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Abstract

Shear fatigue failure of reinforced cona@egravitybased wind turbine foundations isaajor
concern amongst designers, one that can potentially cause cooalEpse of the whole turbine
structureln standard practi¢esucha failure is guarded against by using more concrete and steel,
resuling in additional material and labour costs. Six SFRC and RC-ta@edeepconcrete

beams were constructed and tested monotonically and cyclically in order to compare the
contributions of conventional stirrups to the fatigue life of the beam with tfabe steefibres

and verify the straibased fatigue damage models developed at the University of ToR@siolts

show that the contribution of the stirrups to the fatigue life of RC deep beams is marginal. The
steelfibres on the other hand, are gosuior alternative both in terms of performance (fatigue life)

and cost. Analytical results, using finite element analysis, show that the proposed fatigue models

are reliable and superior to overly conservativde equations.
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Chapilerl ntroducti on

11l ntroducti on

1.10vervi ew

Wind turbines ee devices that capture the kinetic energy of the wind and transform it into
electricity. They have been key machines in generating renewable energy, a sustainable practice
that has the potential in the future to reduce or eliminate the dependence ldndtsst produce
electricity. Wind turbines in Canada currently provide enough electricity to meet the needs of over
three million Canadian homes, or (@hexanpdam c e n
Wind Energy Asociation, 2015)

Most wind turbines today are horizortatis machines having a bladed rotor spinning in the
vertical plane(US Office of Energy Efficiency and Renewable Energy, 20I8)e basic
components of such wind turl@s include the rotor, nacelle, tower, and foundafmerican

Wind Energy Association, 2013The rotor includes the blades which rotate due to the kinetic
energy of the wind. They are typically made from materials that héwghastrengtkto-weight

ratio (e.g. fiberglass), and are shaped in a way that creates differential pressure on different points
of the blades, causing them to spin when facing the {WAnaerican Wind Energy Association,
2013) The nacell e can be thought of as the fAhea
components that control the performance. These components include, but are not limited to, the
low-speed shaft, gear box, higpeed shaft, generator, anemometed, @mntroller. The rotation

of the rotor due to the wind enables the dspeed shaft to rotate. This shaft is connected to the
gear box, which contains multiple gears that transfer thesfmsed rotation due to the wind (about

20 rpm) to a higfspeed rotatin (about 1200 rpm) capable of producing the required electrical
power(American Wind Energy Association, 2013he highspeed rotation happens in the high
speed shaft, which is connected to the generator that produces igfeetsia result. The
anemometer is used to measure wind speed and direction. It sends the information to the controller,
which is a computer system that controls the wind turbine. It adjusts the direction of the blades
depending on the wind direction, aisdcapable of stopping the turbine under certain conditions,
such as the occurrence of very high winds capable of damaging the blades. The controller can be

accessed remotely from a computer to check the status of the system and make adjustments



(American Wind Energy Association, 2013he tower of the wind turbine puts the blades at high
elevations so thattrongerwinds can be encountered. The foundation holds the whole assembly
together, maintains its stability, and prevahteom collapsing and overturning. It must be able to
resist all the different loads imposed orfFigurel.1 shows the different common components of

wind turbines.

blade wind vane & anemometer
gearbox

disc brake

itch system C ooy 2 - -
P 24 V2P o nacelie
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main shafl & beanng
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transformer
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[

-
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LV “MV

Figurel.1: Common components of a wind turbifdewEn Inc., 2013)

The foundation is the backbone of the wind turbine. The tower, nacelle, hub, and rotor stand erect
due to the foundation. It transmits different types of loads exestettheowind turbine to the
ground, provides stability to the structure, controls settlements, and prevents overturning. It must



be able to withstand the different loads imposed by the wind turbine structure, as well as the
pressure exerted by the soil. Iddiion, displacement and rotation limits must be met. For
example, the maximum rotation at the pile head and the maximum accumulated permanent rotation
resulting from cyclic loading over the design life must be within the allowable tolerances
(Malhotra, 2011) The choice of a specific foundation type and system depends on many factors
including the soil conditions, size of the wind turbine, nature of the loading on the foundation, cost
limitations, and field access limitatio(Svensson, 2010Note that the transfer of forces between

the foundation and the tower is done through what is known as an anchor ring or bolt cage anchor,
which is a rigid steel component connecting the foundation to the,taseshown irFigure 1.2.

It is embedded into the foundation and extends a certain level above the foundation surface, to
which the tower is connected through prestressed bolts. The anchor ring can be thought of and
idealized as a steelbeam rolled circularly. Anchoragetithe concrete foundation is provided

by the flanges of the ring as well as the friction between the webs of the ring and the surrounding
concrete. Grouting can also be used to provide further anchorage. Sometimes a soft layer is put

under the bottom flage of the anchor ring to prevent a local punching failure through the concrete.

! [ LUy mn;.,,"”’ J ~ =¥ J

Q{1

Figurel.2: Wind turbine anchor ringGoransson & Nordenmark, 2011)

Gravity-based foundations are typically reinforced concrete structures that rely on their mass to
provide the required rigidity, stdlty, and resistance against overturning and sliding. The tower
transmits vertical and horizontal forces as well as overturning and twisting moments to the
foundation. In addition, cyclic forces are exerted on the foundation as a result of the rottieon of
rotor blades, making the foundation susceptible to fatigue failure especially in the shear span that
forms between the resultant of the soil reaction force and the compressive component of the cyclic
forces. Shear fatigue failure of the foundation barcatastrophic if it is not considered properly,

as shown ifrigure1.3. The design for fatigue resistance has always been through the consideration

of independent material fatigue damage (i.e. steel and cosedeately) by linearly adding the



damages through what i s known as Mi ner 0s I
accumulation as a measure of fatigue damage has been proposed as an alternative and more refine
method of desigiflsojeh & Vecchio, 2016)The validity of these proposed models need to be
verified and corroborated.

