                                               (7.13) 

                                                       𝜃𝑟 = 𝑐𝑜𝑠−1 (
𝑟−0.5𝑎𝑦

𝑟
)                                                              (7.14) 

 The residual area (𝐴𝑟𝑒𝑠) of a reinforcing bar after crack propagation to a given number of cycles 

is obtained as: 

                                                        𝐴𝑟𝑒𝑠 = 𝐴𝑜 - A(𝑎𝑦)                                                                 (7.15) 

From Equation 7.15, the reinforcement crack growth factor (𝑍𝑂) required in Equations 7.6 and 7.7 

is obtained thus: 

                                                        𝑍𝑂 = 
𝐴𝑟𝑒𝑠

𝐴𝑜
                                                                                 (7.16) 

where 𝐴𝑜 is the cross-sectional area of the uncracked rebar. This is estimated for all reinforcing 

bars traversing the concrete crack, provided the induced stresses are higher than the threshold value 
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for crack initiation. 

Prior to reinforcement crack propagation, the number of cycles resulting in a localised plasticity-

crack nucleation or crack initiation may also be included using Masing’s model and the SWT 

approach (Socie et al., 1984; Dowling and Thangjitham, 2000). To account for this, the value of 

the reinforcement crack growth factor is assumed to be a value of 1.0 in Equations 7.6 and 7.7 

until the estimated crack initiation cycles is reached. 

7.4  Compatibility Condition 

 In the Disturbed Stress Field Model, the total strain [𝜀] in an element consists of the net strain 

[𝜀𝑐], plastic offset strain [𝜀𝑐
𝑝], elastic offset strain [𝜀𝑐

𝑜], and strain effect due to slip at crack [𝜀𝑐
𝑠]. 

The net strain, obtained from the difference between the total strain and the other aforementioned 

strains (generally called prestrains), is required in constitutive models for obtaining average 

stresses.  

As reported in the literature, irreversible strain accumulates under fatigue loading; hence, it can be 

considered as a prestrain at any given fatigue loading instant. An irreversible fatigue strain model 

developed by the authors (Isojeh et al., 2017b) in the literature, reported herein, is used for the 

fatigue prestrain [𝜀𝑐,2
𝑓𝑎𝑡

] in the principal compressive strain direction for conventional and steel 

fibre reinforced concrete. The model was developed as a function of residual strength and stiffness 

damage. These parameters in turn are functions of salient factors such as frequency, stress ratio, 

and fatigue loading cycles. As such, the model is capable of accounting for variations in the loading 

parameters. 

In the x-y direction, the total strain [𝜀] is 

                                                     [𝜀] = [𝜀𝑐] + [𝜀𝑐
𝑝] + [𝜀𝑐

𝑜] + [𝜀𝑐
𝑠] + [𝜀𝑐

𝑓𝑎𝑡
]                                   (7.17) 
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Total strains are used in the constitutive equations for obtaining the steel reinforcement stresses; 

however, net strains [𝜀𝑐]  are required in the constitutive models for obtaining average stresses in 

concrete or steel fibre concrete. Considering the x-y direction,   

                                                     [𝜀] = [𝜀𝑥, 𝜀𝑦, 𝛾𝑥 ]                                                                         (7.18) 

                                                     [𝜀𝑐] = [𝜀𝑐𝑥, 𝜀𝑐𝑦, 𝛾𝑐𝑥 ]                                                                (7.19) 

                                                     [𝜀𝑐
𝑓𝑎𝑡

] = [𝜀𝑐𝑥
𝑓𝑎𝑡

, 𝜀𝑐𝑦
𝑓𝑎𝑡

, 𝛾𝑐𝑥𝑦
𝑓𝑎𝑡

]                                                       (7.20) 

From a strain transformation of the fatigue prestrain,  

                                                    𝜀𝑐𝑥
𝑓𝑎𝑡

 = 
1

2
 𝜀𝑐,2

𝑓𝑎𝑡
 (1 – cos 2𝜃)                                                        (7.21) 

                                                    𝜀𝑐𝑦
𝑓𝑎𝑡

 = 
1

2
 𝜀𝑐,2

𝑓𝑎𝑡
 (1 + cos 2𝜃)                                                        (7.22) 

                                                    𝛾𝑐𝑥𝑦
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

 sin 2𝜃                                                                    (7.23) 

From Mohr’s circle of strain, the principal strains from the net strains can be estimated as: 

                                                     𝜀𝑐1, 𝜀𝑐2 = 
(𝜀𝑐𝑥+𝜀𝑐𝑦

2
 ± 

1

2
 [(𝜀𝑐𝑥 − 𝜀𝑐𝑦)2 + 𝛾𝑐𝑥

2]
1/2

                    (7.24) 

The inclination of the principal strains in the concrete, 𝜃, is given by: 

                                                     𝜃 =   
1

2
 𝑡𝑎𝑛−1 [

𝛾𝑐𝑥

𝜀𝑐𝑥−𝜀𝑐𝑦
]                                                             (7.25) 

From Isojeh et al. (2017b): 

                                                     [𝜀𝑐,2
𝑓𝑎𝑡

] =𝜀𝑑𝑜 + 𝜀𝑑1 + 𝜀𝑑2                                                            (7.26) 

                                                     𝜀𝑑𝑜 = −(
𝑓𝑐

′+(𝜎𝑚𝑎𝑥 𝑅)

𝐸
) − 0.3 𝜀𝑐

′                                                   (7.27) 

                                                     𝜀𝑑1 = 𝑘2𝑞 (
𝐷𝑓𝑐

√𝐷𝑐𝑒
)                                                                        (7.28)    

                                                      𝜀𝑑2 = 
(𝜎𝑚𝑎𝑥 𝑅)

𝐸𝑠𝑒𝑐
                                                                          (7.29) 
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E is the fatigue secant modulus, 𝑘2 is 1.0 for high strength concrete and 2.0 for normal strength 

concrete, q in Equations 7.27 and 7.28 is equal to −0.3 𝜀𝑐
′ , R is the stress ratio, 𝜎𝑚𝑎𝑥 is the 

maximum stress level, and 𝐸𝑠𝑒𝑐 is the residual static secant modulus. The models for  𝐷𝑓𝑐 (concrete 

strength damage) and 𝐷𝑐𝑒 (fatigue secant modulus damage) are given in a subsequent section. 

7.5 Constitutive Relation 

The behaviour of cracked concrete in compression and the corresponding influences of transverse 

stresses and shear slip effects under static loading are well illustrated in Vecchio (2000). 

Constitutive models for plain and steel fibre reinforced concrete are usually given in terms of peak 

stresses and the corresponding strains at peak stresses. Models proposed by Hognestad and 

Popovics for normal and high strength concrete, respectively, were modified by Isojeh et al. (2017b 

and c) to account for concrete deterioration, and are presented herein for fatigue constitutive 

relation. 

For normal strength concrete (𝑓𝑝 < 40 MPa) (Hognestad equation), the residual peak stress and the 

corresponding strain can be expressed as given in Equations 7.30 and 7.31, respectively, after a 

given number of fatigue loading cycles.  

The Hognestad model for fatigue damage is expressed in Equations 7.30 to 7.32 and the residual 

strength damage (𝐷𝑓𝑐) in the equations will be considered shortly.  

                                                     fc
∗ = (1 − 𝐷𝑓𝑐) 𝑓𝑝                                                                      (7.30)  

                                                     𝜀𝑐
∗ = εp (1+√𝐷𝑓𝑐) - 𝜀𝑑                                                               (7.31)  

The effective stress in fatigue damaged concrete is: 

                                                      𝑓𝑐2 = 𝑓𝑐
∗ (

2𝜀𝑐2

𝜀𝑐
∗ − (

𝜀𝑐2

𝜀𝑐
∗ )

2

 )                                                          (7.32)  
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For high strength plain concrete (𝑓𝑝 ≥ 40 MPa) (using Popovics’ equation), the fatigue constitutive 

equation is given in a simplified form as:  

                                                      𝑓𝑐2=𝑓𝑝(1 − 𝐷𝑓𝑐) 
𝑛(𝜀𝑐2/εp)

(𝑛−1)+(𝜀𝑐2/εp)𝑛𝑘                                                     (7.33) 

where according to Collins et al. (1997): 

                                                      n = 0.80-𝑓𝑝/17 (in MPa)                                           (7.34) 

                                                      k = 0.6 −
𝑓𝑝

62
                𝑓𝑜𝑟    𝜀𝑐2 < 𝜀𝑝 < 0                                (7.35) 

                                                      k = 1                             𝑓𝑜𝑟    𝜀𝑐2 < 𝜀𝑝 < 0                                (7.36) 

For steel fibre concrete, the monotonic constitutive model proposed by Lee et al. (2016) was 

modified to account for fatigue damage; thus: 

                                                      𝑓𝑐2 = 𝑓𝑐2𝑚𝑎𝑥 (1 − 𝐷𝑓𝑐) [
𝐴(𝜀𝑐2/εp)

𝐴−1+(𝜀𝑐2/εp)𝐵
]                                       (7.37) 

where: 

                                                      𝑓𝑐2𝑚𝑎𝑥 = 
𝑓𝑐

′

1+0.19(−𝜀𝑐1/𝜀𝑐2 −0.28)0.8    > 𝑓𝑐
′                                       (7.38) 

The values for A and B differ for the hardening and softening portion of the stress-strain envelope. 