S At T

Figurel1.3: Collapsed wind turbine at the Fenner wind pldifte Syracuse, 2010)

Conventionally, the wind turbine foundation is thickened (and sometimes more steel is used) to
prevent fatigue failure, kich increases the material costs; esf§¢ctive means to increase the
fatigue resistance of the foundation need to be investigated. Steekiiti@ced concrete (SFRC)

is proposed as a possible solution to increase the fatigue resistance witheetthe thicken the
section or use conventional shear reinforcement. Accordingly, the behaviour of steel fibre
reinforced concrete under fatigue loading must be investigated to assess the contribution of steel
fibres to the fatigue resistance of the sectas compared to that of the conventional shear

reinforcement.

11 Research Objectives

The main objectives of this thesis are the following:
1. To provide a detailed and coherent summary of the design procedure of reinforced concrete

gravity-based wind turbine foulations.



2. To verify the validity and accuracy of the fatigue damage models proposed by Isojeh et al.
(2016) and compare them with the traditional methods based on-theudves and
Mi nerds rule, so as to detergnne their su

3. To examine the contribution of traditional shear reinforcement to the fatigue resistance of
reinforced concrete deep beams in order to assess their reliability in improving the fatigue
life of wind turbine foundations.

4. To investigate the possibility afsing steel fibreeinforced concrete (SFRC) as a superior
alternative to traditional shear reinforcement for fatigue resistance and assess the

contribution of stediibresto the fatigue resistance of reinforced concrete.

In order to achieve the seconddathird objectives, an experimental program was designed and
carried out in the structural laboratories at the University of Toronto. Six$aaje longitudinally
reinforced concrete deep beams (4000 mm length x 1040 mm depth x 200 mm thickness) were
constructed in three sets. All the sets contained the same amount of longitudinal reinforcement.
Each set contained two beams of the same detailing. The first set consisted of plain concrete, while
the second and third sets contained shear reinforcemesteatiitbres, respectively. For each set,

one beam was subjected to monotonic point loading while the other underwent fatigue loading.
This enabled the assessment of the degree of fatigue damage, measured in terms of the degradatio
of strength and stiffres, as compared to the monotonic control cases. Since all the fatigue tests
were performed under the same load levels, direct comparison of the performance of the beam
containing shear reinforcement and the other containing fitees was possible. Finbl, the

fatigue damage models developed at the University of Toronto, Isojeh et al. (2016), can be verified

by comparing their results with the experimental results of the beams.

1.2 Organi zation of the Thesis

This thesis summarizes the design process ofamiefl concrete gravithased wind turbine
foundations and provides an experimental program to investigate the fatigue behaviour of steel
fiber-reinforced concrete (SFRC) beams as they compare to that of reinforced concrete beams
containing conventional she reinforcement. Chapter 1 provided an overview of wind turbine

foundations and discussed the research objectives.

Chapter 2 provides a literature review discussing: the different types of wind turbine foundations;

the various loads acting on the gradigsed foundation; the different parameters and diagrams



used to describe the fatigue loading and response of a structure; the various factors affecting the
fatigue strength of concrete, steel reinforcement, and the bond between them; the fracture
mechanicof concrete and steel; and the monotonic and fatigue shear behaviour of slender and

deep reinforced concrete beams.

Chapter 3 breaks down the design process of reinforced concrete -tpasaty wind turbine
foundations into detailed and coherent stepadttition, the proposed fatigue models are presented

and discussed in the section addressing the fatigue design of the foundation.

In Chapter 4, the experimental program is discussed. The details of the beams, including their
dimensions and reinforcemeanibut, are given. Casting and curing procedures are addressed. The
different types of instrumentations used are explained. The testing setup, including the supporting
conditions and loading parameters, is described. Additionally, the results of the splym
material tests (concrete cylinder compressive tests, modulus of rupture (MOR) tests, and steel

coupon tests) are presented.

Chapter 5 presents the experimental results and the different plots of the tests performed. Detailed
observations of the tesare presented, as well as photographs detailing the cracking patterns and

failures of each test.

Chapter 6 provides a detailed analysis of the results including the discussion of tiefleatibn
response, cracking patterns, failure modes, degraddtie to fatigue, and comparisons of the
different responses of the beams under fatigue loading. Governing mechanisms that might have

affected the results are also discussed.

Chapter 7 deals with tHaite element analysis of the test beams, utilizirg phoposed fatigue
damage models incorporated in VecTor2. Note that VecTor2 is a nonlinear finite element software
dedicated to the analysis of reinforced concrete structures, specificaithrivemsional membrane

structures.

Chapter8 provides conclusiandrawn from the analysis of the experimental results and presents

recommendations for future work.



Chapter 2: Literature

2 Literature Revi ew

21 Wi nd Turbine Foundation Types

2.1.1 Onshore Foundations

For onshore wind turbines, there are two primary type®whdations: pile foundations and
gravity-based foundations. A pile foundation is used when thesweéace soil has insufficient
bearing capacity to withstand the loads transferred from the structure (e.g. clay). Hence, piles are
driven, drilled, or jackd deep into the soil until a layer with sufficient bearing capacity is reached.
The piles are then connected to a pile cap. The cap distributes the load from the structure into the
ground and facilitates efficient sharing of the load by the fAsbtlock & Schaefer, 2011 he
connection between the piles and the pile cap falls between the two extremes of clamped rigid
connection and hinged connection. Some variations of the pile foundations do not include a pile
cap, such aa monepile foundation. The piles can be timber, steel, or concrete piles, although
concrete piles are the predominantly used dfigsire2.1 shows some pile foundations variants.

niEn

|
|
|
|
|
|
|
i
|

(a) (b) (c)
Figure2.1: Pile foundations: a) Pile group and cap; b) Solid rgitey ¢) Hollow monepile (Ashlock &
Schaefer, 2011)

A gravity-based foundation is used when the top soil is strong enough to support the loads from
the wind turbine. It is important to consider how far the water table is below the top soil when
assessing the (DNY/RISG, @0@R). A gravitrbageal foundagion consists of a

large area of concrete at the bottom of the wind turbine structure. This area can vary from

rectangular andircularslabs (



Figure 2.2) to octagonal shallow mat&igure2.3) and cylindrical foundationg={gure2.4). The

slabs can be level or tapered, and are often placed concentrically undewdéne Tapered
foundations slabs usually require less amount of concrete, so they are more economical. In
addition, tapering the slab results in less congestion of rebar and ensures that water on the surface
gets drained awayGoransson & Nordenmark, 2011The bigger area and mass of gravity
foundations provide stability and protect against overturning moments. The wide foundation
brings the resultant of the soil forces closer to the tower, reducing overturning n{Swemtson,

2010) It also enables a smoother transition of the structure forces to the ground by having a large
contact surface area, which ensures that thebeading capacity of the soil is not exceeded. This
type of foundation is stable even for soils with lower bearing capacities provided that the soil is
stiff enough to prevent undesired settlements. The foundation must be able to resist the bending
moment and shear force induced by the tower safely, hence proper detailingansianing are

required.

Figure2.2: Circular $ab wind turbine foundatio(Grasmere Wind Farm, 2011)

Figure2.3: Octagonabkpread foundatiofSpecial Formwork, 2011)



Figure2.4: Cylindrical gravity foundatiorfMaritime Journal, 2014)

The gravitybased foundation is plad on the ground or below the ground at shallow levels.
Hence, the excavation and refilling work required is minimal compared to pile foundations. The
overturning moment is mainly resisted by the-sedight of the foundation. If the gravityased
foundatbn isbuilt into the soil at shallow levels, the top soil might take some part in resisting the
overturning moment, reducing the amount of concrete needed for the foundation, but at the
expense of requiring more excavation and refilling of €8uensson, 2010Figure 2.5 shows

some variations of gravitpased foundation systems. Often in practice the gravity foundation
consists of the individual tapered footing rigidly connectedgedestal at the center, which holds

the tower. The backfill usually covers the footing and the pedestal, so the ground level starts from

the top of the pedestal.

|
[ i |
!

(a) I (b)
| |

| | |
| i

.——""l | — 0

|
(c) I (d)

|
|

Figure2.5: Pile foundations: a) Plain sld) Stub and pedestal; c) Stub tower embedded in tapered slab;
d) Slab held down by rock anchdishlock & Schaefer, 2011)
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2.1.2 Offshore Foundations

In the recent years, offshore wind turbine power plants have emerged in manyesoUtiteir

higher required capital investment, compared to the onshore power plants, is offset by the higher
generation capacities they haflaternational Renewable Energy Agency, 20IY)e offshore
environment provides a gable place for wind power plants: the winds have higher speeds and
lower turbulence. In addition, the space limitations are less and there is more proximity to the cities
to which electricity is supplied, which reduces electricity transportation ¢bgtrnational
Renewable Energy Agency, 201Zjowever, offshore wind turbines require slightly more
complex designs and considerations including dynamic water wave forces, ship impact loads, and
corrosion vulnerability of the micture (International Renewable Energy Agency, 2012)
Fortunately, as experience and research on these offshore wind turbines is accumulating, more
specific designs and materials are being developed resulting in improvednazerée and
durability. The offshore wind turbines usually have different foundation types to ahemortd

the seabedlabe 2.1 lists the common types of such foundations. Note that the focus of this thesis
will be on onshore concrete gravity wind turbine foundations, so offshore applications and other

types of onshore foundations will not be discussed further.
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Tale 2.1: Offshore wind turbine foundation typ@aternational Renewable Energy Agency, 2012)

Foundation Type

Application

Advantages

Disadvantages

Mono-piles

Most conditions,
preferably shallow
water and not deep
soft material. Up to

4 m diameter.
Diameters of % m
are the next step.

Simple, light and
versatile. Of lengths uj
to 35 m.

Expensive installation
due to large size. May
require predrilling a
socket. Difficult to
remove

Multiple piles (tri-pile)

Most conditions,
preferably not deep
soft material. Suits
water depths above

Very rigid and
versatile.

Very expensive
construction and
installation. Difficult to

30 m. remove.
Concrete gravity base Vlrtually_ _aII soil Floatout installation Expenswg due to large
conditiors weight.

Steel gravity base

Virtually all soil
conditions. Deeper
water than concrete

Lighter than concrete,
Easier transportation
and installation. Lower
expense since the san
crane can be used as
for eredion of turbine.

Costly in areas with
significant erosion.
Requires a cathodic
protection system.
Costly compared with
concrete in shallow
waters.