From Lee et al. (2016), the values are given thus: 

For the pre-peak ascending branch,  

A = B = 1/[1-(𝑓𝑐
′/𝜀𝑐

′𝐸𝑐)                                                                                                            (7.39) 

For the post-peak descending branch,  

A = 1 + 0.723(𝑉𝑓𝑙𝑓/𝑑𝑓)
−0.957; B = (𝑓𝑐

′/50)0.064[1 + 0.882 (𝑉𝑓𝑙𝑓/𝑑𝑓)
−0.882]                        (7.40) 

From the equations given, fc
∗  is the degraded compressive strength,  𝑓𝑝 is the compressive strength 

of concrete, 𝐷𝑓𝑐 is the residual strength damage,  𝜀𝑐
∗ is the strain corresponding to the degraded 

concrete compressive strength, and  𝜀𝑑 is the irreversible fatigue strain. 
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The residual strength damage evolution model is given in Equation 7.39 (Isojeh et al., 2017a). The 

damage parameter s in the equation depends on the steel fibre volume and can be obtained from 

Figure 7.5. 𝐷𝑐𝑟 in Equation 7.41 is the critical damage value which is taken as 0.35 and 0.40 for 

strength and elastic modulus, respectively. 

                                                   𝐷𝑓𝑐 =  𝐷𝑐𝑟  Exp [𝑠 (
∆𝑓

𝑓𝑐
′ − 𝑢)]𝑁𝑣                             (7.41)                                                                                                            

                                        u = 𝐶𝑓 (1 − 𝛾2 𝑙𝑜𝑔(𝜁 𝑁𝑓 𝑇))                                                     (7.42) 

                                                   v = 0.434 s 𝐶𝑓(𝛽2(1 − 𝑅))                                                        (7.43) 

 

𝐶𝑓 (frequency factor), and 𝛾2 and  𝛽2 (material constants) are given respectively as (Zhang et al., 

1996): 

                                                    𝐶𝑓 = a𝑏−𝑙𝑜𝑔𝑓+ c                         (7.44)  

                                                    𝛾2 = 2.47 x 10−2,  𝛾2 = 0 (for steel fibre)                       

                                                    𝛽2= 0.0661-0.0226R                        (7.45)  

For steel fibre concrete, 𝛽2 is equal to 0.0588 and 0.0470 for steel fibre volume of 0.75% and 1.5%, 

respectively. a, b, and c are 0.249, 0.920, and 0.796 for plain concrete (Zhang et al., 1996). For 

steel fibre concrete, a, b, c are taken as 0.283, 0.941, and 0.715, respectively (Isojeh et al., 2017c). 

𝜁 is a dimensionless coefficient which is taken as 0.15 for a sinusoidal cycle (Zhang et al., 1998; 

Torrenti et al., 2010). f is the fatigue loading frequency.  

The behaviour of cracked concrete has been considered so far. In an uncracked element, a linear 

relation for concrete in tension is modified. Thus: 

                                                         𝑓𝑐1 = 𝐸𝑐(1 − 𝐷𝑡𝑒)𝜀𝑐1                                                           (7.46) 
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where 𝐸𝑐 is the initial tangential modulus, and 𝜀𝑐1 is the principal tensile strain in the concrete. 

Compressive fatigue damage in an uncracked concrete element is generally considered 

insignificant, since the induced compressive stress is usually small. 

 

 

Fig. 7.5 - Damage parameter s for steel fibre secant modulus (A) and residual strength (B). 

As a result of bonding between concrete and steel reinforcement, which results in load transfer 

between the concrete and the reinforcement, tension stiffening is usually considered under 

monotonic loading (Equation 7.47). Under fatigue loading however, the effect reduces 

progressively due to the evolving tensile strain in cracked concrete and reinforcement crack 

propagation.              

The coefficient 𝑐𝑓 accounts for the influence of steel fibre (end-hooked), 

                                                         𝑓𝑐,𝑇𝑆= 
𝑓𝑡𝑝

1+√3.6𝑐𝑓.𝜀𝑐1 
                                  (7.47)  

𝑐𝑓= 0.6 + (1/0.034) ( 𝑙𝑓/𝑑𝑓)[(100𝑉𝑓)
1.5

/𝑀0.8]; M (bond parameter) = 𝐴𝑐/ (∑𝑑𝑏𝑠𝜋), in 

millimeters. 
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For plain concrete, the value of 𝑐𝑓 reduces to 0.6. The tensile stress in steel fibre concrete is 

estimated as the sum of the tension stiffening effect and the stresses transmitted by steel fibre 

across cracks; hence, 

                                                         𝑓𝑐1 = 𝑓𝑐,𝑇𝑆 + (1-𝛼𝑎𝑣𝑔)𝑓𝑓 𝑐𝑜𝑠𝜃𝑓                                              (7.48) 

where 𝑓𝑐1 is the effective tensile stress in the concrete, 𝜀𝑐1 is the tensile strain of the concrete, 𝑑𝑏𝑖 

is the rebar diameter, 𝜃 is the inclination of principal strain direction, 𝛼𝑖 is the inclination of 

reinforcement, and n is the number of reinforcement directions. The second term in Equation 7.48 

is null in the case of conventional reinforced concrete. 

The tensile stress in Equation 7.48 is required to be less or equal to the right-side of Equation 7.6. 

Further, the crack spacing model proposed by Deluce et al. (2014) is used to relate crack width to 

average tensile strain, while the shear slip model proposed by Vecchio and Lai (2004) is used to 

estimate the slip prestrain and deviation of steel fibre tensile stress. The models are given 

subsequently: 

For steel fibre concrete,                         

                                                      𝑆𝑐𝑟 (average crack spacing) = 2(𝑐𝑎 + 
𝑠𝑏

10
) 𝑘3 + 

𝑘1𝑘2

𝑠𝑚𝑖
              (7.49) 

where 𝑐𝑎 = 1.5𝑎𝑔𝑔; 𝑘1 = 0.4; 𝑘2 = 0.25; 𝑘3 = 1 – [min(𝑉𝑓, 0.015)/0.015][1-(1/𝑘𝑓)];   

𝑎𝑔𝑔 is the maximum aggregate size, given in millimeters. 

                                                       𝑠𝑏 = 
1

√∑
4

𝜋

𝜌𝑠,𝑖

𝑑𝑏,𝑖
2  𝑐𝑜𝑠4𝜃𝑖𝑖

                                                                    (7.50) 

                                                       𝑠𝑚,𝑖 = ∑
𝜌𝑠,𝑖

𝑑𝑏,𝑖
 𝑐𝑜𝑠2𝜃𝑖𝑖  + 𝑘𝑓

𝛼𝑓𝑉𝑓

𝑑𝑓
                                            (7.51)               

For conventional reinforced concrete, 𝑆𝑐𝑟 =  
1

|𝑐𝑜𝑠𝜃|/𝑠𝑚𝑥 +|𝑠𝑖𝑛𝜃|/𝑠𝑚𝑦
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                                                      𝛿𝑠 (crack slip) = 𝛿2√
𝜓

1−𝜓
                                                                     (7.52) 

                                                      𝛿2 = 
0.5𝑣𝑐𝑚𝑎𝑥 +𝑣𝑐𝑜 

1.8𝑤𝑐𝑟
−0.8+(0.234𝑤𝑐𝑟

−0.707−0.20)𝑓𝑐𝑐
                                           (7.53) 

𝜓 = 𝑣𝑐𝑖,𝑐𝑟/𝑣𝑐𝑚𝑎𝑥; 𝑣𝑐𝑚𝑎𝑥 (in MPa) = √𝑓𝑐′/ [0.31 + (24
𝑤𝑐𝑟

𝑎𝑔𝑔
+ 16); 𝑣𝑐𝑜 = 𝑓𝑐𝑐/30; 𝑓𝑐𝑐 (in MPa), is taken 

as the concrete cube strength; 𝑤𝑐𝑟 =𝑆𝑐𝑟𝜀𝑐1 . For conventional reinforced concrete, 𝛿𝑠 is taken as 

𝛿2, but the numerator is replaced with the shear stress 𝑣𝑐𝑖 (Equation 7.7). 

The shear strain resulting from the crack slip is estimated as 𝛾𝑠 = 𝛿𝑠/s; and resolving into x and y 

components,  

                                                        𝜀𝑥
𝑠 = -𝛾𝑠/2. sin 2𝜃                                                                   (7.54)                        

                                                        𝜀𝑦
𝑠 = 𝛾𝑠/2. sin 2𝜃                                                                   (7.55) 

                                                        𝛾𝑥𝑦
𝑠  = -𝛾𝑠/2. cos 2𝜃                                                               (7.56) 

Since the shear stresses and slip are functions of the reinforcement ratio or progressing principal 

stresses, their values also evolve. The tensile stress resulting from steel fibre bridging deviates by 

an angle 𝜃𝑓 from the direction of the principal tensile stress (𝑓𝑐1). This deviation angle, according 

to Lee et al. (2016), is estimated thus: 

                                                        𝜃𝑓 = 𝑡𝑎𝑛−1 𝛿𝑠

𝑤𝑐𝑟
                                                                      (7.57) 

7.5.1 Conventional Reinforcement 

Although a trilinear stress-strain relation is used to model the response of reinforcement in the 

Disturbed Stress Field Model, a bilinear stress-strain relation (elastic-perfectly plastic) is used for 

fatigue analysis. This is attributed to the fact that the behaviour of reinforcement under high cycle 

fatigue loading is usually brittle; hence increased strength due to strain hardening is avoided. 
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7.6 Finite Element Implementation 

After each fatigue loading cycle, a structural element may exhibit some level of damage. The 

response of the structural element per fatigue loading cycle can be obtained. The general 

formulation of material stiffness matrix is expressed thus: 

                                                       [𝜎] = [D] [𝜀] – [𝜎𝑜]                                                                        (7.58) 

 {𝜎} and {𝜀} are the total stress and total strain vectors due to the applied maximum fatigue load. 

(The ratio of the minimum to maximum fatigue loading is a parameter required in a subsequent 

section.)  [𝐷] is the transformed composite stiffness matrix in which the concrete composite 

degrades progressively due to fatigue loading. 