Mono-suction caisson

Sands and soft clay

Inexpensive
installation. Easy
removal.

Installation proven in
limited range of
materials.

Multiple-suction
caisson (tripod)

Sands and soft clays
Deeper water

Inexpensive
installation. Easy
removal.

Installation proven in
limited range of
materials. More

expensive construction

Inexpensive foundain
construction. Less
sensitive to water depf]

High mooring and
platform costs.
Excludes fishing and

Floating Deep waters than other types. Non o
I navigation from areas ¢
rigid, so lower wave farm
loads. '
22Loading on Wind Turbine

Foundat

There are many types of loads actmg a wind turbine shallow gravity spread foundation: in
addition to its own selfveight and the soil contact pressure, the tower transmits force and moments
to the foundation. Moreover, the dynamic forces of the wind (caused by the rotation of the blades)

produce cyclic loading of variable parameters on the foundation.
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2.2.1 Forces Transmitted from the Tower

The tower is connected to the foundation through the anchor ring, which acts more like a rigid
connection allowing the transfer of vertical forces, horiabforces, and bending and torsional
moments. The vertical force is caused by theweifjht of the tower and its components, while

the horizontal forces are caused by the lateral forces of the wind acting along the height of the
tower. These lateral foes also induce an overturning moment on the foundation, which can
displace the center of gravity of the wind turbine system from equilibrium, potentially leading to
an overturning failuréMaunu, 2008) This moment is also caed by the rotation of the blades

and is transferred to the foundation through the bolt cage connection in the form of a force couple.
Since the wind can change its direction, the horizontal forces and moments can act on any side of
the foundation (i.e. &y are not restricted to one plane). Nonetheless, the forces in the vicinity of
the anchor ring (i.e. the disturbance region where forces get transferred to the foundation) impose
certain demands and stresses, which require special consideration ambdelstussed in the
design section). The demand imposed on the foundation by the tower (i.e. horizontal and vertical
forces, as well as moments) is usually given by the wind tower generator supplier to be used in the

foundation design.

The forces transrtied from the tower determine the distribution of the soil contact pressure, which
significantly influences the design of the foundation as it determines its internal forces and stresses.
For example, the distribution of the soil contact pressure undeentit vertical loading (i.e.
without an overturning moment) is vastly different from the distribution under eccentric loading

(i.e. with the presence of both a vertical force and an overturning mo¢iventhu, 2008)

2.2.2 Soil Contact Pressure

The soil exerts pressure on the foundation at the areas of contact. The soil must have sufficient
bearing capacity and rotational stiffness to take in the loads transmitted, without causing excessive
settlements. The rotational stiffness bé tsoil refers to its ability to control and limit rotations
about the horizontal axes, preventing overturning. Horizontal stiffness of the soil is also required
to prevent sliding. Essentially, the combined stiffness of the soil and the structure isdcteeck
ensure stability; the overall foundation stiffness depends on the stiffness and strength of the soil as
well as on the foundation structural elemdfgensson, 2010Yhe magnitude of the soil bearing
capacity is a fundaental parameter in the design of the foundation and depends greatly on the
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type of the soil and its properties. The geotechnical engineer will typically suggest allowable
bearing capacity and minimum rotational and horizontal stiffness values that carda the
design. Note that the determination of the bearing capacity of the soil by the geotechnical engineer
takes into consideration not only the ssplecific conditions and parameters but also the nature of
the structure and its loadin{@rzev & Pao, 2006)Different equations are given for the bearing
capacity of drained and undrained soil on which a circular, rectangular, or octagonal gravity based
foundation is resting (See DNVG&T-0126 section G.4). These equatioss shape, inclination,

and bearing capacity factofBowles, 1997) The bearing pressure of the foundation is found by
dividing the specified dead and live loads by the area of the foundation in contact with the soil.
Surchargepressure is also accounted for, which includes the service loads acting on the area
directly above the foundation, the dead load of the foundation, and the soil overlay (backfill) over
the foundation(Brzev & Pao, 2006)Desigv considerations of the bearing pressure will be

discussed in the design section.

Site-specific soil investigations are carried out before the commencement of the foundation design
process to obtain the relevant soil parameters (including the allowablegye@ssure) needed in

the design. Such investigations normally include a site geological survey, topography survey of
the soil surface, Hsitu testing, soil sampling for subsequent cyclic and static laboratory testing,
and shear wave velocity measuremes f or t he assessment of the
(DNV GL,2016) The choice of soil l nvestigation me
the project; the type, size, and importance of the wind turbine strutherectual type of soil
deposits and the compl exi(DPDNV Gh,f20168) &ssentialyntte t e r
purpose is to ensure that the soil can safely hold the structure without catastrophic failure and
undesiral® differential and consolidation settlements. Hence, for the design of goagéyg
foundations, the soil investigations should extend beyond the depth of any critical shear surface
(DNV GL, 2016) All layers of soil affectedd y t he structureds settl er
stiffness should also be thoroughly investigated. For seismically active regions, the depths of
investigations are increased to reach areas that will have an influence on the design due to the
propagabn of shear waves as a result of earthquakes-sBéeific seismic parameters to
determine the site class for the seismic force calculations are obtained. Scour and erosion of the
soil are also issues that are addressed during the soil investigatienti&lys the aim of these

investigations and tests is to ensure that the soil (especially the shallow soil for thelzpagdy
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foundations) is able to withstand the structure and allow it to fulfill its design goals throughout the
operational life. Théevel of the groundwater is also determined to assess buoyancy (uplift) effects

on the foundation and the soil bearing pressure.