                                                       {𝜎} = [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] (normal and shear stresses on an element)         (7.59) 

                                                       {𝜀} = [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] (corresponding strain values)                               (7.60) 

                                                       [𝐷] = [𝐷𝑐 ] + ∑ [𝐷𝑠]𝑖
𝑛
𝑖=1  + [𝐷𝑓 ]                                              (7.61) 

Prior to cracking,  

                                                       [𝐷𝑐] = 
𝐸𝑐 (1−𝐷𝑡𝑒)

1−v2
 

[
 
 
 
 1 

v

 (1−𝐷𝑡𝑒)
 0

v
1

 (1−𝐷𝑡𝑒)
0

0 0
1−v

 2(1−𝐷𝑡𝑒)]
 
 
 
 

                 (7.62)       

𝐷𝑡𝑒 is obtained using Equations 7.41 to 7.45. However, ∆𝑓 and 𝑓𝑐
′ are replaced with the induced 

tensile stress and the concrete tensile strength of concrete, respectively. For a given element strain 

condition, normal stresses in the concrete can be found and subsequently, the principal tensile and 

compressive stresses and the principal strain direction can be obtained.  
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For a two-dimensional cracked state, the stiffness of the concrete with respect to the axes of 

orthotrophy, the stiffness of the steel reinforcement with respect to its direction, and the stiffness 

of the steel fibre with respect to the inclination of tensile stress due to steel fibre are all required 

(Equations 7.63 to 7.65). Subsequently, the stiffnesses are transformed back to the reference x, y 

axes (Equations 7.66 and 7.67). 

                                                      [𝐷𝑐]
′ = [

𝐸𝑐1
̅̅ ̅̅ 0 0

0 𝐸𝑐2
̅̅ ̅̅ 0

0 0 𝐺𝑐
̅̅ ̅

] for concrete                                      (7.63) 

                                                      𝐸𝑐1
̅̅ ̅̅  = 𝑓𝑐1/𝜀𝑐1; 𝐸𝑐2

̅̅ ̅̅  = 𝑓𝑐2/𝜀𝑐2; and 𝐺𝑐
̅̅ ̅ =𝐸𝑐1

̅̅ ̅̅ . 𝐸𝑐2
̅̅ ̅̅ / (𝐸𝑐1

̅̅ ̅̅ +  𝐸𝑐2
̅̅ ̅̅ ) 

                                                      [𝐷𝑠]𝑖
′= [

𝜌𝑖𝐸𝑠𝑖
̅̅ ̅̅ 0 0
0 0 0
0 0 0

] for steel reinforcement                        (7.64) 

                                                       𝐸𝑠𝑖
̅̅ ̅̅  = 𝑓𝑠,𝑖/𝜀𝑠,𝑖 

                                                      [𝐷𝑓]
′
 = [

𝜌𝑖𝐸𝑓1
̅̅ ̅̅ 0 0

0 0 0
0 0 0

] for steel fibre                                     (7.65) 

                                                       𝐸𝑓1
̅̅ ̅̅  = 𝛼𝑎𝑣𝑔𝑓𝑓/𝜀𝑐𝑓; 𝜀𝑐𝑓 = (𝜀𝑐1 + 𝜀𝑐2)/2 + [(𝜀𝑐1- 𝜀𝑐2)/2]cos2𝜃𝑓 

                                                      [𝐷𝑐 ] = [𝑇𝑐]
𝑇[𝐷𝑐]

′[𝑇𝑐 ]; [𝐷𝑓 ] = [𝑇𝑓]
𝑇
[𝐷𝑓]

′
[𝑇𝑓 ];  

                                                      [𝐷𝑠,𝑖 ] = [𝑇𝑠,𝑖]
𝑇
[𝐷𝑠,𝑖]

′
[𝑇𝑠,𝑖 ]                                                      (7.66) 

                                                      [𝑇] = [

𝑐𝑜𝑠2𝜓 𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓

𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠2𝜓 −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓

−2𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓 2𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓 (𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓 )

](7.67) 

For concrete, 𝜓 = 𝜃𝑐, for steel fibre, 𝜓 = 𝜃𝑐 + 𝜃𝑓, and for a steel reinforcing bar, 𝜓 = 𝛼𝑖.  

𝜎𝑜 is estimated as a pseudo-load using Equations 7.17 to 7.29 (in this case, it is assumed that there 

are no prestrains in the steel reinforcement). For a given stress condition and loading cycle (due to 
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applied fatigue load), the total strain in the element can be obtained. The solution approach is 

iterative since the secant moduli of materials are needed to find the strain condition {𝜀} and vice 

versa. 

                                                      [𝜎𝑜] = [𝐷𝑐 ] ([𝜀𝑐
𝑝] + [𝜀𝑐

𝑜] + [𝜀𝑐
𝑠] + [𝜀𝑐

𝑓𝑎𝑡
])                                (7.68) 

In the iterative process for an element at the first fatigue loading cycle, strain values are initially 

assumed. Subsequently, the principal strain values and the corresponding inclination of the 

principal tensile strain are estimated. Using the modified compatibility and constitutive equations 

illustrated previously, the net strains are estimated and subsequently, the average principal stresses 

in the concrete and the average stresses in the reinforcement are estimated with the assumption 

that fatigue damage is zero.  

Stresses at the crack are also checked and shear stress and crack slip are estimated using the 

modified equilibrium equation; however, Zo is assumed to be zero for the first cycle. From the 

crack slip, prestrains are estimated and are subtracted from the total strains in order to obtain net 

strains. Further, secant moduli for the constituent materials are estimated and the material stiffness 

matrices are obtained using Equations 7.63 to 7.67. Subsequently, the total strains are estimated 

and compared with the previous values assumed (Equation 7.69). The iterative process continues 

until the errors become minimal. The element stresses estimated are saved for subsequent loading 

cycles.  

                                                             [𝜀] = [D]-1 ([𝜎] + [𝜎𝑜])                                                    (7.69) 

For subsequent fatigue loading cycles, the saved stresses and the number of fatigue loading cycles 

considered are substituted into the corresponding fatigue damage model in order to estimate the 

required damage for the irreversible strain, the modified constitutive models and the modified 
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equilibrium equations. The described iterative process is also repeated as the fatigue loading cycles 

are increased. Failure becomes imminent when instability due to fractured reinforcement or 

significant crushing of concrete occurs. Deformation evolution plots can be obtained from the 

material parameter values as the fatigue loading cycles are increased up to the point of failure. 

The modified algorithm for the Disturbed Stress Field Model which accounts for fatigue damage 

in an element is shown in the flow chart in Figure 7.6. The original algorithm is void of the damage 

models (A, B, and C). In all, the analyses involve modelling the monotonic loading responses of 

structural components which exhibit some level of damage due to fatigue loading cycles.  

7.7 Failure Criterion for Reinforced Concrete and Steel-Fibre Concrete under Fatigue 

Loading 

The evolution of deformation is attributed to plain or steel fibre concrete strength and stiffness 

deterioration, irreversible strain accumulation, and steel reinforcement crack growth (A, B, and C 

in Figure 7.6). Monotonic tests of structural elements subjected to different fatigue loading cycles 

will exhibit decreasing resistance capacity as the loading cycles increase. The number of cycles at 

which the residual capacity of the element becomes equal to the fatigue load is termed the fatigue 

life of the structural element. At this instant, severe crushing of concrete or fracture of reinforcing 

bars may occur, leading to structural collapse. 

For further exemplification, the solution to the fatigue analysis of a shear panel is illustrated using 

the flow chart given in Figure 7.6 in a stepwise manner. The properties and loading parameters are 

also given. Three different pure shear fatigue loads (Figure 7.7) (3.5 MPa, 3.0 MPa, and 2.7 MPa) 

were used and the corresponding deformation evolution of the material parameters were obtained. 

The significance of the proposed analysis approach can be observed from the predicted three-
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staged deformation evolution plots. In addition, the effect of fatigue loading is explicitly shown in 

all plots given in Figures 7.8 to 7.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.6 - Flow chart for the modified solution algorithm for DSFM. 
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Fig. 7.7 - Shear panel (PV19).  

𝑓𝑐
′ = 19.0 MPa;            𝜌𝑥 = 1.785% 

𝑓𝑡
′ = 1.72 MPa;            𝜌𝑦 = 0.713% 

                                                 𝜀𝑐
′  = -2.15 x 10−3;       𝑓𝑦𝑥 = 458 MPa 

                                         𝑓𝑦𝑦 = 300 MPa 

                                      𝐸𝑠 = 200000 MPa 

                                            𝑎 = 10 mm 

                                            𝑠𝑥 ≈ 50 mm         𝑑𝑏𝑥 ≈ 6.35 mm 

                                            𝑠𝑦 ≈ 50 mm         𝑑𝑏𝑦 ≈ 4.01 mm  

                                            Fatigue frequency = 5 Hz   waveform = sinusoidal  

                                            Load ratio (R) = 0 

                                           [𝜎] = [
0
0

3.0
] MPa  

Solution: 

The assumed initial total and net strains (from previous calculations) for an applied shear stress of 

3.0 MPa on the shear element in Figure 7.7, are: 

                                               {𝜀} = [
0.431
0.792
1.725

] x 10−3                            {𝜀𝑐} = [
0.566
0.659
1.716

] x 10−3 

𝝉𝒙𝒚 = 3 MPa 

Y 

X 

𝝉𝒙𝒚 
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Using the iterative process described previously, the monotonic response of the shear panel which 

includes induced stress and strain values due to the applied fatigue load (3.0 MPa) is obtained 

(without considering fatigue damage). The obtained and saved element stresses due to the 

monotonic response or at the first cycle, required in calculating damage values in subsequent 

cycles, are given thus: 

fsx  = 111 MPa; fsy = 241 MPa (both stresses are required in the fracture mechanics model) 

fc2 = -5.35 MPa; fc1 = 1.08 MPa (required in concrete damage model and irreversible strain model). 

These values are substituted into A, B, and C in Figure 7.6 in order to estimate the corresponding 

damage at any given fatigue loading cycle. Having accounted for the corresponding damage, the 

monotonic response is again obtained iteratively. This is repeated for given cycles until instability 

is reached. 

Solution for fatigue loading at 10000 cycles 

Figure 7.6 (Box 1) - Strain components after iterations are: 

                                                     {𝜀} = [
0.584
1.278
2.604

] x 10−3                            {𝜀𝑐} = [
0.804
1.072
2.569

] x 10−3 

The principal strains are estimated from {𝜀𝑐} (Equations 7.24 and 7.25) as: 

                                                      𝜀𝑐1 = 2.23 x 10-3              𝜀𝑐2 = -0.353 x 10-3             𝜃𝜎= 42.020    

Figure 7.6 (Box 2) - Average Stresses in Concrete and Reinforcement: 

Since the concrete is in a cracked state, Equations 7.30 to 7.32 are used for concrete compressive 

stress, and Equation 7.45 is used for concrete tensile stress (neglecting the influence of steel fibre). 

The damage parameter required in the equation is obtained from Equations 7.39 to 7.43. The 

fatigue prestrain value (Equation 7.26 to 7.29) is also required in estimating the concrete 

compressive stress. 
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                                                         fc2 = 5.34 MPa 

                                                         fc1 = 1.07 MPa 

Assuming perfect bond between the concrete and the steel reinforcement, the average strain in the 

concrete is equal to the average strain in the steel reinforcing bars. Hence: 

                                                         𝐸𝑠 = 200000 MPa 

                                                        𝜀𝑠𝑥 = 0.584 x 10−3 

                                                        𝜀𝑠𝑦 = 1.278 x 10−3 

                                                        𝑓𝑠𝑥 = 𝐸𝑠 𝜀𝑠𝑥 = 117 MPa (x-direction) 

                                                        𝑓𝑠𝑦 = 𝐸𝑠 𝜀𝑠𝑦 = 256 MPa (Y-direction) 

Figure 7.6 (Box 3) - Local stresses at crack:  

The local stresses are estimated from Equations 7.6 and 7.7 (neglecting the influence of steel fibre). 

In Equations 7.6 and 7.7, the reinforcement crack growth factor (Zo) is estimated from Equations 

7.10 to 7.16 (shown as C in Figure 7.6). The average reinforcement stresses are required in C in 

order to estimate the progressive crack depth; Thus: 

                                                      𝜀𝑠𝑐𝑟𝑥 = 1.033 x 10-3    ,        𝑓𝑠𝑐𝑟𝑥 = 207 MPa 

                                                      𝜀𝑠𝑐𝑟𝑦 = 1.642 x 10-3    ,        𝑓𝑠𝑐𝑟𝑦 = 300 MPa 

                                                      vci = 0.621 MPa 

Figure 7.6 (Box 4) - Crack slip strains: 

The slip at a given fatigue loading cycle can be estimated using Equation 7.50. Subsequently, the 

shear strains (in x-y directions) resulting from slip at the crack are estimated. Fatigue irreversible 

compressive strain values are also estimated in the x-y direction (Equations 7.21 to 7.23). The 

prestrain is equal to the summation of the shear strains. The pseudo-load [𝜎𝑜] is estimated from 

the obtained values of prestrain.  
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The shear strain resulting from the crack slip is estimated as: 𝛾𝑠 = 𝛿𝑠/s = 0.429 x 10-3; resolving 

into x and y components, 

                                                        𝜀𝑥
𝑠 = -𝛾𝑠/2. sin 2𝜃 = -0.213 x 10-3 

                                                        𝜀𝑦
𝑠 = 𝛾𝑠/2. sin 2𝜃 = 0.213 x 10-3 

                                                        𝛾𝑥𝑦
𝑠  = -𝛾𝑠/2. cos 2𝜃 = 0.022 x 10-3 

Inclusion of the irreversible fatigue strain is done in the manner of an offset strain: 

                                                        𝜀𝑥
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

/2 . (1- cos 2𝜃)= -6.09 x 10-6 

                                                        𝜀𝑦
𝑓𝑎𝑡

 = 𝜀𝑐,2
𝑓𝑎𝑡

/2 . (1+ cos 2𝜃) = -7.50 x 10-6 

                                                        𝛾𝑥𝑦
𝑓𝑎𝑡

 = - 𝜀𝑐,2
𝑓𝑎𝑡

/2 . sin 2𝜃 = 13.5 x 10-6 

Figure 7.6 (Box 5) - Material secant moduli: 

The net strain values are estimated from Equation 7.17 (for concrete). The ratio of the average 

stress to the net strain gives the secant modulus for concrete. In the case of steel reinforcement, 

the ratio of the average stress in steel reinforcement to the induced strain gives the secant modulus. 

                                                       Ec1 = 480 MPa 

                                                       Ec2 = 15124 MPa 

                                                       Gc = 466 MPa 

                                                       Esx = 200000 MPa 

                                                       Esy = 200000 MPa 

Figure 7.6 (Box 6) - Material stiffness matrices [Dc], [Ds], [D]: 

The stiffness matrices are estimated from Equations 7.61 to 7.65. The transformed composite 

stiffness matrix is obtained using Equation 7.59. The transformed composite stiffness matrix at 

10000 cycles was obtained thus: 
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                                         [D] = [
7213 3367 −3256
3367 6653 −3992

−3256 −3992 3861
]   (MPa) 

Figure 7.6 (Box 7) - Determine element prestress vector [𝜎𝑜]: 

The element prestress vector was estimated from Equation 7.66. Herein, two prestrain values were 

considered: the shear strain at crack and the fatigue irreversible strain. The summation of the 

prestrains is equal to:                           [𝜀𝑝𝑠
0 ] = [

−0.22
0.21
3.58

] x 10-3  and, 

                                                             [𝜎𝑜] =  [
−0.13
0.26

−5.35
] MPa 

Figure 7.6 (Box 8) - Determine new estimates of strain {𝜀}, {𝜀𝑐}: 

The total and net strain values are estimated using Equation 7.67. Since the results presented herein 

were obtained after convergence, the final values were also equal to the initial values. However, 

where significant variations are observed, the iteration continues as illustrated using the given 

steps. This procedure was repeated as the number of fatigue loading cycles was increased.  

At the final collapse or failure of a structural element (in this case, the shear reinforcement in the 

vertical direction failed first), instability is observed and significant deformation persists. The 

results for the three different loads used are given in Figures 7.8 to 7.13. They are presented in 

terms of the crack slip evolution, shear stress evolution, reinforcement crack depth propagation (in 

the Y-direction where failure occurred), reinforcement strain, and stress evolutions.  

From the results, the influence of fatigue load on the fatigue life is well-captured as observed in 

all deformation evolution plots (Figures 7.8 to 7.13). As the fatigue load increased, the 

corresponding fatigue life reduced, and the rates of deformation were observed to increase. In 

addition, the significance of the proposed approach stems from the fact that the profiles obtained 
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in each case resemble the well-known fatigue deformation profile for reinforced concrete. Based 

on these observations, the deformation evolution within the cracked plane in reinforced concrete 

or steel fibre concrete can be obtained using the proposed approach. 

 

 

Fig. 7.8 - Crack slip evolution. 

 

Fig. 7.9 - Shear stress evolution at crack. 
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Fig. 7.10 - Reinforcement (Y-direction) crack growth depth. 

 

Fig. 7.11 - Reinforcement (X-direction) strain evolution at crack location. 

 

Fig. 7.12 - Reinforcement (X-direction) average stress evolution. 
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Fig. 7.13 - Localised reinforcement strain evolution (Y–direction). 

7.8 Conclusions 

An algorithm was described for implementing damage models for concrete strength and stiffness, 

irreversible strain accumulation, and steel reinforcement crack growth in a finite element analysis 

framework. This procedure was implemented within the Disturbed Stress Field Model for fatigue 

analysis of reinforced concrete and steel fibre structures. Fatigue damage models which account 

for salient loading parameters and appropriate evolution models for concrete parameters were 

introduced. As an improvement to reported models, the implementation of the reinforcement crack 

growth model and concrete damage models account for the progressive deformation and shear 

transfer at a crack under fatigue loading for reinforced concrete and steel fibre reinforced concrete. 

It is proposed that the fatigue life of a structural component corresponds to the number of fatigue 

loading cycles at which the resistance capacity degrades to a value equal to the fatigue load. 

Verification of the proposed algorithm and fatigue failure criterion with conducted experimental 

results is required to ascertain its validity. Accordingly, corroborated results using nonlinear finite 

element analysis are presented in the next chapter. 
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7.9 Notation 

The following symbols are used in this chapter: 

a,b,c : material parameters 

C: material constant = 2 x 10−13  

𝐶𝑓 : frequency factor     

D : damage   

𝑑𝑏𝑖: rebar diameter 

𝐷𝑐: concrete stiffness matrix         

𝐷𝑐𝑟 : critical damage  

𝐷𝑓𝑡 : concrete tensile strength damage  

𝐷𝑐: reinforcement stiffness matrix         

𝐷𝑡𝑒 : concrete tensile secant modulus damage 

𝐸𝑐: elastic modulus of concrete  

𝐸𝑐1: secant modulus in tension 

𝐸𝑐2: secant modulus in compression 

𝐸𝑠: elastic modulus of steel reinforcement 

𝐺𝑐: shear modulus 

f : frequency         

𝑓𝑐1: effective tensile stress of concrete 

𝑓𝑐2: effective compressive stress of concrete 

𝑓𝑐,𝑇𝑆: average tensile stress in concrete due to tension stiffening effect 

𝑓𝑐𝑥: normal stress in concrete in horizontal direction 

𝑓𝑐𝑦: normal stress in concrete in vertical direction 
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𝑣𝑐𝑥𝑦: shear stress in concrete in horizontal direction 

𝑓𝑐2𝑚𝑎𝑥: peak compressive stress in concrete considering compression softening effect 