As stated earlier, the loads transmitted from the tower to the foundation (through the anchor ring)
have a direct influence ahe distribution of the soil contact pressure, which greatly determines
the internal forces in the foundation, governing its design. Since these loads greatly depend on the
wind speed and direction (which vary with time), the resulting soil pressurédulitn varies

both spatially and with time. Two cases are considered: concentric and eccentric loading of the
foundation. Regardless of the resulting pressure distribution, the actual soil pressure (due to the
imposed loads on the foundation by the towsduld be less than the allowable soil bearing

pressure determined by the geotechnical engifisreev & Pao, 2006)

2.2.2.1 Concentrically Loaded Foundations

Concentric loading on foundations consists of a vertical load transmittedthe tower to the
foundation, without the presence of an overturning moment. In this case, the soil contact pressure
is approximated as a uniformly distuted pressureFgure 2.6(a)) although it is higher at the
edges for cohesive soils such as claigyre 2.6(b)) or at the center for granular soil such as a
sandy soil Figure2.6(c)) (Brzev & Pao, 2006) The typical rigidity of practical gravity foundations
deems the approximation of uniform soil pressure appropiieles, 1997) The value of the
pressure is found by dividing the axial load by the area of thedftion in contact with the soil.

A

N B A

q q

q
a) b) c)
Figure2.6: Soil pressure distribution for concentric loading: a) uniform pressumphgsive soil

pressure, c) granular soil press(Bezev & Pao, 2006)
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2.2.2.2 Eccentrically Loaded Foundations

In most casg the vertical axis of the tower is coincident with that of the foundation; hence the
vertical load transferred from the tower does not induce a moment in the foundation. Nevertheless,
a moment is induced from the lateral wind loading on the tower, irgguit eccentric loading
conditions where there is a force as well as a moment transferred from the tower. The resulting
soil pressure distribution for this case can be found by the principle of superposition: the soll
distributions for the concentric loed) and the pure bending will be added together to give the
total soil pressure distribution. The pressure distribution due to pure bending is shown in
Figure2.7. The value of the soil pressure is found by dividing the momdoeJay the section

modulus of the area of the foundation in contact with the soil.

gy =24

Figure2.7: Soil pressure distribution due to pure bendiizev & Pao, 2006)

Depending onhe magnitude of the moment (i.e. the eccentricity), three slightly different soil
pressures are possible: those corresponding to small eccentricities, large eccentricities, or boundary
eccentricity. Brzev and Pao (2006) define the boundary eccentridityaequal to onsixth of

the foundationds | engt h -duaster ofahe sadius dor @ cirdularu n d
foundation. Note that the magnitude of the eccentricity is not only reflected by the deviation of the
axial load from the neutral axisor example, a large transferred moment coupled with a concentric

axial load results in conditions identical to those for large eccentric loading.

For small eccentricities (i.e. small transferred moment), the total distribution of the soil pressure
is trapezoidal, as shown iRigure2.8. The distributions for boundary and large eccentricities are
linear, as shown ikigure2.9 andFigure2.10, respectively. The deviation of the line of action of

the resulting soil pressure fronmet neutral axis of the foundation reflects the amount of
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eccentricity. Larger eccentricities are detrimental to the foundation because they result in larger
overturning moments and bearing pressure on the soil. When the total resulting soil pressure
contans negative stresses indicating that the soil is exerting tensile stresses on the foundation,
these stresses are taken as zero because in reality the soil does not exert such tensfRrsaesses

& Pao, 2006) (Maunu, 2008) The linear soil pressure distributions discussed are adequate
simplifications of the complex seditructure interaction, which were suggested by Meyerhof
(1953). Other possible simplifications include a uniform or a variathimear pressure over an
effective contact are@Meyerhof, 1953) The nonlinear pressure distribution is accurate for fine
grained soils where the edge maximum pressure is exceeded, so the maximum pressure tends tc
redistribue inwardgYilmaz, Schubert, Tinjum, & Fratta, 2014)

Yilmaz et al. (2014) installed pressures gauges beneath two octagonal gravity wind turbine
foundations to monitor the bearing pressure on the soil underneath. Resultsfiecantdstages

in the service life of the wind turbines have shown that the pressure was distributed across most of
the foundatiorsoil contact area. Furthermore, the pressure was not constant, both vertically and

horizontally. The changes in the pressuaiies were related to the wind speed and direction.
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Figure2.8: Soil pressure distribution for small eccentridiBrzev & Pao, 2006)
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oy

Figure2.9: Soil pressure distribution for the boundary eccentri@izev & Pao, 2006)

i = 0 [

q Lt

Figure2.10: Soil pressure distribution for large eccentrici{iBszev & Pao, 2006)

2.2.3 Self-Weight of the Foundation

Unlike other foundation types, gravity spread foundation are more massive to ensure smoother
transfer of forces to the soil and resist overturning. Hence, theveight of the foundatiois

more pronounced and needs to be considered in the design. If the foundation is a level slab, then
the selfweight will be a uniformly distributed load. However, foundations such as the octagonal
spread foundation are tapered, which results in anssifht distribution that is higher in areas
where there is more mass concentration. In some cases, the weight of the backfill soil is also taken
into consideration in design. The seléight of the foundation reduces the eccentricity of the

loading and a pdion of it, which is behind the zero moment line, resists the overturning moment.