𝑓𝑒ℎ:tensile stress due to mechanical anchorage effect of end-hooked steel-fibre 

𝑓𝑓 : tensile stress at crack due to steel fibre 

𝑓𝑝 : initial compressive strength 

𝑓𝑠𝑡: tensile stress due to frictional bond behaviour of steel fibre 

𝑓𝑡𝑝 : initial concrete tensile strength 

𝑓′
𝑐
: compressive strength of concrete 

fc
∗: degraded compressive strength 

𝑓𝑠𝑐𝑟𝑖: local stress in reinforcement at crack 

𝑓𝑠𝑖: average stress in steel reinforcement 

𝑓𝑡: residual tensile strength of concrete 

𝑓𝑡
∗: degraded strength at which concrete cracks 

k: post-decay parameter for stress-strain response of concrete in compression 

N : number of cycles 

n: curve-fitting parameter for stress-strain response of concrete in compression 

n: material constant = 3                

𝑁𝑓 :  numbers of cycles at failure   

𝑁𝑖𝑗: interval of cycles considered  

𝑠𝑐𝑟: crack spacing  

𝑇: period of fatigue cycle  

𝑡𝑑: direction coefficient (= 0.6 or 1.0)       

v: Poisson’s ratio  
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vci : shear stress 

vci,cr : shear stress at cracked concrete plane 

Vf: steel fibre volume ratio 

𝑤𝑐𝑟: crack width 

𝛼𝑎𝑣𝑔 : coefficient to relate tensile stress at a crack due to steel fibres with average tensile stress 

𝛼𝑖: inclination of reinforcement  

𝛽 : material constant   

𝛽2 : material constant           

∆: deformation  

∆𝜀1𝑐𝑟: change in strain at crack 

𝛿𝑠 : crack slip         

𝜀𝑐1: net tensile strain 

𝜀𝑐2 : net compressive strain 

𝜀∗
𝑐 : strain corresponding to the degraded compressive strength 

𝜀𝑠𝑐𝑟𝑖: local strain in the reinforcement 

𝜀𝑠𝑖: average strain in steel reinforcement         

𝜀𝑑: irreversible fatigue strain    

𝜀𝑝: initial strain corresponding to the initial compressive strength 

𝜀1𝑐𝑟: local strain at crack  

𝛾𝑠 : shear strain due to crack slip 

𝜃, 𝜃c : inclination of principal strain direction 

 𝜃𝑛𝑖: angle between the reinforcement direction and the normal to the crack  

𝜌𝑖 : reinforcement ratio  
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CHAPTER 8 

REINFORCED CONCRETE AND STEEL-FIBRE CONCRETE ELEMENTS UNDER 

FATIGUE LOADING: MODEL VERIFICATION 

This material was submitted to ASCE Structural Journal, and is in review for publication as a 

technical paper. 

Isojeh B., El-Zeghayar M., Vecchio F.J. “Reinforced Concrete and Steel Fibre Concrete 

Elements under Fatigue Loading: Model Formulation.”  

8.1 Abstract 

The verification of finite element analysis results with experimental results from fatigue tests of 

small-scale deep beams are presented in this chapter. The VecTor2 nonlinear finite element 

analysis software, which incorporates the algorithm proposed in the previous chapter (Chapter 

7), was used for this purpose. The results are given in terms of static load-deformation plots for 

each fatigue-damaged beam at successive intervals of loading cycles. Mid-span deflection 

evolution and embedded steel reinforcement stress progressions are also shown. In the results, 

the fatigue life corresponds to the number of cycles at which the residual capacity of each beam 

approaches a value equal to the applied maximum fatigue load, as previously hypothesised. The 

stresses in the reinforcement were observed to evolve up to the yield value at which point fracture 

became imminent. A comparison of the results with the experimental data suggests good 

correlation. Further, the results are significantly void of ambiguity in their interpretation; hence, 

the proposed formulation provides for a rational approach to the fatigue analysis of structural 

elements. 

8.2 Introduction 

The damaging effects of fatigue loading, such as strength and stiffness deterioration in materials 
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or structural components, are well-known and extensively reported in the literature (Schaff and 

Davidson, 1997; Zhang and Wu, 1997; Isojeh et al., 2017a; Isojeh et al., 2017b, Isojeh et al., 

2017c). However, a major challenge has been the development of an explicit analysis approach 

which realistically predicts the damage evolution of materials and appropriately exemplifies 

complex analyses in an unambiguous and easy to comprehend manner. 

The Disturbed Stress Field Model (Vecchio, 2000, Vecchio, 2001) was modified to account for 

fatigue damage of both conventional and steel fibre reinforced concrete structural components 

in Chapter 7. In the modified algorithm, fatigue damage mechanisms resulting from fatigue 

crack growth in reinforcement intersecting cracked concrete planes are accounted for using a 

fracture mechanics model. Residual strength, stiffness damage, and irreversible fatigue strain 

accumulation in concrete are also considered using appropriate models. The implementation of 

these damage mechanisms into equilibrium, constitutive, and compatibility relations of a 

monotonic analysis algorithm enables fatigue damage prediction in terms of deformation 

evolution (Isojeh et al., 2017a; Isojeh et al., 2017b; Isojeh et al., 2017c). In addition, the fatigue 

loading cycles at which the residual capacity approaches the maximum constant fatigue load 

corresponds to the fatigue life of the structural component. 

To establish the accuracy and validity of the proposed approach, predictions of fatigue- damaged 

structural elements are required. As such, the results obtained from an experimental 

investigation which involved fatigue tests on conventional and steel fibre reinforced concrete 

beams were examined. The fatigue life and mid-span deflection evolution were obtained for 

each specimen. The predicted results based on finite element analyses are given in a subsequent 

section. Details of the experimental test procedures, material properties, and fatigue loading 

parameters used are given below. 
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8.3 Experiment Details 

The experimental program, which involved fatigue tests on small-scale deep beams, has been 

reported previously in the literature. However, the details are succinctly reiterated in this section. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1. Details of deep beam specimen. 

The specimen dimensions are given in Figure 8.1 and test setup is shown in Figure 8.2. Steel fibre 

volume ratio, shear reinforcement, longitudinal reinforcement, and fatigue load were varied in 

order to study the corresponding damage effect on fatigue life and structural integrity. 
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Fig. 8.2. Experimental setup. 

Average compressive strengths of 59 MPa and 55 MPa at 28 days were measured for the 

conventional reinforced and steel-fibre reinforced concrete, respectively. The steel-fibre 

reinforced concrete specimens had steel fibre volume ratios of 0.75% and 1.5%, and all beams 

were reinforced longitudinally with either two 15M or two 10M Canadian standard rebars. Some 

beams contained Canadian standard D4 rebars as shear reinforcement. The average yield strength 

obtained for the 15M, 10M, and D4 bars were 430 MPa, 480 MPa, and 610 MPa, respectively. 

High strength end-hooked steel fibre (Dramix RC80/30BP) with an ultimate tensile stress capacity 

of 3070 MPa was used for the steel-fibre reinforced concrete beams. Details of the beams tested 

in the reported experimental investigation are given in Table 8.1. The residual flexural tensile 

strength (FR,1/FR,4)  for steel fibre volume ratios of 0.75% and 1.5% from conducted  

experiments were obtained as 4.5/3.0 and 6.0/4.2, respectively (RILEM TC 162-TDF, 2003). 
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Fig. 8.3 - Load-deformation plot for beams CS and C’S. 

Beams C’S and CS, reinforced longitudinally with two 15M and two 10M reinforcing bars, 

respectively, were initially subjected to monotonic loading in order to obtain their respective 

resistance capacities. Figure 8.3 shows the load-deformation plot for the beams; peak loads of 270 

kN and 390 kN were obtained for beams CS and C’S, respectively.  

As shown in Table 8.1, aside from beams CS and C’S which were subjected to monotonic loading, 

all other specimens were subjected to fatigue loading using 80% or 70% of the resistance capacity 

of beam CS or C’S.  The fatigue loads used on the conventional reinforced concrete beams was 

also used on the steel-fibre reinforced concrete beams having similar longitudinal reinforcement 

provisions. A sinusoidal load waveform with a frequency of 5 Hz was used in all cases and the 

minimum fatigue load was 5 kN (expressed in percentage in column 8) for all specimens tested. 

The fatigue lives obtained during the experiments are given in Table 8.1, column 9.  

 

 

C’S CS 
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Table 8.1 - Specimen description.  

1 2 3 4 5 6 7 8 9 

Concrete 

Batch 

Volume of 

Steel Fibre  

Vf (%) 

Specimen 

Identification 

Number 

Design 

𝑓𝑐
𝑑 MPa 

 

𝜌𝑙(%) 𝜌𝑣 (%) Maximum 

Fatigue 

Load  

(% Pu)  

Minimum 

Fatigue 

Load 

 (% Pu)  

No. of 

Cycles to 

Failure 

(Nf) 

2 0 C’S 50  0.9 0.2 Monotonic - - 

2 0 CS 50  0.45 0.2 Monotonic - - 

1 0 C’-70-0 50  0.9 0.2 70 1.3 210,000 

1 0 C-80-0 50  0.45 0.2 80 1.8 47,000 

3 0.75 A80-0F0.75 50  0.45 0.2 80 1.8 66 000 

4 1.5 A80-01.5 50  0.45 0.2 80 1.8 320 000 

1 0 C-70-0 50  0.45 0.2 70 1.8 72 000 

3 0.75 A70-0F0.75 50  0.45 0.2 70 1.8 123 000 

3 0 A70-0N0.75 50  0.45 0 70 1.8 260 000 

4 1.5 A70-0F1.5 50  0.45 0.2 70 1.8 410 000 

1 0 C’-80-0 50  0.9 0.2 80 1.3 62 000 

5 1.5 B80-0N1.5 50  0.9 0 80 1.3 650 000 

where: 

Vf (%) = steel fibre volume content (in percentage) 

𝑓𝑐
𝑑 = design compressive strength of concrete 

𝜌𝑙  (%) = longitudinal reinforcement ratio (in percentage) 

𝜌𝑣 (%) = shear reinforcement ratio (in percentage) 
a = specimen did not fail at the specified number of cycles 

 

8.4 Finite Element Modelling 

The beam specimen shown in Figure 8.4 was modelled with concrete or steel fibre concrete, 

discrete reinforcement, and steel plates at the loading point and at the supports. The labels in Figure 

8.4 are described in Table 8.2. A roller and a pin support were used to portray a simply-supported 

beam. 

8.4.1 Material Properties 

The beam specimen was modelled using either concrete or steel-fibre reinforced concrete material. 

The parameters used in the model include the beam dimensions as shown in Figure 8.1, cylinder 

compressive strength (59 MPa), cylinder strain corresponding to the compressive strength (2.1 x 

10-3), and aggregate size (10 mm). Default values were used for all other parameters.  

For steel fibre concrete, a compressive strength of 55 MPa and a corresponding cylinder strain of 

approximately 3.0 x 10-3 were used (Lee et al., 2016). An initial tangent elastic modulus of 28000 
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MPa (as specified by Lee et al., 2016) was also included, while default values were used for the 

other properties. The tensile strength of the steel fibre concrete with volume ratios of 0.75% and 

1.5% without shear reinforcement were taken as 3 MPa and 4 MPa, respectively, based on 

experimental results. Other steel fibre (Dramix RC80/30BP) properties include volume content 

(either 0.75% or 1.5%), length (30 mm), diameter (0.38 mm), and tensile strength (3070 MPa). 

 

 

 

Fig. 8.4 - Beam specimen.  

 Table 8.2 – Finite element material description. 

A1 Support condition ( Roller) 

A2 Support condition (pin) 

A3 Longitudinal reinforcing bars (2-10M or 2-15M) 

A4 Structural steel plate on reaction 

A5 Concrete material or steel-fibre reinforced concrete 

A6 Shear reinforcement (D4) 

A7 Hanger bar (2-10M reinforcing bars) 

A8 Structural steel plate for load application 

 

In the finite element model, perfect bond was assumed between the steel reinforcement and the 

concrete. The average yield strengths of the reinforcing bars, as measured, were used and the 

ultimate strength for the 15M, 10M, and D4 bars were taken as 700, 600, and 630, based on coupon 

test results. An elastic modulus of 200000 MPa was used for all reinforcement, while the values 

A1 A2 

A3 

A4 

A5 A6 

A7 A8 
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for strain hardening and ultimate strain were taken as 10 millistrain and 100 millistrain. For fatigue 

loading, elasto-perfectly plastic models were used for the reinforcement. 

8.4.2 Finite element mesh 

 

 

 

 

 

Fig. 8.5 - Mesh structure layout. 

The modelled beam consisted of four regions: the concrete beam, the two support plates, and the 

loading plate as shown in Figure 8.5. In order to maximize the amount of elements that the model 

can be assigned, a reasonable element size of 10 mm x 10 mm, having an aspect ratio of 1.0, was 

used for all regions. As indicated previously, truss elements (discrete reinforcement) were used for 

modelling the steel reinforcing bars. 

8.4.3 Constitutive Model  

For plain concrete, the Popovics and Popovics/ Mander’s models were implemented for 

compression pre-peak and post-peak, respectively for monotonic and fatigue loading. Default 

values were used for all other parameters. In the case of steel fibres, the models proposed by Lee 

et al. (2011) were used for compression pre-peak and post-peak. Under fatigue loading, an 

A1 – Support  

A8 – Loading 
point 

A2 – Support 
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advanced approach for crack stress calculation in VecTor2 for steel fibre reinforced concrete was 

implemented. 

The loading cycles, frequency (5 Hz), loading ratio (0), fatigue waveform (0.15), and interval of 

loading cycles that characterise the fatigue load were included. For all fatigue loading cycles, it 

was ensured that the ratio between the loading cycles and the interval was at least 100. 

8.4.4 Loading Condition 

The resistance capacity of each beam tested (monotonic response) was obtained using 

displacement-controlled loading. However, under fatigue loading, load-control was used. The 

fatigue analysis results are expressed in terms of load-deformation curves (monotonic response of 

fatigue-damaged beams). The origin in the case of fatigue loading is taken to be equal to the fatigue 

load considered. The value is usually less than the capacity of the beam, except at the instant of 

failure where the fatigue damage reduces the capacity of the beam to a value equal to the fatigue 

load. Hence, monotonic loading begins from the actual maximum fatigue load.  

8.5 Finite Element Fatigue Damage Analysis Results 

The proposed concept for the fatigue damage analysis of conventional reinforced and steel-fibre 

reinforced concrete elements involves the estimation of the constituent material damage values in 

each element after a given number of fatigue loading cycles in the first load stage. The material 

parameters for plain concrete, steel fibre concrete, and steel reinforcement obtained from the 

experimental investigation were used in the finite element modelling at the initial load stage. 

Subsequently, the load-deformation response was obtained taking into account the damage effects 

on each element in subsequent load stages (incremental loads).  

In the experiments conducted, the steel reinforcement fracture was significantly characterised by 
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a brittle nature, and the strains were less than the yield value prior to structural collapse. As 

reported in the literature, the results obtained from the experiments indicated that fatigue failure 

was a result of reinforcement crack propagation at the intersection with a cracked concrete plane. 

As the induced stresses in the steel reinforcement evolve to the yield value (due to progressive 

reduction of reinforcement area), fracture or structural collapse becomes imminent. In the 

proposed analysis approach, an elastic-perfectly plastic model was assumed for steel reinforcement 

constitutive model in all cases; hence, the influence of strain hardening was neglected.  

  

Fig. 8.6 - Load-deformation plot for beams CS and C’S. 

The VecTor2 nonlinear finite element analysis (NLFEA) software was initially used to obtain the 

monotonic load-deformation responses (without fatigue damage) of beams CS and C’S. Figure 8.6 

shows the load-deformation responses from VecTor2 alongside the load-deformation plots from 

the experiments conducted. The resistance capacities obtained for beams CS and C’S were 250 kN 

and 350 kN, respectively. Similar to the experimental test procedures and loading parameters, 80% 

and 70% of the resistance capacity of the modelled beams were used for fatigue loading responses. 

The analysis algorithm has been described in the previous chapter; herein, the validation results 
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from the NLFEA based on the aforementioned algorithm are given. The requirements for finite 

element modelling of fatigue-damaged elements using VecTor2 are described subsequently with 

brevity. 

8.5.1 Fatigue Life and Deformation Evolution Predictions 

The fatigue life analysis protocol used involved the following major steps: 

 The fatigue analysis results for structural components are expressed in terms of monotonic 

load-deformation plots corresponding to different fatigue loading cycles having accounted 

for the components’ damage as the loading cycles increase. 

 The monotonic load-deformation response, after a given regime of fatigue loading cycles in 

VecTor2, is obtained incrementally (in a load-controlled analysis). Initial and incremental 

load factors are required. 

 The fatigue load parameters required include: fatigue loading cycles, fatigue loading 

frequency, fatigue load ratio, waveform, and interval of fatigue loading. The load ratio is 

taken as the ratio between the minimum and maximum applied fatigue load. 

 The maximum fatigue load is used as the initial factor (first load stage). The material stresses 

in all elements corresponding to the first load stage under monotonic loading are substituted 

into damage models and estimated values are saved. 

  Subsequent increments (load stages greater than 1) take into account these constant damage 

values. As the cycles are increased in each analysis conducted, the resistance capacity (based 

on load-deformation response) may reduce progressively depending on the extent of 

reinforcement fracture.  

The predicted fatigue life corresponds to the number of cycles at which the resistance capacity of 

a beam reduces to a value approximately equal to the applied maximum fatigue load. Since fatigue 
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damage is accounted for from the second load stage onward and a small value of load increment 

is generally used, the deformation (mid-span deflection) at the second load stage is assumed to 

correspond to deformation resulting from the applied fatigue loading cycles. 

The results of finite element analyses of the specimens in Table 8.1 are presented in terms of 

fatigue residual capacity, mid-span deflection evolution, and reinforcement stresses. The predicted 

fatigue life and fatigue loads are shown in Table 8.3.  

8.5.2 Fatigue residual capacity 

Figures 8.7 and 8.8 are the load-deformation plots for conventional reinforced concrete beams at 

different numbers of cycles. Each load-deformation plot in Figures 8.7 and 8.8 indicated as A 

corresponds to a residual capacity approximately equal to the constant maximum fatigue load 

indicated at the load-deformation plot origin O. The other plots, after increasing the loading cycles, 

progressively exhibit substantial but depreciating resistance capacities to increasing load. A 

reduction in the stiffness of each beam was observed from the plots. Compared to the experimental 

results obtained for fatigue life, the fatigue life predictions obtained from the NLFEA are not only 

conservative, they portray good correlation.  

In the case of the steel-fibre reinforced concrete beams, the approximate load that will result in the 

collapse of each modelled beam at the number of cycles corresponding to failure obtained from 

the experiment was first predicted. In Figure 8.9, as the load increased from 180 kN to 188 kN (at 

400000 cycles for beam A70-0F1.5)), the residual capacity reduced. Subsequently, load-

deformation plots for increments in the number of cycles at the predicted loads were obtained. The 

residual capacities are given in Figures 8.10 to 8.12. The predicted fatigue load for each steel-fibre 

reinforced concrete beam is reasonably close to the actual fatigue load of 80% and 70% of the 

monotonic resistance capacity of corresponding control beams from NLFEA; hence, the responses 
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from conventional reinforced and steel-fibre reinforced concrete can be compared for beams 

having similar loading parameters. 

 

 

   

 

 

 

Fig. 8.7 - Calculated fatigue residual capacity for beam: (a) C-80-0 (b) C-70-0. 

Fig. 8.8 - Calculated fatigue residual capacity for beam: (a) C’-80-0 (b) C’-70-0. 
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Fig. 8.9 - Calculated fatigue residual capacity evolution for beam A70-0F1.5. 

 

 

Fig. 8.10 - Calculated fatigue residual capacity for beam: (a) A70-0F1.5 (b) A80-0F1.5. 