2.2.4 Earthquake Loading

Earthquake loading needs to be considered in the ultimate limit state as a principal load. The
National Building Code of Canada (NBCC 2010), in sectidh&} permits the use of several
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methods in the calculation of the earthquake load. The simplest method is the Equivalent Static

Load method, in which the earthquake effects are translated into a lateral force given as follows:

I\Y!IY Z l'.\) Z IIOZ (b
Y zY

W
where: V is the lateral earthquake force
Tais the period of the structure
S(Ty) is the spectral acceleration corresponding to the period of the structure
My is a factor accounting for higher made
I is the importance factor
W is the weight of the structure
R is the ductility factor related to the seismic force resisting system (SFRS)
Ro is the over strength factor related to the seismic force resgtsigm (SFRS)

Over the height of the wind turbine structure above the ground level, the majority of the mass is
concentrated at the hub height; the contribution of the mass of the tower is neglected. Therefore,
the entirety of the lateral force due to #eethquake is assumed to be acting at the hub location,

which induces an overturning moment on the foundation.

Empirical equations are given in the NBCC (section 4.1.8.11) to calculate the period of the
structure. Soil amplification factors{&nd k) are obtained from the geotechnical report and used

to modify the spectral acceleration of the structure. The importance fagtas (iell as the factor
accounting for higher modes (Mare obtained from the code. Finallyy &d R are estimated
dependingon the inherent ductility of the structure. The ultimate goal of the earthgesistant

design is to prevent the collapse of the structure due to the expected earthquake. Although the
Equivalent Static Force method simplifies the design against eakéwjaad gives conservative
results, more accurate analysis is possible through the response spectrum analysis. The increase
accuracy better simulates the real response of the structure and can possibly result in more material

savings, but at the cost ohdreased analysis time and complexity. This method involves
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establishing a thredimensional model of the structure in a structural analysis software (such as
SAP2000) and performing modal and dynamic analysis on the model, which will produce the
demands o the individual members of the structure due to the earthquake. The choice of which
analysis method to use is determined by the designer.

2.2.5 Wind Fatigue (Cyclic) Loading

The rotation of the wind turbine blades due to the wind causes cyclic fatigue loadihg o
foundation, making it prone to fatigue failufésojeh & Vecchio, 2016) (Maunu, 2008)
(Svensson, 2010 Goransson & Nordenmark, 201I)he magnitude and parameters of such
loading differ with varying wind speeds, direction, and amount of turbulence. On one side of the
tower where the blades rotate towards the foundation, compressive fatigue loading will be exerted.
On the other side nere the blades are moving away from the foundation, tensile fatigue forces
will result. The soil resultant force along with the compressive fatigue loading will create a shear
span in the distance between them, inducing a possible shear fatigue faithedoohdation, as

shown inFigure2.11. This type of failure is critical for gravity foundations, especially for some
typical octagonal spread foundations that act as deep beams. Hence, the behaviour of reinforced
concrete deep beams under fatigue loading, especially shear fatigueobehaeeds to be
examined. In addition, safeguarding such foundations against fatigue failure needs to be included

in the design.

Fatigue loading by — Turbine tower

the wind ) }
Fatigue loading by the

Failure of wind

foundation caused
by loading

Turbine concrete
foundation

Force exerted by the soil
Soil Force Resultant

Figure2.11: Fatigue forces acting on the wind turbine foundationthadnduced fatigue failure
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23Fatigue Loading

2.3.1 Fatigue Load Parameters

The concept of fatigue initially arose in the fracture analysis of metals. According to ASTM,
fatigue is Athe process of progressi veral ocal
subjected to conditions which produce fluctuating stresses and strains at some point or points and
which may cul minate in crack or compl ete fr
(ASTM International, 1993)The fatigue damage is exhibited when the material fails under cyclic
stresses. Usually, the cyclic stresses that cause fatigue failure are less than the static ultimate limit
states.Figure 2.12 shows the range of number of cycles different structures experiencing

fatigue loadingWind turbine foundations are typically subject to hytle fatigue.

LOW-CYCLE HIGH-CYCLE HIGSIEIJ-%EYF({D-LE
FATIGUE FATIGUE EATIGUE
Structures subjected Bridges Mass rapid
to earthquakes transit
Wind power plants structures
Structures subjected
to storm Airport pavement Sea structures

0 i0' 10* 10°* 10* 10° 10° 10" 10° 10°
NUMBER OF CYCLES

Figure2.12: Typical number of cycles for different structures experiencingdatioadingGoransson &
Nordenmark, 2011)

The parameters for applied fatigue stresses include the maximum and minimum stresses, mean
stress, range of stress, amplitude of stress, and the stre¢€aatoes, 2004 he loading pattern

and the parameters are showrrigure2.13. The following equations apply:

Mean Stress: Om = Omax+ mid) / 2 (1)
Stress Range: r= makT Umin (2)

Stress Amplitude: 8a=0r/ 2 = @maxT COmin) / 2 3)
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Stress Rati o: min/  mald (4)

Tmax

Tmin

Figure2.13: Fatigue loadindCaceres, 2004)

2.3.2 General Fatigue Damage

The damage caused by fatigue loadingates locally with crack nucleation. Stress concentrations

at an internal flow cause shear flow along slip planes, which eventually results in the initial crack.
(Roylance, 2001)The stress concentrations at the crack cduegoropagate further, reducing the
effective area of material resisting the load, until final fracture happens. This process is general to
many materials but the mechanics and extent of each of the stages depend on the particular materia
under investigion. The detailed macr@nd microscopic study of this damage process is studied

and analyzed thoroughly in the field of fracture mechanics.