(a) 
(b) 

A A 
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Fig. 8.11 - Calculated fatigue residual capacity for beam: (a) A80-0F0.75 (b) A70-0F0.75. 

  

Fig. 8.12 - Calculated fatigue residual capacity for beam: (a) A70-0N0.75 (b) B80-0N1.5. 

The results are also presented in Table 8.3. Column 7 in Table 8.3 shows the ratio of the calculated 

fatigue load to the actual fatigue loads corresponding to 70% or 80% of the undamaged beam 

resistance capacities obtained from the NLFEA. Column 8 shows the ratio of the logarithm of 

predicted fatigue life (using VecTor2) to the experimental fatigue life. As observed in both cases, 

(a) 
(b) 

(a) (b) 

A A 

A A 
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the predictions are of good accuracy; however, the predictions for steel fibre reinforced concrete 

beams fatigue load from NLFEA reveal a slight underestimation of the fatigue damage.  

Table 8.3 - Fatigue life for beam specimens (experimental and predicted) 

1 2 3 4 5 6 7 8 

Specimen Exp. 

load 

(kN) 

Fatigue life 

(Experiment) 

Cycles 

Nfe 

NLFEA 

Load  

(kN) 

Hl 

Predicted 

Fatigue life 

(NLFEA) 

Nfv 

Predicted 

fatigue load 

(NLFEA) 

Hp 

NLFEA 

Hp/Hl 

Log Nfv/ 

Log Nfe 

C’-70-0 274 210000 250 200000 - - 1.00 

C’-80-0 312 62000 275 60000 - - 0.98 

C-70-0 192 72000 180 60000 - - 0.98 

C-80-0 219 47000 196 40000 - - 0.99 

A70-0F0.75 192 123000 180 - 185 1.03 - 

A80-0F0.75 219 66000 196 - 200 1.02 - 

A70-0F1.5 192 410000 180 - 187 1.04 - 

A80-0F1.5 219 320000 196 - 200 1.02 - 

A70-0N0.75 192 260000 180 - 180 1.00 - 

B80-0N1.5 312 650000 275 - 275 1.00 - 

 

8.5.3 Mid-span deflection evolution 

The mid-span deflection evolution for the beams modelled in VecTor2 are shown in Figures 8.13 

to 8.17. The evolutions obtained from the experimental results are also included. Although the 

predicted evolving values from NLFEA tend to be slightly lower, overall, the correlation of the 

experimental results (mid-span deflection evolution) with the predicted results are of acceptable 

accuracy. 

The significance of the deformation evolution predicted stems from the fact that each predicted 

point in Figures 8.13 to 8.17 is obtained from an independent analysis at different numbers of 

fatigue loading cycles and yet develop deformation evolution profiles which clearly depict the 

well-known fatigue deformation evolution profile from experiments on fatigue. The predicted 

evolution profiles are shown properly in a subsequent section for variations in loading and 

materials parameters. 
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Fig. 8.13 - Mid-span deflection evolution for (a) C-80-0 and (b) C-70-0. 

 

 

 

 

Fig. 8.14 - Mid-span deflection evolution for (a) C’-80-0 and (b) C’-70-0. 

 

 

 

 

Fig. 8.15 - Mid-span deflection evolution for (a) A70-0.75 and (b) A80-0F0.75. 

 

 

(a) 
(b) 

(a) (b) 

(a) (b) 
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Fig. 8. 16 - Mid-span deflection evolution for (a) A70-0F1.5 and (b) A80-0F1.5. 

 

 

 

 

 

 

 

Fig. 8.17 - Mid-span deflection evolution for (a) A70-0N0.75 and (b) B80-0N1.5. 

8.5.4 Variations in Loading and Material Parameters 

The following findings from the numerical investigations are consistent with experimental 

observations well-established in the literature: 

 The fatigue life of a structural component reduces as the applied fatigue load increases (Teng 

et al., 1998a, Teng et al., 1998b) 

 The fatigue life increases as the steel-fibre volume ratio in a beam increases from 0% to 1.5% 

under the same fatigue loading. 

 Steel fibre can be used to augment shear reinforcement in deep beams subjected to fatigue 

loading (Isojeh et al., Fatigue Resistance Behaviour of Steel-Fibre Reinforced Concrete Deep 

Beams,” in press, ACI Structural Journal). 

(a) (b) 

(a) (b) 
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As shown in Figures 8.18 and 8.19, as the fatigue load increased from 70% to 80% of the 

monotonic resistance capacity, the fatigue life was observed to reduce. In addition, the 

deformations (mid-span deflection) and the corresponding rate of evolution were also observed to 

increase. 

 

 

 

 

 

Fig. 8.18 - Mid-span deflection evolution (effect of stress level) (a) 10M bars (b) 15M bars. 

 

 

 

 

 

 

 

 

 

 

Fig. 8.19 - Mid-span deflection evolution (effect of stress level) (a) 1.5% Vf (b) 0.75% Vf. 

From Figure 8.20, it can be seen that the increase in fatigue life as steel fibre volume ratio increases 

from 0% to 1.5% was well-captured using the VecTor2 NLFEA software (based on the proposed 

fatigue damage algorithm). In addition, from the NLFEA predictions (Figure 8.21), similar to the 

experimental results, steel-fibre reinforced concrete beams without shear reinforcement resulted 

(a) (b) 

(a) (b) 
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in enhanced fatigue life compared to conventional reinforced concrete beams. However, higher 

initial deflections were observed in the former. 

 

Fig. 8.20 - Mid-span deflection evolution (effect of steel fibres) (a) 70% (b) 80%. 

8.5.5 Reinforcement Stresses under Fatigue Loading 

As previously discussed, structural collapse under fatigue loading is most frequently attributable 

to crack initiation and growth on reinforcing bars traversing cracked concrete planes. The area of 

reinforcement at such regions reduces progressively as cracks evolve; hence, increases in the 

induced stress and strain in the steel reinforcement may be observed prior to the point of final 

fracture. In order to illustrate the steel reinforcement stress evolution, plots of the steel 

reinforcement stresses at given fatigue loading cycles were obtained as shown in Figure 8.22 and 

8.23. 

 

 

 

 

Fig. 8.21 - Mid-span deflection evolution (effect of steel fibres) (a) 70% (b) 80%. 

(a) 
(b) 

(a) 
(b) 
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As previously indicated, the yield stresses for the shear and longitudinal reinforcement were 610 

MPa and 480 MPa, respectively. In Figure 8.22, the local stresses in the reinforcement at a concrete 

crack location after 500, 20000, and 40000 cycles are given (Figure 8.22(a) to (c)). The probable 

region of fracture (where the induced stress is equal to yield) is shown in Figure 8.22 (c) at 40000 

cycles. Reinforcement stresses (shear and longitudinal) within the same region in Figure 8.22 (a) 

and (b) at 500 cycles and 20000 cycles are lower than the yield value. However, the stresses evolve 

progressively as the number of fatigue loading cycles increase. From the figures, failure was 

observed to be attributable to fracture of longitudinal reinforcement. Similar observations are 

shown in Figure 8.23. 

8.6 Variable Fatigue Loading 

In practice, the fatigue loading of reinforced concrete structures is usually variable in nature and 

not constant. In the experimental investigation conducted and verified herein, constant fatigue 

loading was used. In addition, the approach described also considers constant fatigue loading. Two 

approaches for variable fatigue loading are discussed subsequently. 

A majority of designers still prefer the use of the Palmgren-Miner damage rule based on its 

simplicity. Variable fatigue loads, and the corresponding number of cycles applied, are usually 

given in spectrums. The proposed approach (using NLFEA) can be used to estimate the number 

of cycles leading to failure (Nf) for each fatigue load in the spectrum, and the ratio of N to Nf is 

obtained for each fatigue load in the spectrum. Hence, the Palmgren-Miner rule may be used to 

cumulate the expected damage. 

The flaw of the negligence of loading sequence and the effect of previous damage consideration 

has reduced the reliability of this approach. Better still, an equivalent cycle concept may be used 

for the fatigue analysis of reinforced concrete structures under variable fatigue loading. Using 
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Figure 8.24, the approach is discussed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.22 - Evolution of stresses in reinforcing bars for beam C-80-0 (stresses shown in MPa). 

(a) 500 cycles 

(b) 20000 cycles 

(c) 40000 cycles 
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Fig. 8.23 - Evolution of stresses in reinforcing bars for beam A70-0F0.75 (stresses shown in 

MPa). 

(a) 1000 cycles 

(b) 80000 cycles 

(c) 120000 cycles 
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The load-deformation plots of all variable loads are obtained using the proposed approach and 

assuming constant fatigue load for each. For simplicity, the mid-span deflection evolution plots 

for beams C-70-0 and C-80-0 subjected to two different loads (70-0 and 80-0) are used for this 

illustration. Assuming a beam is subjected to N1 cycles (load 80-0), in Figure 8.24, the 

corresponding mid-span deflection is 𝛿1. For a second variable load (70-0) subjected to N2 cycles, 

the effect of the first variable load must be accounted for. Hence, 𝛿1 is extended to the load-

deformation plot for the second variable load, and the corresponding number of cycles is termed 

the equivalent cycles (Neqiv) (Figure 8.24). In order to obtain the actual deflection (𝛿2) due to N2 

having considered the damage from the first load stage, the summation of   Neqiv   and N2 (Neqiv + 

N2) is extended to the load-deformation plot for the second variable load. This procedure is 

repeated for subsequent variable loads until the critical point on the last load-deformation plot is 

reached (Cri). This approach accounts for previous loading damage; hence it overcomes the 

sequence and load history anomaly common with variable fatigue loading.  

 

 

 

 

 

 

 

Fig. 8.24 - Variable fatigue loading of reinforced concrete. 