2.3.3 S-N Curves

When designing against fatigue, a convenient matxectural representation of the fatigue life of
thematerial is used. This representation, based on the-feessethod, utilizes what is known
as the &N curves (or the Whler Diagram), in which S refers to the cyclic stress amplitude while
N refers to the number of cycles until fatigue failure. A s@n®N curve is shown ifrigure2.14.
Note that each-8! curve is given for a constant minimum stress value. Another way-khesS
presented is in denoting S to be the maximum stress value. In this case;Neachvg is given

for a constant stress amplitude.
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Stress amplitude, S

S

Fatigue strength
at N'; cycles

103 104 Fatigue life 107 N;108 10° 1010
at stress S -

Cycles to failure, N
(logarithmic scale)

Figure2.14: Sample SN curve(Caceres, 2004)

For a given number of cycles, the fatigue strength of the material is the stress amplituad at whi
the material fails in fatigue. On the other hand, the fatigue life is the number of cycles required for
a material to fail in fatigue for a given stress amplitude. For some materials, especially some
ferrous alloys, there is a fatigue limit (stress atage limit) below which the material does not

fail no matter how many cycles of loading are appliRdylance, 2001)The SN curves of
different materials are convenient in determining their approximate fatigue lives, siste mo
fatigue tests use constant stress amplitudes. There are various stahbativBs for different
materials used by organizations and firms in the design against fatigue.

234Mi ner 6s Rul e

The actual cyclic service loads and stresses on a structure haarerdifand random stress
amplitudes. This complicates the approximation of the fatigue life of the structure because there is
no single S value to use. In this case, Mine
life of the material. It statethat the total fatigue damage of a material under variable stress
amplitudes can be obtained by linearly adding the damages caused by the different stress
amplitudes acting on the materi@Roylance, 2001)It relies on the a@ncept of successive
accumulation of fatigue damage. The fatigue loading on the material consists of m constant stress

amplitudes. The material will fail when:
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B —=1 (5)

where nis the number of cycles applied of tHestress and Ns the ultimate number of cycles to

failure corresponding to th& istress(Guo, D14). For every constant stress applied,chin be
obtained fromthe & di agram of the materi al. A graphi
shown inFigure2.15. Although the conclusions given on its accuracy are not densidt is still

used in many design codes. However, knowledge of its limitations and simplifications is essential
when using it in design. For one thing, it neglects the stress redistribution and the irreversibility of
fatigue damage and does not consttie effects of the loading sequence and strain accumulation.

Minerds Rule assumes that structural failure
side of Equation 5) is equal to 1, although many experiments have shown that the damage can va
between 0.79 and 1.§Sutherland, 1999)T'he service of a structure under fatigue loading can be
approxi mated using Minero6s Rule by measuring
fixed period of time. The loadycles experienced during this period of time are assumed to be
representative of the load cycles the structure will experience during its service life. As such, a
damage rategD , is calculated for the fixed period
nothing more than the damage incurred during this period of time. Then, the service life of the
structure is calculated as the reciprocal of the calculated damage ratédd) £Guo, 2014) This

method assumes that the failure of the structure will happen when the damage is equal to one.

t
Figure2.15. Gr aphi cal repr eg@o,20d4)i on of Miner

2.3.5 Modified Goodman Diagram

Although the SN curves are convenient ways of representing the fatigue behaviour of members,

they are only valid for the constant stress ratio or stress amplitude for which they were developed.
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If the stress ratio corresponding to the fatigue loading on a certain member is changed, then a new
S-N curve for the member corresponding to the new stress ratio should be constructed. The
modified Goodman diagram shows the permitted stress rangegif@manumber of load cycles
before fatigue failure occutMallet, 1991) In other words, the allowable maximum and minimum
stress combinations for a given fatigue life are given. A sample modified Goodman diagram is
shown inFigure2.16. The maximum and minimum stress are shown as ratios of the ultimate static
strength. The saxis shows the minimum stress while thaxys shows the maximum stress. The
shaded region denotes the allowable stress combinations. The height of thys steaific
minimum stress value represents the allowable stress range for the given fatigue life. If the loading
falls within the shaded region, then the member will fail after N cycles, which is constant for every
graph. If the loading falls above the did region, then the member will fail before reaching N

load cycles. On the other hand, if the loading falls below the shaded region, then the member can

sustain more than N load cycles.

1.00

o/f,

0.50

0.33

Compression
o /f.
0.00
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0.33

(Fixed number of load cycles - N}

Figure2.16: Modified Goodman diagraifMallet, 1991)
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2.3.6 Fracture Mechanics

Fracture mechanics thoroughly addresses the initiation and propagation of cracks and the
conditions and stresses surrounding th&irere are two approaches to this field: the classical

linear fracture mechanics, and the modern nonlinear fracture mechanics.

2.3.6.1 Linear Fracture Mechanics

Linear fracture mechanics assumes that the material is fully elastic and there is negligible or no
pladification or nonlinearities in the vicinity of the crafkfseth, 1993) The crack propagation is

related to parameters such as the stress at the crack, the shape of the crack, and its size. Material
contain defects and irratarities that act as stress concentrations which facilitate the crack

propagation.

Griffith (1920) proposed a criterion that relates the propagation of the cracks initiated, by the
internal material defects and irregularities or applied forces, to thigyestate of the material at

the crack. Following the lowest energy path, the crack will propagate if the strain energy released
during crack growth is equal to or greater than the energy required to expand thgciffitik,

1920}

W+iuoO G A

where UW is the energy released when the applied load does work on propagating thélg¢rack,
is the elast (strain) energy released during crack growth,@d A i s t he ener gy

expand the crack, in which.@ the surface energy per unit area of crack.