8.7 Conclusions 

The verification of finite element analysis models with experimental data from tests conducted by 

N1 

N2 Neqiv 

𝛿2 

𝛿1 

Cr1 Cr2 
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the authors were presented. Finite element analysis for fatigue analysis was conducted using 

VecTor2 having implemented the proposed algorithm discussed in Chapter 7. From the analytical 

results obtained, the fatigue life predictions using the residual strength concept were found to be 

consistent with the results obtained from the experimental investigation. The acceptability of the 

proposed approach can also be attributed to its capability to predict variations in loading and 

materials parameters as in the case of the fatigue load and steel fibre volume ratios. In addition, 

conservative life predictions were observed. Further, the analysis of variable fatigue loading can 

be conducted appropriately using the proposed approach. Based on the observed results, the 

proposed approach can be incorporated for fatigue resistance verification of structural components 

prone to fatigue damage. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Summary 

This thesis was written with the major goal of developing a robust approach for the fatigue 

analysis of wind turbine foundations and other similar fatigue-prone structural elements. 

Previously, the approach used for fatigue analysis of reinforced concrete structures was 

rudimentary owing to the fact that a majority of the fatigue damage models used do not account 

for salient factors influencing the fatigue behaviour of conventional reinforced concrete 

composites. In addition, a majority of the assumptions implemented into fatigue constitutive 

models were not experimentally proven to establish their prediction accuracy in ensuring that 

results are not overly conservative and are cost- effective. On the other hand, it was expedient to 

verify that predictions are utterly safe. 

Flaws observed in previous fatigue resistance design approaches have been shown in this 

investigation. Previous assumptions have been verified and modified where necessary. New 

analysis concepts have been proposed for estimating the fatigue life of concrete and steel-fibre 

reinforced concrete. In addition, a new approach for the experimental investigation of deep 

beams under fatigue loading has been proposed. This involved the verification of the evolutions 

of the average principal strains and the evolution of the orientation of principal strain directions. 

Because fatigue damage evolution becomes significant where cracks exist, a means of 

minimising or arresting crack propagation under fatigue loading of deep beams (such as wind 

turbine foundations) were investigated using steel-fibre reinforced concrete. In addition, a means 

of optimizing fatigue-prone structural components using smaller sections with sufficient 

ultimate limit state, serviceability limit state, and fatigue resistance capacity were verified using 
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steel-fibre reinforced concrete. 

Previous approaches used in fatigue resistance verification neglected significant mechanisms 

that govern damage evolution. The influence of irreversible strain accumulation was ignored, and 

the crack propagation of reinforcing bars traversing cracked concrete planes were not 

appropriately accounted for. 

In this thesis, the following objectives were addressed: 

1. Developing a new fatigue data analysis method for obtaining a realistic damage model and 

proposing robust fatigue damage models that account for salient fatigue loading parameters. 

2. Verifying previous assumptions used in fatigue constitutive models for concrete composites 

to ascertain their levels of safety and reliability in fatigue damage models. 

3. Developing an irreversible strain model for concrete in compression that is required in the 

modified constitutive, compatibility, and equilibrium equations for fatigue analysis of 

concrete composite structural elements. 

4. Verifying the performance of steel fibre reinforced concrete deep beams in fatigue resistance 

and also verifying the possibility of obtaining better optimised structural components using 

steel fibre concrete. 

5. Developing a crack growth evolution model for steel reinforcement traversing cracked 

concrete planes. The model is required in equilibrium equations at concrete crack locations. 

6. Verifying proposed models that involve the modification of the equilibrium, constitutive, 

and compatibility equations of the strut and tie model and the Disturbed Stress Field Model 

(DSFM) in order to account for fatigue damage evolution. 

7. Verifying the analysis approach using nonlinear finite element analysis software. 
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The first four objectives were achieved by conducting experiments at the material and structural 

levels. A new approach was proposed for fatigue tests of structural components, and, as such, 

future tests can be conducted using the described procedures. 

9.2 Conclusions 

The main conclusions derived from the experimental and analytical results of the research 

conducted are presented in this section. 

1. Fatigue models void of salient loading parameters such as frequency and stress ratio 

result in inappropriate fatigue life estimations, except when the loading parameters are 

similar to those used in developing the fatigue models. 

2. Based on experimental verification, the secondary strain rate concept is an appropriate 

approach for fatigue life estimation because it is free from the stochastic variations 

prevalent with concrete. 

3. From the experimental investigations conducted at the material level, the assumption 

implemented into the fatigue constitutive model for a concrete composite in compression 

in which the stress-strain curve of a fatigue-damaged concrete element intersects the 

stress-strain envelope was verified to be realistic. 

4. From the experimental investigations conducted at the material level, the assumption 

that the fatigue hysteresis loop at failure intersects the stress-strain envelope was also 

verified to be realistic. 

5. Although the assumption that the centrelines of fatigue hysteresis loops converge at a 

common point is realistic, the point of convergence was found to be approximately at 

the coordinate of (−0.3𝜀𝑐
′ , −𝑓𝑐

,
), resulting in a newly proposed model for irreversible strain 

accumulation. 
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6. Steel fibres can be used to extend the fatigue life of structural components (including 

deep beams) due to crack-bridging effects that subsequently reduce stresses in the 

reinforcing bars, hence inhibiting or minimising the rate of reinforcement crack 

propagation at the intersection with a concrete crack. The life enhancement was observed 

to increase as the fibre volume content increased from 0% to 1.5%. 

7. Steel-fibre reinforced concrete beams without shear reinforcement exhibited a higher 

fatigue life compared to conventional reinforced concrete beams with shear 

reinforcement. This further shows the merit of partial replacement of shear 

reinforcement with steel fibres in fatigue-prone structures for enhanced fatigue life. 

8. Optimised (smaller) cost-effective sizes using steel fibre concrete as replacement for 

larger conventional reinforced concrete structural elements are obtainable in the design 

of fatigue-prone structural element such as wind turbine foundations. 

9. The modified approach using the strut and tie model for fatigue analysis of reinforced 

concrete deep beams was verified to be a realistic and conservative approach since the 

influence of irreversible deformation accumulation is accounted for. 

10. Having accounted for fatigue damage of concrete, irreversible compressive strain 

accumulation, and reinforcement crack-growth in the equilibrium, constitutive, and 

compatibility equations of the Disturbed Stress Field Model (DSFM), comparisons of the 

analysis results of the fatigue life and deformation evolution with the experimental 

results gave good correlation. Thus, finite element analysis software modified 

accordingly can be used in the fatigue resistance verification of fatigue-prone structures 

such as wind turbine foundations. 

11. Fatigue analysis results further show that the fatigue life of a structural component 
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corresponds to the number of cycles at which the residual capacity of the component 

becomes equal to the fatigue load. 

9.3 Recommendations for Future Work 

Although the project objectives were largely accomplished, the current area of fatigue analysis of 

reinforced concrete can be extended. Recommendations are given subsequently. 

1. The proposed approach for variable fatigue loading damage accumulation, both for plain 

concrete and reinforced concrete structural elements, requires further verification to support 

the validity of the approach, since tests using variable fatigue loading were not 

conducted. 

2. Small-scale deep beams were tested in the investigation conducted; however, the results 

and findings should be supported with results from large-scale deep beams. 

3. Strain gauges used in the experimental investigation were sometimes damaged once they 

were intersected by concrete cracks. An appropriate means of strain reading under fatigue 

loading should be developed. 

4. The proposed secondary strain rate model was developed based on high-cycle fatigue 

results (less than ten million cycles); however, the application of the proposed model can 

be extended to very high-cycle fatigue loading using tests results greater than ten million 

cycles. 

5. Although the analytical results for steel-fibre reinforced concrete elements gave good 

correlations in the estimation of fatigue life, fatigue deterioration of the beams were 

slightly under-estimated. However, more steel fibre models may be verified on this basis. 

6. Lastly, the fatigue life estimation and deformation evolution of wind turbine foundations 

and similar elements are required using the proposed approaches (modified strut and tie 
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approach and nonlinear finite element analysis) in order to identify anomalies in current 

modelling procedures. 
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APPENDIX A- STRENGTH AND SECANT MODULUS DEGRADATION TEST DATA 

 

Table A-1  

Specimen Initial compressive 

strength  𝒇𝒄
′  

MPa 

Number of cycles 

before static 

loading 

Residual strength 

after static loading 

MPa  

Residual fatigue 

modulus 

MPa 

E22 52.8  430 54.9  68900  

E9 52.8  430 54.4  58100  

E20 52.8  860 55.1  65100 

E11 52.8  860 53.0  58800  

E4 52.8  5150 55.3  62000  

E17 52.8  7730 52.3  55200 

E1 52.8  8160 53.4  53300  

E2 52.8  3480 46.5 44200  

G3 46.2 5550 41.7  33400 

G7 46.2  5880 38.6  30100 

G8 46.2  18080 36.3  31400 

G9 46.2  6180 32.9  25800 

H1 55.8  5000 51.4 50200  

H3 55.8  1200 58.1 61800  

H9 55.8  3000 56.2 57600 

H4 55.8  6120 45.6  45100  

H5 55.8  5840 49.2  43900 

H6 55.8  7900 44.7  42800 

H7 55.8  4680 36.1 37200 

H11 55.8  6710 52.5  54300 

H14 55.8  9870 46.8  38800  

H15 55.8  8660 37.9  33300 
aFailed before reaching maximum fatigue load applied 
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APPENDIX B: SECONDARY STRAIN RATE DATA                                                           B-1 
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APPENDIX B: SECONDARY STRAIN RATE DATA                                                       B-2 
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APPENDIX C: FATIGUE HYSTERESIS LOOPS FOR CONCRETE CYLINDERS              C-1 
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APPENDIX C: FATIGUE HYSTERESIS LOOPS FOR CONCRETE CYLINDERS           C-2 
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APPENDIX D: TESTED DOGBONE SPECIMNES                                                                D-1 
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APPENDIX E: FAILED BEAMS DUE TO FATIGUE LOADING                                           E-1 
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APPENDIX F: FAILURE PLANES IN DEEP BEAMS                                                            F-1 
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APPENDIX G: DEFORMATION EVOLUTION PLOTS FOR DEEP BEAMS                       G-1 

 