The Griffith criterion can be more conveniently and accurately expressed by the use ofyintensit
factors. If the applied stress intensity factor (denoted as K) is equal to or greater than the critical
intensity factor (denoted asc)Kthen the crack will propagate. The critical intensity factor (also
known as the fracture toughness) depends on gdeasnncluding the modulus of elasticity, crack
surface energy, crack geometry, specimen geometry, mode of loading, and nature of deformations
ahead of the cragidshby & Jones, 2011)

The propagation of a crack (after itstiation) does not necessarily occur linearly with the
progression of the cyclic loading. The important pioneering work by Paris et &3) g€98blished

the relationship between the crack growth and the number of load cycles. It suggested that the rate
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of crack growth with respect to the load cycle number is proportional td'thewer of the stress

intensity factor range, in whichiga materialspecific constant:

— 6z Y0 7)
in which a is the crack size, N is the numbe
C and n are materi al coasstants. The value of
Yo OzY, 2 @ (8)
in which Y is the shape factor and &0 is the

Eq. (7) toobtain the crack size (depth) as a function of the number of cjRdes & Erdogan,
1963)

2.3.6.2 Nonlinear Fracture Mechanics

Many materials contain nonlinear and plastic regions arountiptioé a crack. In this case, using

linear fracture mechanics is not sufficiently accurate; nonlinear fracture mechanics models were
proposed to model and approximate such cases. While there are many nonlinear models that do
not apply to concrete (such &mtegral path model and the crack opening displacement model),
two nonlinear fracture mechanics models were developed specifically for concrete: crack band
theory model and the fictitious crack model. These two models are briefly discussed in this

literature review.

24 FATI GUE OF REI NFORCED CONCRETE

Reinforced concrete structures are generally subject to two types of fatigue loadiuyclew

fatigue and higkcycle fatigue. The former refers to the fatigue loading which has high stress
amplitudes that aresually enough to cause fatigue damage in a relatively lower number of cycles
(e.g. earthquakes), while the latter contains low stress amplitudes but an extended number of cycles
(e.g. service loads). Examining the fatigue of reinforced concrete requkasdat not only the

fatigue behaviour of concrete and reinforcement as constituent parts, but also the complex
interactions amongst them that affect the fatigue response of the member; the fatigue strength of
reinforced concrete is not just simply theldidn ofitsc onst i t uent s dHeffeman] gu e
1997)
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2.4.1 Fatigue of Plain Concrete
2.4.1.1 Mechanism of Fatigue in Plain Concrete

The fatigue failure of concrete has the same stages as that of other brittle materials.fatiguest

cracks initiate from stress concentrations and initial flaws in the specimen when the load is applied.
Sometimes the initial cracks are already present due to the shrinkage of the cement paste before
the application of the load. Then as the logdles progress, these cracks that break the bond
between the cement matrix and the aggregates propagate further until fracture happens. The
propagation path of the cracks is highly variable, because the crack® fiasddheir way around

the aggregatesstead of cutting into them as this is the lowest energy path. As such, the aggregates
act as crack arrestors in the sense that the energy required to further propagate the crack
intersecting the aggregate increa@sseth, 1993.

The stressstrain curve of a concrete prism undergoing cyclic compression stresses is shown in
Figure2.17. Note that § refers to the fatigue limit of the specimen, which is the maximum stress
value at which the specimerill not experience fatigue failure regardless of the number of cycles
applied. Plastic deformations occur even when the applied stress is less than the fatig@adimit

2014) These deformations, however, tend to stabitifer certain number of cycles and the
internal damage does not propagate further. Hence, subsequent cycles do not cause fatigue failure

in the specimen. The areas of the hysteretic loops corresponding to such stress levels are small.

When the applied s#ss exceeds the fatigue strength, only N number of cycles (obtained from the
S-N diagram corresponding to the applied stress) can be applied before failure. Initially when the
load cycles are less than 90% of the ultimate number of cycles to failuressidaal strains
increase gradually while the areas of the hysteretic loops slightly de¢@ase2014) In this

stage, the cracks develop in a stable manner because the interactions between-thiackscamd

the aggregateend to stabilizéAfseth, 1993) After many load cycles (e.g., more thart dgcles)

as the damage brought by the cracks increases, strains become unstable and divergence occur:
culminating in the sudden failure of the sttue (Guo, 2014) Note that the areas under the loops
represent the energy dissipated during the loading process. This energy represents the irreversible
energy of deformation, and it is the energy that is released when pragiegjat¢Afseth, 1993)

The envelope of the cyclic loading curve is very similar to the sstess curve corresponding to

the monotonic loadingCollins and Mitchell, 1997)This is generally true for all cyclic loading
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curves of concrete. The microstructure and energy mechanics of the fatigue damage of concrete is
addressed appropriately and thoroughly through fracture mechanics. A general fatigue failure
envelope for concrete, given by Ekgel. et al. (1957), is shown igure2.18. The shaded area
represents the region of allowable stress ranges without fatigue failure.

Figure2.17: Stressstrain curve of a concrete prism under repeated cessmmn(Guo, 2014)

Figure2.18: Fatigue failure envelope of concrékkberg, Walther, & Slutter, 1957)













































































































































































































































































































































































































































































































































































































































































































































